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ABSTRACT 

 

SPATIO-TEMPORAL VARIABILITY AND DEMOGRAPHIC CHARACTERISTICS OF 

TRANSIT-BASED JOB ACCESSIBILITY: A GIS ASSESSMENT OF THE PUBLIC 

TRANSIT SYSTEM IN FLAGSTAFF, ARIZONA 

 

ANTONIO HENRIQUE CALDEIRA JORGE NEVES 

 

Accessibility measures the ease at which an individual can access a desired location. It is a major 

aspect in transportation planning, and transit systems are extensively used to improve accessibility. 

Well-designed public transit systems enable a high level of access to socioeconomic opportunities. 

This is especially important to socially disadvantaged populations due to their higher need for 

transit services to maintain a basic level of mobility. Increased transit-based accessibility can 

potentially diminish social exclusion rates and improve the well-being of these population groups. 

This research analyzes the spatio-temporal variability and the socio-demographic characteristics 

of transit-based job accessibility in Flagstaff, Arizona. This study employs a temporally-enabled 

schedule-aware simulation based on the transit system’s General Transit Feed Specification and 

the city’s street network. Gravity-based measurements were used in the calculation of accessibility 

from origin locations to job opportunities. This accessibility calculation considers the supply and 

demand location characteristics, the travel time impedance between them, and temporal variations 

in transit service frequency and availability. Statistical analyses were used to measure the 

relationship between accessibility and the individual socioeconomic attributes. The results served 

as the quantitative basis for discussing the social aspects of the city’s transportation system. 
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CHAPTER 1: INTRODUCTION 

 The world is becoming progressively smaller with the continuous technological 

improvements in transportation. This is not, however, absolutely accurate. It only holds true if 

individuals can both access and afford those services. At the 1999 ESRI User Conference, Waldo 

Tobler stated that “while the world is shrinking it is also shriveling” (Miller 2004: 286). Tobler 

meant that the world is indeed becoming smaller with the introduction of new technology, but the 

intensity at which it occurs is spatially and socially variable, depending both on accessibility and 

socioeconomic aspects. Accessibility is defined as “a measure of spatial separation of human 

activities” (Morris, Dumble, and Wigan 1979: 91). Within the specific context of this research, 

accessibility can be referred to as a measure of how easy it is for someone to reach a desired 

location using a specific combination of transportation modes. 

 Socioeconomic segregation is a reality in the United States, especially at the micro level 

that includes cities and neighborhoods (Massey, Rothwell, and Domina 2009). Segregation refers 

to the spatial separation of specific groups by social status, where relatively higher proportions of 

members of one group are geographically clustered. Race, income, education, and age are 

examples of social attributes on which segregation is based. These social traits are not only linked 

to spatial separation but they are also associated with the incidence level of socioeconomic 

disadvantages, including those related to mobility and accessibility. For instance, although car 

ownership is estimated to include 92% of all American households, only 60% of the lowest income 

quintile have access to a private vehicle (Lucas 2012). These levels are also different if racial 

aspects are considered, where white Americans are far more likely to own a car than those 

belonging to other races (Lucas 2004). These facts suggest that, overall, certain population groups 

have a higher need for public transit than others. And when these facts are not considered by 
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transportation authorities, groups that heavily rely on public transit will experience limited access 

to socioeconomic opportunities, such as jobs, education, health services, and recreation facilities. 

This lack of access to resources, opportunities, and services has a negative effect on the well-being 

of individuals and is referred to as social exclusion (Levitas et al. 2007). 

 Public transportation planning focuses on improving the connection between individuals 

and locations of interest. For this reason, accessibility is of primary importance for transportation 

planning, and public transit is widely used in solving accessibility problems, as it is affordable, 

environmentally friendly, and aids in decreasing congestion in saturated urban centers (Tribby and 

Zandbergen 2012). In addition, improving overall accessibility through public transit is also a way 

of reducing the negative effects of socioeconomic segregation. Tribby and Zandbergen (2012) 

address the use of transit systems as a tool to overcome social exclusion by facilitating the access 

to social and economic opportunities. Accessibility improvements can be reached in a few ways: 

reducing transportation costs and travel times to build up physical mobility, introducing 

information technology to improve social interactions and stimulate virtual accessibility, and land 

management measures that aim at the decentralization of facilities, opportunities and activities 

(Preston and Rajé 2007). 

 Equity is a common concern in public transportation planning, where transportation 

agencies and local governments are interested in providing services that are as comprehensive and 

fair as possible. The concept of equity, however, has more than a single connotation and can be 

branched into two major categories: horizontal and vertical equity (Shirmohammadli, Louen, and 

Vallée 2016). The main assumption in horizontal equity is that all individuals are equal and that 

the distribution of resources should be done in a way that both costs and benefits are impartially 

shared among individuals. In transportation, the result of equally weighting all individuals would 
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be the distribution of public transit resources purely according to the population distribution. On 

the other hand, vertical equity is associated with directing a greater proportion of benefits toward 

previously identified disadvantaged groups. In this case, the transportation resources are aimed at 

disadvantaged population groups with a higher need for those resources. 

1.1 - PUBLIC TRANSPORTATION AND ACCESSIBILITY IN FLAGSTAFF 

 A number of local transportation services and resources are currently available in the City 

of Flagstaff (FMPO 2017). The Northern Arizona Intergovernmental Public Transportation 

Authority (NAIPTA) and Northern Arizona University (NAU) are the major providers of these 

services. NAIPTA’s Mountain Line operates several bus fixed-routes throughout the city, 

including the Mountain Link, a high-frequency bus-rapid transit system that connects downtown 

Flagstaff, the NAU campus, and the Woodlands Village neighborhood. The Campus Shuttle 

Service at NAU provides free bus fixed-route service within the NAU campus along with 

SafeRide, a late-night bus service that operates between downtown Flagstaff and campus on 

weekend nights from 9:00 pm to 2:00 am. 

NAIPTA also provides a complementary paratransit service aimed at individuals who are 

unable to benefit from the fixed-route bus services. NAIPTA operates the Mountain Lift, a curb-

to-curb paratransit service where passengers are picked up and dropped off at the curb or driveway 

in front of their home or destination. This service is available within ¾ of a mile of any Mountain 

Line route. Taxi voucher programs are also available for eligible clients. In addition, all the 

vehicles in the NAU Campus Shuttle are currently fully equipped and meet all the requirements to 

transport individuals with disabilities. 

Maintaining a basic level of mobility can be challenging for certain population groups, 

especially people with low incomes, individuals with disabilities, and senior citizens (FMPO 
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2017). The Flagstaff Metropolitan Planning Organization’s 2017 Coordinated Public Transit and 

Human Services Transportation Plan was put together with the objective of developing a 

framework that improves the coordination between various transportation service providers to 

enhance the availability of these services to disadvantaged populations. Although various public 

transportation options are available in Flagstaff, there are still unmet transportation needs and gaps. 

A comprehensive list of needs and gaps is presented by the transportation plan. The most important 

and relevant for this study are highlighted below: 

 Temporal gap: the fixed-route service operation hours do not meet the needs of many 

workers that need extended hours to access their jobs, especially on weekends; 

 Spatial gaps: 

o Some Flagstaff neighborhoods are not properly served by fixed-route buses; 

o A number of human service agencies and senior housing projects are not accessible 

by the fixed-route bus service; 

o No transit service connects Doney Park, Mountainaire, Kachina Village, and 

Bellemont to Flagstaff and NAU for work and school journeys; 

 Infrastructure gap: pedestrian and bicycle access to bus stops needs to be improved. 

 The transportation plan also lists the main goals and the associated efforts of the 

transportation plan given the current needs and service gaps. One of the objectives that can be 

highlighted is the intention to improve accessibility to jobs, education, and services by target 

population groups by increasing service frequencies and expanding coverage to underserved areas. 

1.2 - RESEARCH STATEMENT AND PURPOSE 

 This research proposes to evaluate the City of Flagstaff’s public transit system with respect 

to accessibility and social aspects. It intends to quantify the spatial and temporal variability of 
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accessibility to employment opportunities by public transit and analyze the distribution of 

accessibility across different socioeconomic groups. The objective is to correlate the accessibility 

levels with the demographic parameters assumed to determine social advantage or disadvantage 

and the need for public transit. Those results are expected to provide a quantitative basis for an 

evaluation of the social aspects of the transit-based job accessibility scenario. 

 The results would provide important information regarding the transit system’s 

effectiveness in promoting social equity and reducing social exclusion. This is significantly 

relevant for the public transportation decision-making process and can provide valuable insight for 

the appropriate improvement of the city’s public transit system according to the guidelines 

established by the FMPO (2017). 

 Geographic Information Systems (GIS) and spatial analysis techniques were the methods 

used to produce the results. From a methodological point of view, the goal of this research is to 

use freely available open datasets as input parameters in the development of a geoprocessing tool 

for the calculation of accessibility, where the measurements can be easily further correlated with 

demographic information. The objective is to simplify the assessment by compiling the analytical 

framework used to derive the accessibility measurements into a reusable tool. This way, the same 

procedure could also be appropriately applied to other locations if the data input requirements are 

met. The intention is to also embed a reasonable level of flexibility so that the process can be easily 

implemented in different study areas and benefit other transportation agencies and local 

governments. 

1.3 - RESEARCH QUESTIONS 

 This research will focus on answering the following questions: 
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1) What is the spatial and temporal variability of the transit-based accessibility levels 

experienced by the city’s residents to employment opportunities? 

2) What is the spatial relationship between the accessibility measurements and the socio-

demographic parameters that determine the need for public transit? 

3) Does the accessibility scenario in Flagstaff reflect horizontal or vertical equity? In other 

words, are the individuals equally weighted or the resources are being distributed according 

to socioeconomic condition and the need for transit service? 

4) Are there any locations with a relatively high need for public transit that are not currently 

covered by the transit system? 

1.4 - RESEARCH SCOPE 

 This research is limited to the geographic context of the City of Flagstaff and the FMPO 

region (Figure 1). Given that the central idea of the study is the calculation of accessibility to jobs 

by public transit, it focuses on the area served by the public transit system within the city limits. 

However, a few neighborhoods of interest are located outside this perimeter and therefore a larger 

extent within the FMPO region boundary will be used in the demographic characterization of the 

area. 

 The accessibility calculation will not consider transportation modes other than public 

transit, walking, or a combination of both. Therefore, the results produced can only be treated as 

relative accessibility measurements given that different results would be obtained if other 

transportation modes were included in the analysis. For a given location, the accessibility 

measurement can be understood as the relative access to all potential employment opportunities 

within a specified travel time threshold by using the combination of transportation modes specified 
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above. In addition, the calculation will only include origin locations that are served by public 

transit. Those locations will be defined by a distance threshold from public transit stops. 

 

Figure 1. Flagstaff City Limits and the boundary of the FMPO region (FMPO 2017). 

 This study intends to analyze the current configuration of the public transit system and 

identify areas with an assumed high need for public transit that are currently underserved or not 

served at all. Therefore, although the demographic analysis will involve a larger extent than the 

accessibility calculations, the correlation between accessibility and socioeconomics will only be 

performed for the public transit service area, where the accessibility measurements will be taken. 
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CHAPTER 2: LITERATURE REVIEW 

 This chapter aims at the review of the existing literature on accessibility, and at presenting 

the relevant theoretical basis used to guide the methodology employed in this study. The specific 

terminology on accessibility will also be introduced. First, the general and more specific concepts 

of accessibility will be presented. Second, there will be a discussion on the social role of 

transportation systems. A summary of the accessibility measurement methods and perspectives 

will follow. Finally, there will be a review on the latest methodological approaches on 

accessibility, where the current knowledge gaps will be highlighted. 

2.1 - ACCESSIBILITY 

 Hansen (1959) defines accessibility as a measurement of the ease at which people can 

interact with places. Accessibility is generally contrasted with mobility. While mobility 

emphasizes the transportation system itself, accessibility is also concerned with the land use 

parameters, i.e., the spatial distribution of the specific origins and destinations served by the system 

(Bhat et al. 2000). Therefore, mobility indicators only include criteria related to the transportation 

system, while accessibility would evaluate the transportation system from the perspective of the 

users (Ikhrata and Michell 1997). In other words, accessibility is not only concerned with the 

means to get to the destinations but also with the location of the destinations themselves. From a 

public transit point of view, mobility would measure the movement speed of a transit system. On 

the other hand, accessibility would not only consider that but would also account for the location 

of the relevant origins and destinations. Therefore, accessibility fundamentally refers to the 

relationship between spatio-temporal mobility and proximity to the opportunity landscape, which 

includes employment, health services, stores, and recreation facilities (Páez et al. 2010). 
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 This research is concerned with the concept of transit-based accessibility, which is defined 

as “the ease of travel for an individual to reach a desired destination via public transit” 

(Shahandashti, Liu, and Zhang 2017: 2). This study will use a more specific definition of 

accessibility that is commonly adopted by transportation agencies: “accessibility is a measure of 

the ease of an individual to pursue an activity of a desired type, at a desired location, by a desired 

mode, and at a desired time” (Bhat et al. 2000). In this specific case, the desired activity is 

employment and the desired transportation mode is a combination of walking and traveling with 

transit. 

2.2 - THE SOCIAL ASPECTS OF ACCESSIBILITY 

 Although the social function of a public transportation system is explicitly recognized by 

the local transportation authority (FMPO 2017), a more significant interest in the connection 

between transport policies and its socioeconomic effects is only recent, having started in the 1990s 

(Beyazit 2011). Within the context of accessibility and transportation planning, it is important to 

understand how the allocation of transportation resources impact different social groups with 

distinct mobility and accessibility needs. Neutens (2015) highlights the knowledge gaps after a 

comprehensive literature review on accessibility, and finds that there is a need for more studies 

that attempt to quantify social disparities in accessibility, as demonstrated below. 

 Traditional planning policy addresses transportation planning from an economic point of 

view (Litman and Brenman 2012). The conventional objectives are congestion reduction, 

increased mobility, savings in travel expenses, and transport safety. There has also been an 

increasing concern with environmental aspects, such as the conservation of natural resources, 

emission reductions, and protection of habitats (Litman and Burwell 2006). Many transportation 
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practices still dismiss the social impact of the distribution of transport resources, generally 

focusing on efficiency and environmental indicators (Shirmohammadli, Louen, and Vallée 2016). 

 Transport surveys often reveal that transport disadvantage is usually experienced by the 

most underprivileged population groups (Lucas 2012). Transport disadvantage is directly related 

to social exclusion. Lack of access to transportation by underprivileged groups may lead to the 

further inability of taking advantage of essential goods, services, and opportunities, ultimately 

leading to social exclusion (Figure 2). Therefore, it is important that social aspects are addressed 

by transportation planning policies. 

 

Figure 2. Diagram showing social exclusion as an implication of the simultaneous effect of 

transport and social disadvantage (modified from Lucas 2012). 

 Lately, several studies have focused on the social aspects of transportation and 

accessibility. Haas et al. (2006) observed a negative relationship between income and the 

percentage of income spent on transportation from a compilation of 2000 census data for 28 

metropolitan areas in the US. The results show that the percent amount spent on transportation 

decreases as income increases. The average proportion of income spent by low income households 

(<$20,000) was 56%, while the classes with the top three highest incomes ($50,000 to $75,000; 
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$75,000 to $100,000; and $100,000 to $250,000) only spent 18%, 13%, and 8% respectively on 

average. This evidence shows that low income households are significantly more sensitive to the 

affordability of transportation. 

 Tribby and Zandbergen (2012) measured the travel time savings achieved with the 

implementation of two bus rapid transit (BRT) lines in Albuquerque, New Mexico. The results 

suggest a significant increase in accessibility in the area, as shown by the travel time savings. 

However, the improvements are negatively correlated with the transit users’ index developed in 

the study. This index reflects the social need for transit service, based on income, private vehicle 

ownership, and age. Therefore, the results indicate that, although the transit improvements would 

help in decreasing congestion and pollution, the outcomes of this intervention did not mostly 

benefit the population groups assumed to have a higher need for transit service. 

 Similarly, Delmelle and Casas (2012) evaluated the consequences of the implementation 

of a BRT system in Cali, Colombia. The study addressed accessibility to the BRT system itself, 

and also to hospitals, recreation areas, and libraries. The accessibility to the transit system was 

measured by the walking times to stops or stations. The accessibility results were compared to the 

city’s socioeconomic structure, determined by income, housing characteristics, and urban context. 

It was found that accessibility was the greatest for the middle class, while the lowest accessibility 

was experienced by the lowest and highest social strata. However, the most prosperous social class 

would less likely experience low accessibility due to higher access to private vehicles. The lowest 

socioeconomic strata is more likely to be dependent on the transit system and therefore may 

experience lower access to the city’s opportunities. 

 Grengs (2010) analyzed job accessibility by disadvantaged populations in Detroit, 

Michigan. The target population groups were defined based on poverty rates and the proportions 
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of African American and Hispanic individuals. The study focused on three inner-city 

neighborhoods where the target population group was concentrated. The results suggested that, 

although the inner-city has the advantage of being in close proximity with a substantial amount of 

employment opportunities, good accessibility was conditioned to car ownership. Therefore, the 

residents of these neighborhoods are not geographically disadvantaged, but are deprived of 

opportunities due to low private vehicle ownership rates and poor transit service. 

 Milan and Creutzig (2017) use qualitative methods to measure the changes in quality of 

life due to a new transit development based on a participatory planning process in Medellín, 

Colombia. The measurements are based on a questionnaire that focuses on the perceived changes 

in social capital, well-being, and public infrastructure across different geographic zones, income 

levels, and gender. It was found that equity improved overall, and that well-designed transit 

interventions can potentially improve the lives of underprivileged groups in addition to being more 

environmentally friendly and aiding in decreasing congestion. 

 The evidence demonstrating that disadvantaged populations are more dependent on public 

transit justifies the increasing interest in the social aspects of transport-related accessibility by 

academia and transportation authorities. It is not only important to recognize the existence of social 

disparities and poor accessibility, but also to measure when, where, and the intensity at which they 

occur. A well-conceived transportation plan that takes those aspects into account has a greater 

potential to contribute for the achievement of social equity, ultimately improving the perspective 

and quality of life of disadvantaged population groups. 

2.3 - ACCESSIBILITY MEASUREMENT METHODS 

 An accessibility measurement is an estimation of the ease at which specific locations of 

interest can be accessed. A significant number of accessibility measurement methods have been 
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developed over time, and different review articles focus on particular types of measurements or 

applications (Lei and Church 2010; Neutens et al. 2010; Páez, Scott, and Morency 2012; Neutens 

2015; van Wee 2016). A more general and comprehensive categorization that applies to most 

measurement techniques is presented in the reviews by Geurs and Ritsema van Eck (2001), and 

Geurs and van Wee (2004). These authors describe the fundamental components of accessibility 

and the different perspectives from which accessibility can be measured. Accessibility 

measurements involve four basic types of components: 

 The land-use component refers to the opportunity landscape or supply locations (jobs, 

schools, supermarkets, hospitals, recreation sites), and the location of the demand for the 

opportunities (where people live). 

 The transportation component reflects the travel impedance (time, distance, monetary cost) 

that exists between the origins (demand) and destinations (supply). The travel impedance 

results from the characteristics of the transportation system available (street network 

density, road conditions, number of lanes, travel speed, transit fare, reliability, transit 

service frequency) and the spatial distribution of the land-use component. 

 The temporal component describes the temporal variability associated with opportunity 

availability. It accounts for the times at which different opportunities are available, and for 

the variations inherent to the transportation component, such as the differences in levels of 

congestion and transit service frequency at different times of the day and different seasons 

of the year. 

 The individual component distinguishes different types of demand according to the 

individuals’ characteristics (age, income, education, household type), abilities (physical 
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condition and availability of transportation means), and desired opportunities (depends on 

the needs of an individual according to its characteristics). 

 Ideally, an accessibility measurement would incorporate all four elements in the analysis 

(Geurs and van Wee 2004). In practice, accessibility applications focus on one or more 

components, depending on the perspective from which the measurements are taken. Accessibility 

can be measured from four different perspectives: infrastructure, location, person, and utility. 

 Infrastructure-based measurements focus on the transportation system’s performance, 

such as the level of congestion, average travel speed, and average delays. These are conventionally 

used in transportation planning and policy (Litman and Brenman 2012). Levine et al. (2012) 

analyze whether it is more efficient to have a transportation network that is dense, decreasing 

distances from origins to destinations, or a transportation network with high travel speeds. The 

results obtained suggest that the density effect allows for greater overall accessibility. A 

disadvantage of this perspective is that it focuses on the transportation component, and ignores the 

land-use component. In other words, it measures the efficiency of a system or its travel speed, but 

it does not consider whether the demand locations are being correctly connected with their specific 

supply locations. 

 Location-based measurements evaluate the accessibility to spatially dispersed 

opportunities from origin locations. They could be used, for instance, to calculate the number of 

opportunities within a specified travel impedance threshold, such as the time it takes to travel to 

the nearest supermarket (Farber, Morang, and Widener 2012), or the number of jobs located within 

walking distance from origin locations (Wang and Chen 2015). 

 Potential accessibility measures, or gravity-based measures (Hansen 1959), are location-

based estimations that have been widely used in the literature. Gravity models estimate 
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accessibility from each demand location to all possible supply locations, where the influence of 

the opportunities decreases with travel impedance. Gravity-based measurements allow for the 

assessment of the joint effect of the spatial distribution of the land-use element and the 

characteristics of the transport element (Geurs and van Wee 2004). In addition, the distance decay 

parameter models the common behavior of a person when traveling with transit. People are less 

likely to be willing to travel longer distances. These measurements have been used as social 

indicators and are suitable for analyzing accessibility to socioeconomic opportunities for different 

social groups. 

 Accessibility can be analyzed at the individual level with person-based measures. The 

objective is to quantify the opportunities that an individual is able to access at a given time. These 

measurements are based on space-time prisms (Hägerstraand 1970). This framework takes into 

account personal possibilities and limitations, including time budgets and transportation mode 

availability and performance. Djurhuus et al. (2016) used SQL (structured query language) 

programming and GIS to integrate transit timetable data into a multimodal network to enable 

accessibility measurements at the individual level. Trips by bus, train, light rail, metro, ferry, 

walking, and cycling were included in the network. Their idea made possible the obtainment of 

accessibility areas for any address in the Capital Region of Denmark at any given time. An issue 

is that these measurements are demand-oriented, and usually data on the individual’s time budget 

and destination choices is not available at the individual level (Thill and Horowitz 1997). 

 Utility-based measures analyze the economic outcomes of the level of access to spatially 

distributed opportunities. This measurement is based on economic theory and assumes that, given 

all the possible transport alternatives, a person will choose the alternative associated with 

maximum possible utility (Koenig 1980). Miller (1999a) developed a space-time accessibility 
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measurement based on utility-maximizing choice behavior. This calculation considers time 

budgets, opportunity attractiveness, travel impedances, and behavioral aspects. Although it is 

computationally possible to implement such measurements, the necessary data at the individual 

level is still difficult to obtain. 

 There is a wide range of variations of accessibility metrics that have been applied under 

the categories presented above. The next section is concerned with the latest methodological 

advances in accessibility research, and the knowledge gaps that should guide future studies. In 

addition, there will be a discussion on how this study intends to address the limitations of the 

current methods and contribute to the accessibility research agenda. 

2.4 - ACCESSIBILITY RESEARCH AGENDA 

 Despite the significant accomplishments achieved by the extensive application of 

accessibility measurement methods, the current approaches used are still significantly affected by 

two major spatial issues (Neutens 2015): the modifiable areal unit problem (MAUP) and the 

uncertain geographical context problem (UGCoP); (Kwan 2012). Although there is an increasing 

interest in the relationship between social equity and transportation, the spatial distribution of 

accessibility across different population groups has also not yet been fully explored (van Wee and 

Geurs 2011). 

 The MAUP is a source of statistical bias that occurs when point measurements are 

aggregated into arbitrary geographic boundaries (Openshaw 1984). Different results are obtained 

depending on how those boundaries are defined (Miller 1999b). In transportation analysis, the 

existing data is commonly organized in arbitrarily defined geographic zones, such as census blocks 

or census tracts (Viegas, Martinez, and Silva 2009). Measurements based on large-scale aggregate 
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data are unable to capture smaller-scale variations within social groups and neighborhoods (Omer 

2006). 

 The UGCoP refers to the uncertainty associated with the spatial delineation of area-based 

attributes that define the geographic context of a study (Kwan 2012). Geographers are unable to 

precisely establish spatio-temporal characteristics for the physical and social determinants that 

influence the phenomenon studied in area-based measurements. Therefore the area, timing, and 

duration of the attributes used in accessibility studies are always subject to some deviation from 

the true geographic context. 

 Due to those issues, future accessibility research should advance toward more disaggregate 

(person-based) and temporally integrated metrics; more refined geocomputational tools; and 

indicators that analyze the distribution of accessibility across different socioeconomic groups in 

an attempt to quantify social disparities (Neutens 2015). Neutens et al. (2010) propose that further 

studies should attempt to develop techniques that articulate more dimensions without making 

overly restrictive generalizations. In other words, there should be an effort toward the creation of 

an ideal measurement that does not significantly ignore any of the four basic components defined 

in the reviews by Geurs and Ritsema van Eck (2001) and Geurs and van Wee (2004). 

 Geurs and van Wee (2004) suggest that future work should aim at the development of more 

advanced accessibility measurements that are still relatively easy to be interpreted by researchers 

and policy makers. In addition, given that the interest in the social aspects of accessibility is 

relatively recent, there is a need for studies that look at the actual social benefits of transportation 

policies shaped by accessibility analysis (van Wee and Geurs 2011; van Wee 2016). The current 

studies are still focused on mapping and measuring accessibility-related social disparities. The 

outcomes of the application of those studies have not yet been analyzed. 
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 With regard to transit-based accessibility measurements, Lei and Church (2010) show that 

many studies concentrated on the physical access to the transit system (i.e., distance or time it takes 

for a person to reach a transit stop or station), ignoring the entire journey from an origin to a desired 

destination. Ideally, as demonstrated by Tribby and Zandbergen (2012) and Djurhuus et al. (2016), 

transit travel time calculations should use a door-to-door approach, including walking times to 

transit stops, waiting times at the stops, travel times on the transit network, and any transfers that 

might be necessary. 

 To avoid the requirement of building complex GIS-based multimodal transit networks, 

Chen et. al (2017) use an internet mapping service to obtain realistic door-to-door travel time 

calculations for the city of Nanjing, China. Significant improvement was achieved with travel time 

calculations involving full travel chains, departure and arrival times, fluctuations in service 

availability at different times of a day, and traffic conditions. 

 In addition, simplifying assumptions have usually been made in studies that model the 

travel times between demand and supply, such as transfer and waiting times, and average travel 

speeds that ignore transit timetable data (Lei and Church 2010). Finally, another potential avenue 

for future research involves the use of GIS-based tools to forecast the accessibility changes caused 

by the introduction of potential new routes, modifications in the existing routes, or expansion of 

the street network. Such application would be extremely valuable for transportation agencies that 

intend to evaluate the impact of the proposed alternatives for future service changes. 

 Omer (2006) attempted to overcome the methodological issues (MAUP) associated with 

the use of aggregate datasets by using house-level socio-demographic point data in his accessibility 

analysis. His accessibility calculation was based on simple distance measurements (buffer and 

straight line) from residential locations to urban parks, and accounted for the quality of service 
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provided by the park (surface area normalized by the number of people assumed to be served by 

the park). The results were found to provide a significantly more accurate and sensitive assessment 

compared to the usual aggregated approach at the neighborhood level. Twenty six neighborhoods 

were revealed to experience inappropriate levels of accessibility at an aggregate resolution, while 

only nine neighborhoods were found to be underserved at the individual level analysis. Although 

the advantages of using socio-demographic data at the micro-level are significant, the use of 

georeferenced data at this level of detail raises critical issues concerning privacy and 

confidentiality of personal information. 

 Given that socio-demographic data at the micro-level is most commonly unavailable, 

Lovelace, Ballas, and Watson (2014) employed spatial microsimulation techniques to synthetically 

“reconstruct” the microdata from a combination of non-spatial survey data and geographic 

aggregate demographic data. The method works by exhaustively searching for the optimal 

combination that links the survey data with the aggregated counts. This alternative was found to 

be successful in modeling the intra-zone variability within aggregated census datasets. This kind 

of approach would have even been useful in the implementation of the new transit routes in 

Albuquerque (Tribby and Zandbergen 2012), in which the intervention could have been designed 

to facilitate access to the city’s opportunities by low income residents. 

 El-Geneidy et al. (2016a) analyzed the temporal variability of transit-based accessibility to 

jobs and compared the results with socioeconomic data in an attempt to map the incidence of social 

disparities in Toronto, Canada. The study shows that the accessibility levels fluctuate over the 

course of a day, demonstrating the limitations associated with using a static measurement to 

represent overall accessibility. They also analyze the distribution of those measurements across 

different socioeconomic groups (based on income, unemployment rate, and proportion of recent 
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immigrants), and conclude that socially disadvantaged areas experience equal or better 

accessibility compared to socioeconomically prominent areas. 

 Similarly, Farber, Morang, and Widener (2014) use transit timetable data (GTFS feeds) to 

account for temporal variability in their study on transit-based accessibility to supermarkets in 

Cincinnati, Ohio. The travel time from each census block to the nearest supermarket was calculated 

for every minute of the day, revealing significant variability according to the level of transit 

service. In addition, the results were combined with census data on race, income, and age in an 

effort to search for social disparities. Exploratory statistical analyses were used to summarize those 

measurements and estimate the relationships between accessibility and socioeconomic parameters. 

It has been found that, although the degree of inequality between social groups is minor, many 

Cincinnatians can only reach a supermarket in 20 minutes or less during 20% of the day. 

 In an attempt to incorporate individual perception and behavior relative to public transit 

systems, El-Geneidy et al. (2016b) studied the effects of accounting for transit fares on 

accessibility measurements, which is a variable generally excluded from accessibility studies. 

Their study translated accessibility into a dollar value by incorporating hourly wages and transit 

fares in the calculations. They were able to demonstrate that accessibility is sensitive to transit 

fares and significant differences arise when transit fares are not considered, commonly leading to 

overestimation. In addition, the results can be easily interpreted by policy makers and the general 

public, given that a monetary value was used to represent accessibility. 

 Farber et al. (2014) also analyze transit fares as constraints by comparing the accessibility 

levels provided by flat fare with distance-based fare schemes. They demonstrated that distance-

based fares can potentially lower the transportation costs of highly transit dependent populations, 

providing important information for public transit policies regarding the transit fare component. 
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 Cheng and Bertolini (2013) use a modified job accessibility measurement that incorporates 

the effects of competition, job diversity, and distance decay. The method combines a probabilistic 

technique with a spatial interaction model (gravity-based). Employment data at the postcode level 

was disaggregated into a gridded arrangement with a cell size of 500 meters. The results suggest 

that job diversity has an impact on job opportunity, and that it should be considered in urban 

planning strategies. Mixed land use approaches can increase the variety of activities available and 

diversify job opportunities, ultimately improving job accessibility. 

 Jin and Paulsen (2018) investigate the impacts of job accessibility on unemployment rates 

and household income in the Chicago metropolitan area at the census block group level during 

2000-2010. A gravity-based measurement was used to calculate accessibility to job opportunities 

in 2000 and 2010. Their findings suggest that job accessibility has an important social role. 

Specifically, improvements in job accessibility for African Americans lead to decreases in 

unemployment rates. Likewise, increased access to employment opportunities for low-income 

households not only increase employment, but also raises household income. 

 Although accessibility research has recently achieved significant progress, studies are 

usually unable to overcome all the existing limitations due to differences in data availability, scale 

of analysis, and methodological perspectives. For that reason, current research more often focuses 

on addressing one or more issues, but not all of them simultaneously. 

 The main difficulty in the accessibility field is related to the unavailability of disaggregate 

socio-demographic data and the associated effects of the MAUP and the UGCoP, especially when 

the objective is to map and measure social disparities in accessibility (Neutens 2015). In addition, 

although it is important that accessibility measurements are based on advanced geocomputational 

techniques, there should also be an effort towards the production of results that are still simple and 
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relatively easy to be interpreted by transportation planners (Geurs and van Wee 2004). Until 

recently, transit-based accessibility measurements focused on the physical access to the system, 

and generalizing assumptions have been made for the other steps of a typical trip with transit (Lei 

and Church 2010). This study attempts to address these issues and contribute to the current state 

of knowledge in a variety of ways: 

 Travel time calculations are based on a door-to-door approach, and include walking times 

from start points to bus stops, waiting and boarding times at the stops, travel times with 

transit, any necessary transfers, and walking times from final stops to the destination; 

 A transit-enabled network that combines the services of two distinct transit service 

providers (NAIPTA and NAU) was developed to simulate transit trips from multiple 

origins to multiple destinations. Not only can this network dataset be used for accessibility 

calculations, but also to solve any other transit-related network analysis problem that is 

relevant for transportation planning. This is especially relevant in a coordinated effort 

setting; 

 The accessibility calculations are temporally-enabled and schedule-aware, accounting for 

the variations of accessibility over space and time. Instead of a single static measurement 

for a specific time of the day, the measurements were systematically repeated and 

summarized to account for fluctuations in transit service availability; 

 The most recent socio-demographic datasets at the finest possible resolution available 

(census blocks and block groups) for the study area were used to minimize the effects of 

the MAUP and UGCoP; 
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 The social aspects of accessibility were addressed. The accessibility measurements were 

correlated with socio-demographic data to analyze the distribution of the results across 

different socioeconomic groups; 

 The study not only provides useful information that can be easily interpreted by public 

transportation agencies and policy makers, but also establishes an analysis framework that 

can be readily adapted and reused according to the needs of different regions and 

transportation agencies. 
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CHAPTER 3: METHODOLOGY 

 This chapter starts by introducing the specific concepts, tools, and datasets used in the 

development of the analysis framework of this study. This background information is essential for 

understanding the specific methods employed in this research. Then, the particular methods and 

tools used in the study, and the purpose of the associated results, will be explained. 

3.1 - BACKGROUND INFORMATION 

3.1.1 - GIS and Spatial Analysis 

 “Almost everything that happens, happens somewhere. Knowing where something 

happens can be critically important” (Longley et al. 2011: 4). Location is a critical parameter to 

consider in many problems facing society. Geographic information is a category of information 

that not only records events, activities, and measurements, but also keeps track of where they took 

place on Earth’s surface. Geographic data is the composite of spatial data (location) and attribute 

data (ESRI 2017a). Geographic Information Systems, or GIS, are comprehensive computer-based 

systems for storing, managing, displaying, and analyzing geographic information. 

 GIS solves geographic problems and summarizes information through spatial analysis and 

spatial modeling. Spatial analysis is a process that combines procedures, tools, and calculations to 

compile complex relationships and datasets into something simpler (Galati 2006). The objective 

is to expose relationships, patterns, and anomalies that are not immediately clear (Longley et al. 

2011). A spatial model attempts to replicate or reproduce real world phenomena, suggesting their 

functionality and behavior according to specific conditions (Werner 1985). The excessive 

complexity of the real world prevents us from immediately and directly comprehending it. 

Therefore, we must look for similarities, regularities, and patterns to formulate spatial models. 
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 Accessibility and transportation planning are inherently spatial, and location is a critical 

parameter that must be considered in the analysis. GIS, spatial modeling, and a number of spatial 

analysis techniques are employed in this study. A transportation network will be modeled and the 

movement of people through the network will be simulated. The data generated will be analyzed 

and a quantitative measurement of accessibility over space will be obtained. Specific details about 

the spatial analysis techniques used in this study will be presented in the following section. 

3.1.2 - Transportation Network Analysis 

 Networks are sets of interconnected lines and points that represent real-world features. 

Networks are used to model the flow of goods and services, and they have been largely used to 

model utility and transportation infrastructure within GIS (Longley et al. 2011). The data model 

used to implement networks is simple (Zeiler 1999). Two fundamental elements constitute a 

network: nodes (or junctions) and the edges that connect them (Figure 3). Nodes or junctions are 

used to model street intersections, fuses, switches, water valves, confluence of streams, and other 

locations of interest. Edges are representations of streets, pipelines, streams, and transmission 

lines. These two basic components and the relationship between them establish the foundation for 

modeling the network behavior. 

 

Figure 3. Basic elements of a network: edges and nodes. 
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 A transportation network models the movement of people, vehicles, or goods (Bell and Iida 

1997). In a transportation network, streets are represented as edges and intersections are modeled 

as nodes. If a transportation network includes a transit component (multimodal network), nodes 

are also used to represent transit stops and edges can also behave as transit lines (Figure 4). More 

specific details about transit-enabled networks and the functionality of the network used in this 

research will be presented in the next section. 

 Rules and attributes control how objects can move through the network. An attribute 

environment is used to establish costs, descriptors, restrictions, and hierarchy in a network (ESRI 

2006). For instance, every edge (street or transit line) in the network is associated to a cost or 

impedance. This attribute determines how demanding it is to traverse the edge. This is user-defined 

and can be determined by the length of the street segment, the time it takes to travel through the 

segment according to the associated speed or travel mode, or the time it takes for a bus to go from 

one stop to another. Direction of movement can also be restricted in a network, and that is 

especially useful to model one-way streets. In the network data model, that would be equivalent to 

allow movement from a given node to another through an edge, but not the other way around. 

 Connectivity rules determine the allowed connections between edges and nodes (Zeiler 

1999). Not all nodes are connected by edges, and not all edges that intersect in two-dimensional 

view define nodes (Goodchild 1998). An intersection of edges without nodes means that there is 

no connectivity between the edges. For instance, in Figure 4, although some transit lines intersect 

streets at certain locations (highlighted in blue circles), movement from the “street network” to the 

“transit network” is only allowed at a transit stop (highlighted in green circles). Multimodal 

transportation networks include more than a single transportation mode, such as walking, driving, 
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or transit. Connectivity rules are the basis for modeling multimodal networks, where different 

transportation modes are separated by connectivity groups (ESRI 2006). 

 

Figure 4. Network model example: transit-enabled transportation network. 

 The connectivity in a network allows for analysis and problem solving. Network analysis 

can be performed with the ArcGIS Network Analyst extension (ESRI 2017c). The Network 

Analyst extension uses network datasets and network analysis layers (Figure 5) to solve network 

problems. Network datasets are collections of interconnected features (junctions, edges, and turns) 

that model undirected flow. Undirected flow refers to the fact that the objects moving through this 

type of network have their own will and can choose to move in any direction (Zeiler 1999). 

Network analysis layers are created from network datasets, and they provide the framework for 

configuring the calculation parameters of a specific network problem to be solved. 
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Figure 5. Types of network analysis layers (modified from ESRI 2017b): Route (a), OD cost 

matrix (b), Service area (c), Closest Facility (d). Copyright © 2017 Esri. 

 Common transportation network problems can be solved with the Network Analyst 

extension (Figure 5). A route layer can be used to find the best path from one location to another 

(Figure 5a), or the best way a delivery or service vehicle can visit several locations, improving 

customer service and minimizing transportation costs. Given an origin location and a set of 

facilities (potential destinations), the closest facility or the facility that minimizes travel time can 

be determined by solving the specific network analysis problem (Figure 5d). Service areas around 

any location can be calculated to determine the extent that encompasses all locations within a 



 

29 

 

specific travel time or distance from the origin location (Figure 5c). For instance, service areas can 

be used to determine all addresses located within a five-minute drive from a fire or police station. 

An origin-destination cost matrix (OD cost matrix) can be created to calculate the travel time or 

distance from multiple origins to multiple destinations (Figure 5b). 

 These network analysis tools can be applied to a number of applications in accessibility 

research. Service areas or OD cost matrices can be used to determine the number of people served 

by a facility, such as supermarket, hospital, or school. For example, 30-minute drive service areas 

can be generated for local supermarkets, and the number of people that need to travel more than 

30 minutes to reach a supermarket can be determined. In this study, OD cost matrices will be used 

to determine the number of jobs that are accessible within a one-hour travel time threshold from 

multiple locations. 

3.1.3 - General Transit Feed Specification (GTFS) 

 The General Transit Feed Specification (GTFS) establishes a universal data format for 

public transit timetables and the associated geographic attributes (Google Developers 2016). The 

GTFS format was developed with the objective of establishing a common system for public transit 

agencies to distribute their transit schedules. A common specification allows computing 

applications to consume transit datasets in an interoperable way. In other words, with the 

standardization of transit schedule data, an application developed to perform a specific analysis 

for the transit system of a given location will also be able to perform the same analysis for any 

other transit system with GTFS data available. This allows for public transit agencies to benefit 

from any GTFS-based application if their GTFS feed is available. For instance, Google Maps uses 

GTFS feeds from transit agencies to incorporate transit as a transportation mode in their direction 
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calculations. One can easily look up transit directions for many different cities in many different 

countries. 

 A GTFS feed is a collection of text files with tabular data. Each file contains a table with 

information about a feature of the transit system: stops, routes, trips, fares, stop times, transfers, 

and other related schedule data. The GTFS feed for the local public transit system will be used in 

this project to implement schedule-aware simulations of trips by public transit. 

3.2 - METHODS 

 Most of the data processing and analysis will be performed within a GIS environment, 

specifically ESRI’s ArcGIS for Desktop platform. Python scripting will also be used to automate 

tasks within ArcGIS, and R programming (RStudio) will be used for statistical analyses. The 

analysis will consist of four major components: 1) the construction of a transit-enabled network 

dataset; 2) the collection and processing of census geographic data and the associated 

socioeconomic attributes; 3) accessibility calculation through network analysis; and 4) statistical 

analyses to summarize the measurements and correlate accessibility with socioeconomics. 

3.2.1 - Building the Network Dataset 

 The basic requirement of this research is creating a transit-enabled network dataset for the 

city’s transportation network that includes the transit systems operated by both NAIPTA 

(Mountain Line) and NAU (Campus Shuttle Services). Although the shuttle service operated by 

NAU is mostly used by students, NAU is the largest employer in the City of Flagstaff (COF 2018), 

and NAU employees and student workers use this service to get to their workplace within the 

university campus. Besides, this service is connected to the Mountain Line network in some bus 

stops within the NAU campus, and it would be important that transfers between these systems are 

incorporated in the network dataset. Therefore, this transit service is significantly relevant for the 
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realistic simulation of work trips with transit in Flagstaff. Updated GTFS feeds were provided by 

NAIPTA and NAU, and the street network dataset was obtained from the City of Flagstaff Open 

GIS Data Portal (COF 2016). 

 A custom ArcGIS toolset called "Add GTFS to a Network Dataset" (Morang 2016) was 

used to merge the GTFS feed with the street network. Add GTFS to a Network Dataset allows the 

user to “translate” GTFS public transit feeds into ArcGIS network dataset features to enable 

transit-based schedule-aware analyses using the Network Analyst tools, like best route, closest 

facility, location-allocation, service area calculations, and origin-destination cost matrices. 

 This tool processes the street network and the associated GTFS feeds to produce the 

necessary spatial elements for the creation of a multimodal network dataset. It essentially reads the 

tables that make up the GTFS dataset and creates spatial features for the transit lines and stops. 

These features, together with the street network, are used as sources in the creation of the network 

dataset. 

 The ArcGIS Network Analyst extension was used in the creation of a multimodal network 

dataset from the data elements generated by the previous procedure. Figure 6 presents a simplified 

diagram that summarizes the behavior of this transit-enabled network and the calculations 

performed when simulating a trip with transit. The network functionality allows travel time 

calculations that account for walking times (assuming a walking speed of 3 mph) from start points 

to public transit stops, waiting and boarding times at the stops, travel times with transit, any 

necessary transfers, and walking times from stops to the destination. 

 As illustrated in Figure 6, the network dataset is composed of two distinct but connected 

networks: the street network and the transit network. The calculation of a trip from an origin 

location A to a destination B includes: walking time from start point A to stop 1, waiting and 
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boarding times at stop 1, travel time with transit from stop 1 to stop 2, walking time from stop 2 

to stop 3, waiting and boarding time at stop 3, travel time with transit from stop 3 to stop 4, and 

finally the time it takes to walk from stop 4 to point B (Figure 6). 

 

Figure 6. Diagram showing the transit-based network dataset’s functionality. 

3.2.2 - Census Data Collection and Processing 

 Census blocks, block groups, and the associated relevant socioeconomic attribute data were 

collected (USCB 2017a). These datasets were used in the socioeconomic characterization of the 

study area and further correlation with the accessibility measurements. An index was developed 

to estimate the need for transit service for work trips, and correlations with individual variables 

were also performed. Attribute data on total population, age, income, employment, commuting 

characteristics, disability status, and vehicle ownership were used. 

 The need for public transit was estimated from attribute data on total population, age, 

income, disability and vehicle ownership. The estimation was based on a modification of the transit 

users’ index used in the study by Tribby and Zandbergen (2012). An average of the variables’ 

(income, car ownership, and age) proportions was used in that study, where the index ranges from 

0 to 1. The closer the index is to 1, the higher the need for transit due to a greater relative amount 

of lower income residents, no car ownership households, and non-driving age individuals. This 

index needed to be adapted for better compatibility with the study area characteristics. The original 

index was based on a larger study area (Albuquerque, New Mexico) and used attribute data at the 
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block group level. Flagstaff is a smaller city and block groups are too coarse to be used for this 

purpose, therefore census blocks are more appropriate due to their finer resolution. 

 At the block level, there are two issues: the unavailability of data on income and car 

ownership; and blocks where the population is very low. Therefore, it would be unrealistic to use 

the proportion-based method mentioned above because some census blocks would end up being 

associated with high proportions despite their population being very low. To account for that, the 

average proportion was multiplied by the total population in the block. The proportion of 

individuals with a disability was also incorporated in the index. Data on income, car ownership, 

and disability were obtained by joining the proportions at the respective block group to each census 

block. 

 Census blocks were also processed to be used as origin locations in the network analyses. 

The procedure included transforming the polygon feature class that represents the census blocks 

into centroids. This centroid point dataset was then snapped to the street network. The procedure 

is illustrated in Figure 7. 

 

Figure 7. Census block centroids were computed and snapped to the nearest street location. 

 In addition to calculating the accessibility levels experienced by locations with a higher or 

lower need for public transit, the study also intends to address the Title VI requirements (FTA 

2017). These requirements aim to ensure that the public transportation services are provided in a 
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way that individuals are protected from being discriminated based on race, color, or national origin. 

Therefore, accessibility was also correlated with the data on race and national origin. 

3.2.3 - Accessibility Analysis 

 The functionality of the transit-enabled network was used to measure accessibility to the 

city’s employment opportunities by public transit. This study will employ a location-based 

potential accessibility measure based on a gravity model (Hansen 1959). The accessibility value 

at a given time and origin location is equal to the sum of the attractiveness of all socioeconomic 

opportunities divided by the respective travel impedance associated with those opportunities. 

Figure 8 presents the equation used and a diagram that illustrates the gravity model. The 

accessibility at an origin location i (Ai) is equal to the sum of the attractiveness (aj) at every single 

opportunity (supply location) j divided by the travel time with transit from location i to opportunity 

j (tij). 

 

Figure 8. Equation and diagram describing the gravity model mechanism (Hansen 1959). 

 The travel impedance measurement (tij) will be obtained by calculating the travel time with 

transit from the city’s census block centroids (Figure 9) to the opportunities. To ensure that only 

the actual transit users were included in the analysis, only the populated census block centroids 
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located within a quarter mile walking distance to a bus stop were used in the calculation. A total 

of 753 locations were included. 

 

Figure 9. Flagstaff’s census block centroids located within walking distance to a bus stop. 

 The travel time measurements were obtained through an OD Cost Matrix Analysis in the 

network dataset (Figure 10). The OD cost matrix identifies and measures the fastest routes from 

various origins to multiple destinations and records the results in an attribute table (ESRI 2016). 

This tool was used to calculate the travel time with transit from each census origin location to 

every opportunity location. In Figure 10, the straight lines are not straight-line distance 

measurements. They are simply a representation of a trip from the origin to a specific destination. 
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Each line has a corresponding attribute value for the travel time with transit measured in minutes, 

used as the travel impedance variable in the accessibility calculation. 

 

Figure 10. OD cost matrix from a single origin to multiple locations. 

 In this specific situation, employment opportunities are assigned the supply locations, 

while the number of jobs in each location is the measure of attractiveness. The employment 

opportunities were obtained from the Longitudinal Employer-Household Dynamics (LEHD) 

Origin–Destination Employment Statistics (LODES) data product (USCB 2018). This dataset 

contains aggregated attribute information on the number of jobs at each census block in a given 

year (Figure 11). The LEHD framework gathers earnings records and QCEW (Quarterly Census 

of Employment and Wages) data quarterly (Graham, Kutzbach, and McKenzie 2014). In a given 
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year, a job is included in the dataset if a person has positive income both in the reference quarter 

(April to June) and in the previous quarter (January to March). 

 

Figure 11. Census blocks symbolized according to the number of jobs within each block. 

 The gravity model normalizes the influence of the opportunities in the calculation of 

accessibility. The harder it is to reach an opportunity, the higher the travel impedance value by 

which the attractiveness measure (number of jobs) is divided. Therefore, opportunities with very 

high or very low attractiveness values have a less substantial weight in the calculation if they are 

significantly distant from the origin locations. This distance decay is important to account for both 

people’s perceptions of a transit system and competition for jobs. People are usually less likely to 

travel longer distances, and distant opportunities are given a lower accessibility value. 
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 Due to the size of the city and the spatial coverage, connectivity, and service frequency of 

the transit system, a maximum commuting time of one hour was assumed to be realistic. Several 

trips that require transfers can often take approximately one hour. For any given origin location, 

opportunities located outside this travel time threshold were not included in the accessibility 

calculation. Calculating OD cost matrices for large datasets and multiple times in a day can be 

computationally inefficient and impractical (Shahandashti, Liu, and Zhang 2017). The travel time 

threshold also aided in avoiding excessively long processing times and extremely large output 

datasets. 

 As previously mentioned, this study intends to capture the temporal variability of 

accessibility in the study area. Variations in service availability lead to travel time differences 

throughout the day and for different days of the week. Therefore, the accessibility measurement 

needs to be repeated for multiple times in a day and different days of the week. A sampling scheme 

was designed based on the timetables for the different transit routes operated by NAIPTA’s 

Mountain Line. 

 The Mountain Line routes run on two schedules: a weekday schedule and weekend 

schedule (NAIPTA 2018). The weekend schedule also applies to holidays. In addition, the 

minimum headway (interval between two consecutive services) associated with those routes is 10 

minutes during the week and 20 minutes on weekends. Therefore, to best capture the variations in 

service availability and consequently accessibility, the accessibility measurements were performed 

for a single weekday (Monday) and a single weekend day (Saturday). Given the minimum 

headways, a 5-minute sampling frequency was used. There is no need to repeat the analysis for 

additional days given that the schedule associated with the GTFS feed is the same for different 

weekdays or weekend days. 
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 It would have been extremely time consuming and possibly impractical to manually 

perform all the individual calculations without any kind of automation. To avoid that, a Python 

script tool (Appendix A) was developed to automate the repetitive calculations. This tool 

automatically performs all the OD cost matrix and accessibility calculations, summarizing the 

results in a table. For each census block, the output table includes a record with attribute fields for 

the accessibility value at any given time. 

3.2.4 - Statistical Analysis 

 Statistical procedures were used to summarize the individual accessibility measurements 

obtained in the previous step. The mean and the coefficient of variation (CV) of those 

measurements were calculated. The mean provides an assessment of the overall accessibility level 

experienced at each census block. The higher the mean, the better the overall accessibility. The 

coefficient of variation (standard deviation divided by the mean), in turn, measures the variability 

of accessibility relative to the mean at each location. Higher CVs are associated with greater 

variations in transit service availability. Therefore, the ideal situation where the public transit 

system provides high access to opportunities is characterized by most locations being associated 

with high means and low CVs. This means that, for most places and at most times, the accessibility 

level is high and does not vary significantly. 

 Average measurements that account for the temporal variability of accessibility were 

obtained for each census block for both weekdays and weekends. Socioeconomic attributes are 

also available for each census location. The next step involved analyzing the relationships between 

these two variables. An overall mean accessibility measurement was obtained to simplify this 

comparison. A weighted average of the weekday and weekend mean accessibility values was used. 

Given that the mean weekday accessibility is experienced five times in a week, it was given a 
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weight of 5. Similarly, a weight of 2 was assigned to the weekend mean accessibility. Graphing 

procedures and correlation coefficients were used to summarize the key aspects of those 

relationships. 

 Bar charts were used to produce visual representations of those relationships. Accessibility 

values were displayed on the y-axis, while the number of people associated with a given 

socioeconomic variable was plotted in the x-axis. For instance, to analyze the relationship between 

accessibility and income, the hypothetical bar chart presented in Figure 12 could be produced. In 

this graph, the accessibility experienced by different ranges of low income household numbers can 

be obtained. 

 

Figure 12. Hypothetical bar chart showing the relationship between accessibility and the number 

of low income households. 

 Relationships between accessibility and the individual socioeconomic variables can be 

inferred by visual inspection. For instance, in Figure 12, the distribution of accessibility shows no 

apparent trend. In this case, the bar chart characterizes a situation where the transit-based 

accessibility levels are more likely impartially distributed relative to household income. 
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 Correlation coefficients were also calculated so that the relationships inferred by visual 

inspection could be measured. Given that the variables measured are not normally distributed and 

there is no homoscedasticity in the data, the assumptions required for regression models and the 

Pearson’s correlation coefficient are violated. For that reason, Spearman rank-order correlation 

coefficients (rs) were calculated instead. Pearson’s coefficient measures the linearity of the 

relationship between two variables, meaning that the change in values in one variable is associated 

with a proportional change in the other variable. On the other hand, the Spearman correlation 

coefficient quantifies the monotonic relationship between two variables. In a monotonic 

relationship, the variables also change values simultaneously, but not necessarily at a constant rate. 

 This coefficient measures the direction and strength of the correlation between two 

variables and assumes values that range from -1 (perfect negative association) to +1 (perfect 

positive association). For instance, if the accessibility levels increase with the number of low 

income households, the coefficient will assume a positive value for the relationship between these 

two variables. Figure 13 shows hypothetical examples of coefficients calculated for different types 

of relationships between two variables. 

 If the measurements in both variables increase simultaneously (top left graph in Figure 13), 

the correlation coefficient will assume a value closer to +1. If the measurements in one variable 

increase while the values in the other variable decrease (top right graph in Figure 13), the 

coefficient will be negative and closer to -1. For intermediate situations, where the nature of the 

relationship is not very clear (bottom graphs in Figure 13), the coefficient assumes more moderate 

values. Given the nature of this study’s datasets, and that it is impractical for a transit system to 

completely satisfy the demand of all locations associated with a high need for transit, weaker 

relationships are more common outcomes in this research. 



 

42 

 

 The results of this step were used as the quantitative basis for a discussion on the social 

equity aspects of the city’s public transit system. In addition, the results are expected to provide 

valuable insight that could benefit the current coordinated transportation plan established for the 

city (FMPO 2017). The information obtained in the analysis is relevant for the objectives and 

efforts of the transportation plan, given the current needs and gaps in the transit service. 

 

Figure 13. Spearman correlation coefficients for different types of paired data relationships. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 This chapter starts by focusing on the entire FMPO region and looking at the need for 

transit service in the area. The transit users’ index is used to compare the need for transit in the 

area covered by the transit system against the area not served by public transit. Then, the 

geoprocessing tool developed to automate the accessibility calculation is presented and the 

workflow associated with its functionality is described. The next section concentrates on the 

temporal component of accessibility, and shows how the average accessibility levels for the area 

covered by transit fluctuates over the course of a day due to differences in the bus service 

frequency. Finally, the spatio-temporal variations in accessibility are addressed and the results are 

correlated with the socioeconomic attributes that define the need for public transit. 

4.1 - ANALYZING THE NEED FOR TRANSIT SERVICE 

 Since this study addresses transit-based accessibility, it mainly focuses on the area covered 

by the public transit system. This area is defined by the census blocks whose centroids are located 

within walking distance from a bus stop. However, one of the objectives of this research is to also 

identify areas with a relatively high demand for transit that are not currently served by the system. 

Therefore, the transit users’ index was calculated for the entire FMPO region (Figure 14). The 

FMPO region includes the City of Flagstaff and a number of surrounding unincorporated 

communities, with a total population of approximately 85,000 people (FMPO 2017). This 

calculation used data from the 2010 census blocks and 2016 American Community Survey (ACS) 

estimates at the block group level (USCB 2017a). According to this dataset, in the FMPO region, 

59,467 people are served by the transit system, while 24,555 are not. 

 The attribute fields with the proportions of low income households (income less than 

$20,000/year), individuals with a disability, non-driving age individuals (younger than 19 and 
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older than 65 years old), and households with no private vehicles available were joined from the 

census block groups to the respective census blocks. For each census block, the transit users’ index 

was obtained by averaging these proportions and then multiplying by the total population. In the 

map presented in Figure 14, darker tones represent areas with a higher need for transit service, 

while the blue polygon defines the area served by the public transit system. 

 

Figure 14. Map showing the transit users’ index for the FMPO region. 
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 Important information can be extracted from this map (Figure 14). The results match one 

of the spatial gaps identified by the transportation plan (FMPO 2017): no transit service connects 

Doney Park, Kachina Village, Mountainaire, and Bellemont to Flagstaff for work journeys. The 

relatively high value for the index in these areas suggest that there is a significant portion of the 

population that could benefit from the availability of public transit service. In addition to these 

neighborhoods, visual inspection of the map also indicates that a couple of other areas deserve 

attention, such as Fernwood Estates and Mountain View Ranchos. 

 Census-based polygons can be misleading because their extent covers much more area than 

the extent where people actually live. Large polygons with a high value for the transit users’ index 

can give the wrong impression about where people with a need for transit live. For ease of 

communication and interpretation by stakeholders and the general public, the index based on the 

census boundaries was summarized for the neighborhood polygons (Figure 15). A spatial overlay 

procedure was performed for that purpose. The census block polygons were clipped to the 

neighborhood boundaries, and a spatial join was performed to obtain the average index within each 

neighborhood. Table 1 presents the average index for the neighborhoods covered and not covered 

by transit. 

Table 1. Average transit user’s index for both the areas served and the areas not served by the 

transit system. 

Average Transit Users' Index 

Area served by the transit system 14.95 

Area not served by the transit system 5.52 
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Figure 15. Map showing the average value for the transit users’ index by neighborhood. 

 As shown in Table 1, it would be expected that that the need for transit is, on average, 

higher in the area served by the transit system than in the area not served by the transit system. A 

total of 57 neighborhoods have transit service, while 54 do not. A t-test on the difference in means 

for the two categories yields a p-value = 0.00006007, showing that the difference is statistically 

significant at any reasonable confidence level. It would be useful to compare those average values 
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to the average index obtained for the neighborhoods currently not served by the transit system to 

see if some of them have a higher need for transit than the ones within the served area. Table 2 

shows the average index for some of the neighborhoods outside the transit coverage area in 

descending order. 

Table 2. Average transit users’ index for the neighborhoods currently not served by the public 

transit system. 

Average Transit Users' Index 

Fernwood Estates 18.73 

Fort Valley Estates 17.96 

Walnut Meadows 17.34 

Flagstaff Meadows (Bellemont) 14.76 

Sinagua Heights 12.60 

Pioneer Valley 11.64 

Sunset Crater Estates 11.11 

Kachina Village 9.87 

Baderville 9.83 

Snowbowl Estates 9.32 

Amberwood 9.22 

Westwood Estates 8.87 

Macann Estates 7.90 

Doney Park 6.73 

Mountainaire 6.56 

 

 Table 2 shows that some of the neighborhoods (Fernwood Estates, Fort Valley Estates, and 

Walnut Meadows) have an average index that is higher than the mean index for the areas covered 

by transit. Bellemont has an average value approximately equal to the mean of the covered areas. 

It is also likely that some of these neighborhoods have higher averages than some of the transit-

covered ones. This is important information that could be used to prioritize the neighborhoods in 
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an eventual expansion of the current transit service. Although the results obtained are generalizing 

and do not cover all the specific variables that determine the need for transit, they can provide 

important information with respect to the relative need of the different neighborhoods in the city. 

 Although it would be terrific to expand the transit system coverage so that high quality 

transit services are available everywhere, public transportation agencies have to comply with a 

limited budget. For that reason, public transit planning involves balancing coverage and ridership 

(Walker 2015). Ridership refers to the number of people who actually use the public transit system 

on a frequent basis, and that is directly related to the quality of the service. With a limited budget, 

the expansion of the system’s spatial coverage may come at the expense of service quality. 

 For instance, consider the hypothetical situation where NAIPTA decides to create 

additional bus routes to connect Fernwood Estates, Bellemont, and Kachina Village to the current 

transit network. Assuming that the budget remained constant, the redistribution of resources that 

occurs with the creation of those routes would probably decrease the service frequency in other 

areas. When service frequency decreases: the system becomes less flexible, where waiting times 

are longer and it is harder to make connections between different routes. 

 Suppose that someone has to be at work at 9:00 AM. With the new bus schedule, this 

person now realizes that it is only possible to get to work either at 8:15 AM or 9:15 AM. The 

decreased frequency creates a 45 minute wait at the destination. In addition, when transfers are 

necessary for an individual to reach the desired destination, the waiting times at transfer stops are 

also likely to increase. As a result, although the new transit routes expand the system’s spatial 

coverage, they might also significantly decrease the service quality, making it harder for 

individuals to reach their desired destinations. In other words, increasing accessibility in some 

places compromises the accessibility experienced at other places. 
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 Consequently, the “accessibility budget” is also limited. This is not to say that 

transportation agencies should focus on providing high quality services at the expense of broad 

spatial coverage. But unfortunately there are minimum quality requirements that must be met to 

ensure that the accessibility and ridership levels are reasonable. After all, there is not much use in 

a system associated with excessively long travel times and low frequencies. With limited budgets, 

transportation agencies can only do their best to balance the coverage and quality components. 

 Nevertheless, assuming that NAIPTA eventually finds it necessary to rearrange transit 

resources to connect those areas to Flagstaff, some measures would be important to ensure that the 

ridership for these new routes is satisfactory. Using different means to advertise the new service 

would help in increasing awareness of the routes added to the transit system. This is critical to 

ensure that the transitional period of low ridership is as short as possible. It would also be important 

to coordinate with housing initiatives, colleges, universities, and employers to ensure that 

individuals that rely on transit are informed about the availability of transit service to commute 

from these neighborhoods to Flagstaff. These efforts and the transitional period of low ridership 

would also add to the cost of those service changes, so they need to be accounted for in the decision 

making process associated with these service changes. 

 There are limitations associated with the characteristics of the datasets used in calculation 

of this index. Although the problem is partially minimized with the use of age data at the block 

level, the intra-zone variability within the census block groups is ignored and the MAUP effects 

are still relevant. However, this generalization was necessary given the unavailability of 

comprehensive socio-demographic data at the block level. This is especially limiting for studies in 

smaller cities like Flagstaff. In addition, ACS datasets are based on estimates and cannot be 

regarded as census datasets, given that the attribute values are obtained from smaller samples. 
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 From a methodological point of view, however, the index overcomes a limitation that was 

not addressed in the study by Tribby and Zandbergen (2012). The use of a standardized index 

based on proportions can be misleading because underpopulated areas may be assigned to 

relatively high values. This problem can be minimized by multiplying the proportions by the total 

population or the target population. 

 Consider the hypothetical situation where 100 people live in block group A, while 1000 

people live in block group B (Figure 16). Assume that A and B have the same area, and that 80% 

of the individuals in A and 30% of the individuals in B have a high need for transit. With the 

proportion-based approach, the index for A would be 0.8, while the index for B would be 0.3. 

Therefore, A would have higher need for transit than B. However, there are 300 individuals in B 

with a social need for transit and only 80 in A. From a transportation planning point of view, and 

considering the ridership variable, block group B is significantly more relevant and therefore 

should be assigned a higher transit users’ index. 

 

Figure 16. Diagram showing how proportion-based indexes can be misleading. 

 Another issue is related to the fact that the data at the block level dates back to 2010. 

Although the overall distribution of the population is not likely to undergo any drastic changes, 

the fluctuations that occurred in the last 7-8 years were not accounted for. Despite the highlighted 
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limitations, this is currently the most suitable open data available for this type and scale of analysis. 

Nevertheless, this framework could be reused in a larger metropolitan area where block groups 

can more appropriately describe the spatial distribution of the population. 

4.2 - SPATIO-TEMPORAL VARIABILITY OF ACCESSIBILITY 

4.2.1 - Automating the Accessibility Calculation 

 A Python script tool named CalculateAccessibility (Appendix A) was developed to 

automate the calculation of accessibility in 5-minute intervals. Figure 18 includes a simplified 

flowchart that describes the execution path of the tool. A general description of this geoprocessing 

workflow will follow. This tool requires five input parameters (Figure 17): 

1) OD Cost Matrix Layer: the OD cost matrix network analysis layer that references the 

transit-based network dataset on which the calculation will be based. This preconfigured 

layer includes the origins and destinations (Figure 19), the travel impedance used in the 

calculation (travel time with transit), and the default cutoff value (60 minutes). In addition 

to the day of the week that is defined in the beginning of the script, the only thing that the 

tool changes in this layer along the execution path is the time of the day every time it solves 

the network analysis problem. 

2) Output Geodatabase: the output geodatabase where the output line feature classes will be 

saved. Every time the OD cost matrix layer is solved, it outputs a line feature class that 

contains the travel times from each origin to each destination. 

3) Weekend: a Boolean value (true or false) that determines whether the analysis will be 

performed for a weekday or a weekend day. If it is set to true, the tool will perform the 

accessibility calculation based on the weekend schedule. The default value is false. 



 

52 

 

4) Census Blocks Jobs: point feature class with the census blocks centroids and attribute 

fields for the employment data. This feature class contains a field with a unique key 

identifying each census block and another field for the number of jobs. 

5) Census Blocks Table: blank table that only includes an attribute field with a unique key 

that identifies each census block. The accessibility measurements for each census block at 

each time of the day will be recorded in this table. 

 

Figure 17. CalculateAccessibility tool’s dialog box and required input parameters. 

 The tool starts by defining the day of the week that the analysis will be performed for 

(Monday for weekday, and Saturday for the weekend), depending on the Boolean value used as an 

input. In either case, the model runs from 3:20 AM to 11:55 PM in 5-minute intervals. This is to 

make sure that it captures both the time when the first transit trip is possible, and the time when 

the last transit trip is available. This time frame was decided based on the transit service’s start and 

end times, obtained from the transit timetable. 
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Figure 18. Flowchart describing the execution path of the CalculateAccessibility Python script. 
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 Then, the OD cost matrix layer is solved, the resulting line feature class is copied to the 

output geodatabase, and 5 minutes are added to the parameter that defines the time of the day for 

the analysis. This process is repeated again and again in a loop, until the end time previously 

defined is reached. At the end of this step, the output geodatabase contains a line feature class for 

each time that the network analysis problem was solved. A total of 247 feature classes are 

generated each time that the tool runs. 

 

Figure 19. Origins and destinations used in the accessibility analysis. 

 The next step was to separate the fields with the unique IDs that distinguish the specific 

origins and destinations for each feature class in the output geodatabase. Once the destination IDs 

are obtained, the field with the number of jobs can be joined to the feature classes. At this point, 
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each record in each table (feature class) represents a trip from an origin to a destination and 

contains attributes for the travel time with transit (tij) and the number of jobs (attractiveness) in the 

destination (aj). The number of jobs is then divided by the travel impedance and the result (aj / tij) 

is recorded in a new field (Figure 20). 

 The final step involved calculating the accessibility value for each one of the origins. Each 

feature class corresponds to a time of the day and includes trips from multiple origins to multiple 

destinations. The procedure for calculating accessibility involved organizing the trips according to 

the individual origins, and then adding the (aj / tij) values together. The sum of these quotients is 

the accessibility measurement at a given time. The results are recorded in a table, with the rows 

representing the origin locations, and the columns the different times of the day (Figure 21). 

 

Figure 20. Attribute table for the feature classes that result from solving the OD cost matrix layer. 

 

Figure 21. Table that summarizes the accessibility measurements for origin locations at different 

times of the day. 
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4.2.2 - Temporal Variability Analysis 

 The temporal variability of accessibility can be analyzed once measurements are obtained 

for all origin locations at different times of a day. As already mentioned, the accessibility levels 

fluctuate over the course of a day due to transit service frequency. To illustrate that, consider the 

20-minute service areas obtained for the SBS West building at NAU (Figure 22). Service area is 

the extent that encloses all the locations that are within a specific travel impedance (time or 

distance) from the origin location. 

 

Figure 22. Map showing the 20-minute service areas for the SBS West building for four different 

times in a Monday morning. 
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 As demonstrated in the map above (Figure 22), the areal extent in the city that can be 

reached in 20 minutes or less by transit depends on the time of the day. At 8:30 AM the service 

area is significantly larger compared to the service area at 8:15 AM, for instance. Consequently, 

the accessibility measurement at 8:30 AM is also significantly higher because it is easier to travel 

to a higher amount of destinations at this time. Hence, this temporal variability is an important 

factor to be considered in accessibility measurements. 

 The first step in analyzing the temporal variability of accessibility was to look at how the 

overall accessibility level fluctuates over the course of the day. For that reason, the accessibility 

measurements were summarized for each time of the day. In other words, the mean of each column 

in the output tables (Figure 21) was obtained and the results were plotted in time series graphs 

(Figure 23). The data analysis and the construction of graphs were carried out in R programming. 

 One of the objectives of this step was to find out when the first and last trip with transit is 

possible. An issue is that the NAU Campus Shuttle has buses running until 11:30 PM during the 

week, and a late night service (SafeRide) from 9:00 PM to 2:00 AM during the weekend. These 

services are still operating after the last Mountain Line bus stops running. However, it is unlikely 

that these late night services within the NAU community are used for work trips. Besides, these 

services are highly restricted to the NAU campus boundaries and most frequently used by students 

at these times. Therefore, the NAU transit services were excluded from the network dataset used 

in this step, and the time series graphs are solely based on NAIPTA’s GTFS feed. 

 A great deal of relevant information can be obtained from the graphs below (Figure 23). 

The blue curve represents the overall accessibility level and shows how accessibility varies over 

time. By visual inspection, it is possible to notice that the accessibility levels are generally higher 

during the week (mean = 1118.95) compared to the levels experienced on the weekends (mean = 
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990.43). At around 6:00 PM, accessibility starts to gradually decrease in both situations as a result 

of the decline in transit service frequencies. In addition, as demonstrated by the difference between 

peaks and valleys in the curve, the oscillations are more abrupt over the weekend as a result of 

lower service frequencies. 

 The blue curve in Figure 23 becomes horizontal at the extremes (early morning and late 

night) of the graphs, showing that accessibility is constant for those periods. Those regions in the 

graph correspond to periods where trips with transit are not available. The accessibility 

measurements have a value of approximately 825 at these intervals because the model computes 

accessibility values based on walking times when transit trips are not available. These baseline 

features allow the detection of the time window where transit is available. 

 

Figure 23. Time series graphs showing the temporal variability of accessibility over the course of 

a typical weekday (above) and a weekend day (below). 
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 The vertical orange dashed lines define the time periods where it is possible to travel with 

transit. Transit trips are only available if an individual leaves home between 4:45 AM and 10:30 

PM during the week, and between 5:50 AM and 8:30 PM on the weekends. The FMPO 

transportation plan mentions the existence of a temporal gap in the current service, where many 

workers need extended hours to access their jobs (FMPO 2017). The 2016 ACS data at the block 

group level contains information about the time individuals leave home to go to work. That data 

can be combined with the transit time window information so that the number of workers who 

leave home to go to work when transit is not available can be estimated and mapped (Figure 24). 

 Two attribute fields are relevant for this step: the number of workers who leave home 

between 4:00 PM and 11:59PM, and the number of workers who leave between 12:00 AM and 

4:59 AM. Although it is possible to travel with transit to work and back if someone leaves home 

around 4:00 PM (assuming a maximum of 5-6 hours spent at work), it is unlikely that individuals 

working late and early hours are going to use the bus to go to work and back home. Therefore, 

despite the margin for error, the individuals leaving home to work between 4:00 PM and 4:59 AM 

were assumed to be the workers who would potentially need extended transit service hours for 

work trips. A spatial join was performed to summarize the block group data into the neighborhood 

polygons. 

 The maps in Figure 24 show a concentration of workers with a potential need for extended 

transit hours in the neighborhoods that surround the NAU campus, possibly due to the amount of 

students living in the area with work schedules after the school hours. These maps and the 

associated attribute information are again valuable information that can be used guide the decision 

making process that relates to the public transit system. In an eventual extension of the current 
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service hours, neighborhoods can be prioritized according to the amount of individuals that are 

assumed to have a higher need for the extended schedule. 

 

Figure 24. Map with the number of workers in each census block group that leave home to work 

from 4:00 PM to 4:59 AM (top), and the average for each neighborhood (bottom). 
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4.2.3 - Spatio-Temporal Variability Analysis 

 The previous procedure evaluated the temporal variability of accessibility in an overall 

manner, and represents the average for the entire area covered by the transit system. The following 

process summarizes the accessibility measurements for each origin location (census block), with 

the results representing a temporally-enabled measurement of accessibility over space. This time, 

the mean and the coefficient of variation (CV) of each row (census block) in the output table 

(Figure 21) were obtained, and the results were displayed in a few maps (Figures 25, 26, and 27). 

 As previously mentioned in the methodology chapter, the mean provides an assessment of 

the overall accessibility level experienced, while the CV measures the relative variability of 

accessibility at each location. The CV used here is defined as the standard deviation divided by 

the mean and multiplied by 100. Therefore, it is the standard deviation measured in percentages of 

the mean. The maps below show the mean and the variability of the accessibility measurements in 

three different situations: during weekdays (Figure 25), during weekends (Figure 26), and the 

weighted average that represents overall accessibility (Figure 27).  

 Although the weekday accessibility levels are higher and show less variability due to higher 

service frequency, the spatial pattern observed for a weekend day is similar. Consequently, this 

accessibility pattern is also observed in the overall accessibility map. Higher accessibility levels 

are experienced in the downtown area and surroundings, along Milton Road and the NAU campus, 

and also in the east side of Flagstaff (green areas in Figure 27). As you move away from these 

areas and approach the outer edge of the transit system coverage, accessibility decreases (areas in 

yellow, transitioning into orange and red). 
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Figure 25. Maps showing the weekday mean accessibility levels (top) and the variability of 

accessibility (bottom) for each census block in the city. 
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Figure 26. Maps showing the weekend mean accessibility levels (top) and the variability of 

accessibility (bottom) for each census block in the city. 
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Figure 27. Maps showing the overall (weighted average) mean accessibility levels (top) and the 

variability of accessibility (bottom) for each census block in the city. 
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 Two elements control the accessibility pattern observed in the origin locations: the spatio-

temporal configuration of the transit network, and the spatial distribution of jobs (Figure 28). The 

transit network is centralized in the Downtown Connection Center (green dot in Figure 28), 

therefore the maximum access to the different branches of the transit network is experienced in 

this location. The distribution of jobs is less centralized, but most of the employment opportunities 

are concentrated in the downtown area, along Milton Road, within NAU, and along Route 66. The 

interaction between the origin census block locations, the transit network, and the spatial 

distribution of jobs determines the spatial distribution of accessibility observed. 

 All the bus routes operated by NAIPTA have a stop in the Downtown Connection Center. 

An individual departing from the downtown area has the advantage of easy access to the entire 

Mountain Line network without any transfers. The transit network is also relatively denser along 

Milton Road and within the NAU campus, with several choices of routes. The NAU Campus 

Shuttle operates within the university campus, providing enhanced mobility in the area. In 

addition, a significant amount of jobs exist in those areas, including NAU as the largest employer 

in the city. The combined effect of transit and job availability explain the high accessibility values 

measured in these areas. 
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Figure 28. Flagstaff’s transit network, including bus stops, transit lines and the street network (top 

map), and the number of jobs associated with each census block centroid (bottom map). 
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 On the other hand, the relatively higher accessibility experienced in the east side of 

Flagstaff is less explained by the transit system itself and mostly results from job availability in 

the area. As shown in Figure 28, the transit network in the area is rather sparse compared to the 

downtown area. However, several census blocks are associated with an expressive number of jobs 

(Figure 11). Several major employers are located in the east side of Flagstaff, such as the 

Walgreens Distribution Center, Gore, the Walmart Supercenter, Nestle Purina, and the Flagstaff 

Mall businesses. This demonstrates the significant role played by the land-use component, where 

the proximity to the opportunity locations determines increased accessibility to jobs, rather than 

the mobility offered by the transit system. 

 The temporal variability of accessibility, measured by the coefficient of variation, is 

controlled by transit service frequency. In other words, the CV will be smaller for places where 

the bus stops very often, and higher for locations where the interval between two buses is long. 

The maps above show that variability increases as you move away from the areas characterized by 

high overall accessibility. However, it is possible to notice that the CVs are considerably higher 

for the census blocks in some of the neighborhoods located north of downtown Flagstaff (red and 

orange areas in the bottom part of Figure 27). 

 The variability is especially high for Cheshire, Lynwood, and Valley Crest, where the 

variability can reach over 100% of the mean measurements. These values contrast with the 

variability measurements obtained for other peripheral areas, where the highest values in the outer 

edge of the transit coverage area are in the order of 50%, but generally lower than that. This can 

be explained by the fact that these areas are only served by a single route (Route 5) with very low 

service frequency. Route 5, or the orange route, is the only route with a constant 60-minute service 

frequency both during the week and also on weekends (NAIPTA 2018). Although a few routes 
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operate on a 60-minute frequency during off-peak times or weekends, most of them operate on a 

higher frequency at most times. This is the only location in Flagstaff where the bus only stops once 

every hour. 

 As discussed in section 4.1, the creation of new routes to connect more distant 

neighborhoods to Flagstaff is a major change in the transit system that would require more careful 

considerations. However, in the specific case of these neighborhoods located north of downtown 

Flagstaff, even minor adjustments in the transit system to increase service frequency in the area 

would improve the accessibility situation by increasing the mean levels and decreasing the 

variability experienced. This would make the spatial distribution of accessibility more 

homogeneous across the study area, and the accessibility levels at these neighborhoods would be 

similar to the measurements at the other peripheral areas. 

 As a final step in this part of the analysis, the difference between the weekday and weekend 

accessibility measurements was analyzed. The difference in means was measured by the percent 

decrease in accessibility in the weekends, while the difference in variability was calculated by 

simply subtracting the weekday CVs from the weekend CVs. The result is presented in the map 

below (Figure 29). The general pattern is that the difference in means and variability increases as 

the distance from the downtown connection center also increases. 
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Figure 29. Map showing the difference in means (top) and in variability (bottom) between 

weekday and weekend accessibility. 
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 The difference in accessibility and in the variability of accessibility between weekdays and 

weekends is again a result of the different schedules that apply to different routes. The map above 

(Figure 29) shows that the difference in mean accessibility levels is higher for the east side of 

Flagstaff. This is explained by the fact that the bus lines (routes 2, 3, 7, and 66) that serve this area 

operate on a reduced service frequency on weekends (NAIPTA 2018). With the exception of route 

2 (blue) that operates on a 30-minute frequency between 10:00 AM and 4:00 PM, all the other 

lines operate on a reduced 60-minute frequency on weekends. The neighborhoods in the southern 

area along Lake Mary Road also experience decreased weekend accessibility for similar reasons. 

 The neighborhoods in the northern part of Flagstaff also experience decreased weekend 

accessibility. As already mentioned, that area is only covered by a single bus line (route 5) with 

low service frequency both for weekdays and weekends. Given that service frequency does not 

change, the difference can be attributed to the decrease in frequencies of the other routes with 

which the orange line connects. 

 Regarding the variability in accessibility, the general pattern is that the peripheral locations 

experience a greater difference in variability, meaning that accessibility fluctuates more during the 

weekend for those locations. The small number of routes serving those locations may explain this 

difference. Only one or two routes can be accessed from those areas, meaning that any decrease in 

transit service frequency has greater effects on the accessibility levels experienced. The more 

central neighborhoods have more choices of routes, and the decrease in frequency in one of them 

can be compensated by the existence of other alternatives. Therefore, the neighborhoods located 

near the center of the transit network are less affected by the decrease in transit service frequency. 

 In addition, the presence of negative values is intriguing at a first glance. Negative values 

indicate greater variability during the week compared to the weekend, and that goes against the 
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fact that the transit service frequency is higher during the week. However, all census blocks 

experience higher accessibility during the week. Therefore, this can be attributed to the fact that 

some origin locations have access to a greater amount of opportunities during the week, increasing 

both the overall accessibility and its variability. 

 The FMPO states that one of the unmet transportation needs in Flagstaff is that some 

neighborhoods are not well served by the transit service (FMPO 2017). The maps displayed in this 

section both map and quantify this spatial gap for work trips. The overall accessibility results not 

only account for the temporal variations over the course of a day, but they also represent the 

average transit-based accessibility experienced most of the time in the city. The results are not 

only useful to identify the underserved areas, but also to measure how underserved they are. 

 As demonstrated by Jin and Paulsen (2018) in their study, increased job accessibility can 

potentially decrease unemployment rates and raise household income, improving the lives of 

disadvantaged population groups. Therefore, the information produced here is relevant for the 

coordinated transportation plan and should be considered in the current public transportation 

decision-making process. 

 Lei and Church (2010) mention that simplifying assumptions are usually made in studies 

that attempt to model travel times with transit. The accessibility calculations exposed in this section 

are based on a robust door-to-door approach, where none of the steps of a typical trip with transit 

are overly simplified. Therefore, this transit-enabled schedule-aware transportation network can 

be effectively used by transportation agencies as a tool to simulate different situations so that 

different aspects of their specific transit networks can be evaluated. If necessary, this workflow is 

flexible enough to allow the use of different origins, destinations, and measurements. It is 

important to mention that this network dataset not only supports OD cost matrices and accessibility 
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calculations, but it is also capable of solving any other type of network analysis problem that could 

be relevant for public transportation planning (Figure 5). 

 This section focused on providing an assessment of the current transit-based accessibility 

scenario and its variations over space. The results obtained emerge from the interaction between 

the land-use (spatial distribution of job opportunities and origin locations), transportation 

(characteristics of the transit system and street networks), and temporal (variations in transit 

service frequency over the course of a day) components. The fourth fundamental component of 

accessibility (Geurs and Ritsema van Eck 2001; Geurs and van Wee 2004), the individual 

component that distinguishes the level of demand for transit at the origin locations, will be 

incorporated in the next section. 

 The following section addresses the correlation between accessibility and the 

socioeconomic attributes that determine the demand for transit. The idea is to analyze the social 

aspects of the transit-based job accessibility scenario that was measured. 

4.3 - PLOTTING ACCESSIBILITY AGAINST SOCIO-DEMOGRAPHICS 

 The relationships between the accessibility measurements and the individual socio-

demographic variables were measured, and the results are presented in this section. The need for 

transit and the Title VI requirements will be discussed separately. First, the individual variables 

will be ranked according to the correlation coefficients obtained, and the relationships will be 

described in a more general way based on this ranking. Then, the relationships between 

accessibility and the individual variables will be addressed individually so that some specific 

features can be explored in more detail. 

 It is statistically important for comparison purposes that the different variables considered 

are measured in the same spatial scale and at the same time. Therefore, to ensure that the analysis 
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was consistent spatially and temporally, the correlations were performed using the 2016 ACS 

estimates for the census block groups (USCB 2017a). A spatial join was used to summarize the 

accessibility values at the block level. The accessibility value for each block group corresponds to 

the mean of the accessibility measurements of the census blocks it contains. 

4.3.1 - Accessibility and the Need for Transit 

 Table 3 contains the Spearman correlation coefficients measured for the spatial 

relationships between accessibility and the individual variables that determine the need for public 

transit. The coefficients can be understood as a measurement of the spatial match between 

accessibility and the need for transit. If the locations with higher number of individuals with a need 

for transit also experience higher accessibility, the correlation coefficient will assume higher 

positive values. A negative correlation coefficient represents a situation where the opposite occurs: 

increasing numbers of individuals with a need for transit experience decreasing accessibility levels. 

Table 3. Spearman correlation coefficients for the relationships between accessibility and the 

individual variables that determine the need for public transit service. 

Spearman correlation coefficient (rs) 

Number of low income households 0.33 

Number of unemployed individuals 0.22 

Number of households with no vehicle available 0.20 

Number of workers who did not work at home 0.11 

Number of individuals with a disability 0.05 

Number of senior individuals (over 65) -0.22 

Total Population 0.13 

 

 Figure 30 shows a visual representation of those relationships (bar charts). Mean 

accessibility values are laid out in the y-axis, while the x-axis contains increasing value ranges for 

the socioeconomic variables. An approximately increasing pattern is more characteristic of higher 



 

74 

 

positive correlation coefficients, while decreasing patterns are associated with negative 

relationships. Weaker relationships show no apparent pattern. The interpretation is similar: 

increasing patterns reveal a better spatial match between accessibility and the specific 

socioeconomic variable. 

 The results suggest that the variable that has the strongest positive relationship with 

accessibility is the number of low income households (rs = 0.33), followed by the number of 

unemployed individuals (rs = 0.22) and the number of households with no vehicle available (rs = 

0.20), and finally the number of individuals with a disability (rs = 0.05). The number of senior 

individuals is negatively correlated (rs = -0.22) with the accessibility measurements. Accessibility 

also has a positive relationship (rs = 0.13) with the total population variable. 

 As already mentioned in the introductory chapter, a transportation system aligned with 

horizontal equity would only consider the number of individuals in each location, regardless of 

their individual socioeconomic characteristics. Therefore, the relationship between accessibility 

and total population compared to the other relationships can be used to evaluate horizontal and 

vertical equity. 
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Figure 30. Bar charts showing the relationship between accessibility and the individual variables 

that determine the need for public transit service. 

 It is possible to notice the existence of connections between the correlation coefficients and 

some of the information included in the transportation plan (FMPO 2017). The FMPO lists the 
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origin locations with a special need for transportation services (Figure 31). These locations include 

low income housing developments and neighborhoods, and assisted living facilities for seniors. 

The low income neighborhoods are mostly located in areas that experience high transit-based 

accessibility, explaining the high correlation coefficient obtained for the income variable. 

 

Figure 31. Map with the origins and destinations with a special need for transportation services 

(FMPO 2017). 

 The unemployment and car ownership variables may be related to the income variable. The 

number of unemployed individuals in a household can decrease its income. Low income 

households are also less likely to be able to afford private vehicles. This may explain why these 

two variables are also associated with high correlation coefficients. In Figure 32, it is possible to 
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see that the areas with higher numbers (darker red tones) of low income households, unemployed 

individuals, and households with no vehicles available better match the high accessibility areas 

(larger blue circles) compared to the number of senior individuals and the number of individuals 

with a disability (Figure 33). On the other hand, the individuals with a disability and the senior 

individuals are less concentrated in the high accessibility areas (Figure 33). The disability variable 

yields a weak positive relationship, while a negative relationship exists for the number of seniors. 

 The results collectively suggest that the spatial configuration of the transit system is 

significantly influenced by the low income neighborhood locations. By comparing the correlation 

coefficients obtained for the income, unemployment, and car ownership variables with the 

coefficients obtained for the total population attribute, it is also clear that the transit-based job 

accessibility scenario is oriented more toward vertical equity than horizontal equity. The origins 

prioritized by the transit system were defined based on the social need for transit (mainly based on 

income), meaning that the individuals were weighted based on a socioeconomic characteristic that 

determines the high need for transit service. If the transit service was solely designed based on the 

population distribution (horizontal equity), the correlation coefficient obtained for the total 

population variable would be higher than the coefficient for any other socioeconomic attribute. 
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Figure 32. Maps showing the accessibility values relative to the individual socioeconomic 

attributes (income, unemployment, and car ownership). 

 As already mentioned, Jin and Paulsen (2018) provided evidence that increased job 

accessibility can potentially decrease unemployment rates and raise household income. In addition, 
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low income households spend a higher proportion of income on transportation (Haas et al. 2006). 

Therefore, it might be beneficial that the low income and unemployment variables are positively 

correlated with the accessibility levels. The high transit-based job accessibility levels currently 

experienced by these individuals can potentially aid in decreasing the costs with transportation, 

increasing household income, and decreasing unemployment rates in the future. 

 

Figure 33. Maps showing the accessibility values relative to the individual socioeconomic 

attributes (individuals with a disability and senior individuals). 

 Although the correlation coefficient measured is significantly higher for the low income 

variable, the FMPO mentions that older adults and individuals with disabilities also have a special 

need for transit service (FMPO 2017). Therefore, these individuals could be prioritized in eventual 

expansions or service changes. However, this does not necessarily mean that these individuals are 

poorly served by the transit system. As already mentioned, NAIPTA operates the Mountain Lift, 

a demand-based paratransit service aimed at individuals with disabilities. This service is not 
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incorporated in the calculations in this study. Therefore, individuals with disabilities can take 

advantage of this additional service and may experience increased accessibility for that reason. 

 In addition, the ridership versus coverage problem also plays a role here. The problem 

would be easily solved if transportation agencies could operate on an unlimited budget. But again, 

these agencies have to make decisions to try balancing ridership with spatial coverage. The 

accessibility budget is limited and although an adjustment in the transit system configuration could 

benefit a certain population group, it would most likely compromise the service levels experienced 

by other population groups that might also have a special need for the service. 

 The transportation plan by the FMPO (2017) includes information about the origin 

locations that are prioritized by the transit system (Figure 31). Origin locations with a special need 

for transit include low income neighborhoods. Low income neighborhoods are defined based on 

the proportion of low income households. However, not all low income households are located in 

low income neighborhoods. As shown in Figure 32, a significant amount of low income 

households is located outside the low income neighborhoods delimited in Figure 31. The results 

presented in this section account for a significant portion of the low income population that live 

outside the low income neighborhoods. Therefore, a more comprehensive way of defining origins 

that should be prioritized is to develop some kind of transit users’ index that does not exclude 

individuals with the definition of boundaries based on the proportions of a single specific socio-

demographic characteristic. 

4.3.2 - Accessibility and the Title VI Requirements 

 The Title VI requirements exist to ensure that the level and quality of public transportation 

service are provided in a way that individuals are protected from being discriminated based on 

race, color, or national origin (FTA 2017). All transportation agencies that receive financial 
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assistance from the Federal Transit Administration are required to comply with those requirements. 

NAIPTA maintains a Title VI Program and Implementation Plan to ensure that the requirements 

are being met (NAIPTA 2017). Therefore, measuring the spatial correlation between accessibility 

levels and socio-demographic data on race and national origin can potentially provide important 

information for transportation agencies with respect to these federal requirements. 

 Table 4 contains the Spearman correlation coefficients measured for the spatial 

relationships between accessibility and the individual variables on race and national origin. Two 

types of variables are included in the table, based on the most representative races and ethnicities 

that make up Flagstaff’s population. The first type contains two variables that are concerned with 

the number of individuals of Hispanic or Latino origin (Hispanic or Latino and Not Hispanic or 

Latino). The second type includes variables for the number of individuals of each race (African 

American, Asian, Native American, white, two or more races, and other race alone). Figure 34 

contains the respective bar charts that graphically illustrate the spatial relationships. 

Table 4. Spearman correlation coefficients for the relationships between accessibility and the 

individual variables that are relevant to the Title VI requirements (race and national origin). 

Spearman correlation coefficient (rs) 

Hispanic or Latino 0.358 

Not Hispanic or Latino 0.062 

Two or More Races 0.270 

African American 0.119 

Asian 0.115 

Native American 0.089 

White 0.086 

Other 0.038 
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Figure 34. Bar charts showing the relationship between accessibility and the individual variables 

that determine race and national origin. 

 There is a significant difference between the coefficients obtained for the Hispanic-Latino 

population compared to the coefficients obtained for the non-Hispanic-Latino population. That can 
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be explained by the Hispanic-Latino population distribution better matching locations where 

higher accessibility levels are experienced. Figure 35 shows the difference between the spatial 

distributions of these two population groups, where it is clear that the Hispanic-Latino population 

is significantly more concentrated around the high accessibility areas. The Hispanic population is 

especially more significant at the east side of Flagstaff (green circle in Figure 35), where job 

accessibility is high and the non-Hispanic population is less representative. 

 

Figure 35. Maps showing the accessibility values relative to the individual ethnicity attributes 

(Hispanic or Latino and not Hispanic or Latino). 

 By looking at the different correlation coefficients obtained for the Hispanic-Latino 

population compared to the non-Hispanic-Latino population separately from the other results, one 

might get the wrong impression that the transit system is intentionally more beneficial to the 

Hispanic population. However, this might simply be due to the fact that the spatial distribution of 

the Hispanic population (Figure 35) well matches the distribution of the low income 
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neighborhoods (Figure 32). In fact, the Spearman correlation coefficient between these two 

variables is equal to 0.51. Therefore, it may be that the Hispanic-Latino population represents a 

significant part of the low income households in Flagstaff. Given that the transportation system 

has low income areas as one of its priorities (Figure 31), accessibility also happens to be high for 

the Hispanic population. 

 In addition, a transportation system is not only designed based on origin locations, but it 

also accounts for the destinations that are important for the individuals with a special need for 

transit service. In this specific case, destinations include large employers, commercial areas, 

medical facilities, and human service agencies (Figure 31; FMPO 2017). The Hispanic-Latino 

population is also significantly concentrated around these destinations. 

 The correlation coefficient between accessibility and the race variables is approximately 

the same (around 0.10), with the exception of the number of individuals who identify themselves 

with a single other race (0.04) or two or more races (0.27). The difference can be explained by the 

individuals identifying themselves with some other race alone being more representative in low 

transit-based accessibility areas, compared to the individuals who identify themselves with two or 

more races. This is especially clearer in the upper half of the maps in Figure 36. For the other races, 

although the relationships with accessibility have distinct spatial patterns (Figure 37), the 

differences are evened out and the overall spatial match with accessibility is approximately the 

same, as demonstrated by the correlation coefficients in Table 4. 



 

85 

 

 

Figure 36. Maps showing the accessibility values relative to the individual race variables (two or 

more races and other race alone). 

 These results suggest that the spatial distribution of transit-based job accessibility is mostly 

impartial for the race variables. The coefficients are only divergent for the variables that do not 

correspond to a specific race and may well represent a variety of races. This means that the 

significantly higher or lower coefficients measured are not associated with any spatial bias toward 

any specific population group based on race. Given that these correlation coefficients measure the 

strength and direction of the spatial relationship between transit-based job accessibility and the 

number of individuals identifying themselves with different races, the outcomes are positive 

regarding the compliance with the Title VI requirements. 

 The main limitation of this type of analysis is that the variables that were correlated with 

accessibility are not independent. This was demonstrated, for instance, with the high correlation 

coefficients obtained for the low income and Hispanic-Latino variables. Those variables are 
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dependent because an individual can be Hispanic or Latino and live in a low income household at 

the same time. Therefore, unconditional observations cannot be made by analyzing these 

relationships individually. Information about the policies and practices employed by transportation 

agencies, such as the map in Figure 31 and the transportation plan (FMPO 2017), are generally 

helpful in uncovering the real meaning of these spatial relationships. 

 This analysis still significantly suffers from the MAUP due to the use of aggregated data 

at the block group level. The intra-zone variability within each block group is ignored. Although 

some peripheral block groups are associated with an accessibility measurement, in reality they are 

only partially served by the transit system. This introduces error in the analysis due to the inclusion 

of individuals who do not use the transit service. However, the census blocks from which these 

accessibility measurements were taken generally represent the majority of the population within 

these peripheral block groups. Therefore, the errors were not considered to be relevant enough to 

significantly influence the results. 

 In addition, the ACS datasets are only estimates that might deviate from the true value for 

these demographic attributes at varying levels. This is another source of inaccuracy that may 

influence the results by introducing error. However, the ACS estimates are the only open datasets 

that contain a more comprehensive set of socioeconomic attributes at the block group level. 

Nevertheless, the compatibilities between the results and the information provided by the 

transportation plan (FMPO 2017) indicate that the results are still appropriate. 
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Figure 37. Maps showing the accessibility values relative to the individual race variables (African 

American, Asian, Native American, and White). 

 Despite the limitations of an analysis based on aggregated census counts, the block groups 

are detailed enough to capture variations within different neighborhoods in the city. In addition, 
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the results are presented in a simple and intuitive format that can be easily interpreted by policy 

makers and the general public. In short, the higher the correlation coefficient, the stronger the 

spatial relationship between accessibility and the specific socio-demographic variable. Hence, the 

methodology and the associated results presented in this section are still effective in producing 

valuable information that can be incorporated by public transportation agencies in their decision-

making process. 
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CHAPTER 5: CONCLUSIONS 

 The purpose of this research project was to calculate the spatio-temporal variability of 

transit-based job accessibility, correlate the measurements obtained with the socioeconomic 

characteristics assumed to determine the need for public transit service, and discuss the social 

aspects of the accessibility scenario in Flagstaff. This was achieved by: 

1) Constructing a temporally-enabled and schedule-aware transit-based multimodal network 

dataset that accounts for every step of a transit trip; 

2) Using a gravity-based measurement to calculate accessibility from all populated census 

block locations to all the census block locations that are associated with at least one job; 

3) Collecting and processing the relevant census-based data that was used in the 

socioeconomic characterization of the city with respect to the social need for transit; 

4) Analyzing and interpreting the spatial patterns of accessibility and socioeconomics 

individually and simultaneously with maps, graphs, and correlation coefficients; 

5) Using the measurements and correlations to evaluate the social aspects of the transit-based 

job accessibility scenario in the city of Flagstaff. 

 In addition, the study’s research questions were addressed in the previous chapter (results 

and discussions) and can be answered as follows: 

1) What is the spatial and temporal variability of the transit-based accessibility levels 

experienced by the city’s residents to employment opportunities? 

The spatio-temporal variability of accessibility was mapped and measured, and the results 

are presented in sections 4.2.2 and 4.2.3. The most important results are the accessibility 

time series graphs (Figure 23) and the maps that summarize the accessibility measurements 

(Figures 25, 26, 27, and 29). 
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2) What is the spatial relationship between the accessibility measurements and the socio-

demographic parameters that determine the need for public transit? 

The spatial relationship between accessibility and the socioeconomic attributes assumed to 

determine the need for public transit was measured with correlation coefficients (Tables 3 

and 4) and displayed in bar charts (Figures 30 and 24) and maps (Figures 32, 33, 35, 36, 

and 37). These results are presented in section 4.3. 

3) Does the accessibility scenario in Flagstaff reflect horizontal or vertical equity? In other 

words, are the individuals equally weighted or the resources are being distributed according 

to socioeconomic condition and the need for transit service? 

As discussed in section 4.3.1, the results show that the distribution of transit-based job 

accessibility has a better spatial match with the distribution of low income households 

compared to the population distribution, indicating that the accessibility scenario is more 

aligned with vertical equity. This means that the locations assumed to have a higher need 

for transit actually experience better transit-based job accessibility. However, given that 

the configuration of the transit system is not the only variable determining the accessibility 

levels experienced, and the fact that the socioeconomic variables are not independent, the 

distribution of transportation resources only partially explains this spatial relationship. 

4) Are there any locations with a relatively high need for public transit that are not currently 

covered by the transit system? 

This question was addressed in section 4.1 in the analysis of the need for transit service. A 

transit users’ index was calculated and maps displaying the need for transit in the study 

area were produced (Figures 14 and 15). Table 2 lists the transit users’ index for 

neighborhoods currently not covered by the transit system. Some of these neighborhoods 



 

91 

 

have indexes greater than or equal to the average index for the neighborhoods served by 

the transit system. 

 Important findings concerning the transit-based job accessibility scenario were presented 

in this study. By using a transit users’ index to estimate the general need for transit service, it was 

possible to identify four neighborhoods that currently do not have access to transit with an assumed 

relatively high need for transit: Fernwood Estates, Fort Valley Estates, Walnut Meadows, and 

Bellemont. These locations could be prioritized in an eventual spatial coverage expansion. The 

temporal variability of accessibility was analyzed, and the workers with schedules outside the 

current transit service hours were found to be concentrated in the NAU campus and in the 

surrounding neighborhoods. Therefore, these locations are assumed to have a higher need for an 

expansion of the current temporal coverage. 

 In the spatio-temporal variability analysis, downtown Flagstaff, the NAU campus, Milton 

Road, and the east side of the city along Route 66 were found to experience the highest transit-

based job accessibility levels in the city due to either the density of the transit network or the 

proximity to a high number of jobs. On the other hand, some neighborhoods located north of 

downtown Flagstaff, specifically Cheshire, Lynwood, and Valley Crest experience significantly 

higher variability in the average accessibility levels. The average accessibility at these locations is 

also lower compared to most of the area covered by the transit system. An adjustment in the service 

frequencies could potentially improve and stabilize the accessibility levels experienced in that area. 

 The correlation coefficients obtained show that the transit-based job accessibility levels 

have the best spatial match with the number of low income households. By comparing this 

coefficient with the coefficient obtained for the total population, and considering other variables 

that are also associated with high coefficients (number of unemployed individuals and number of 
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households with no vehicle available), it can be suggested that the accessibility scenario is better 

for the individuals that are assumed to have a higher need for work trips with transit. On the other 

hand, the correlation with the number of individuals with a disability is weak and the correlation 

with the number of seniors is negative. However, the individuals with disabilities might still 

experience better accessibility by using the paratransit services that were not included in this study. 

In addition, although senior individuals are more likely to be unable to drive, they are also less 

likely to need transit service for work trips compared to other age groups. 

 In the analysis relevant for the Title VI requirements, it was found that the transit-based 

job accessibility scenario is mostly impartial considering the variables associated with specific 

races. However, the correlation between accessibility and the Hispanic-Latino population is 

significantly stronger compared to the correlation for the non-Hispanic population. The Hispanic-

Latino population has a reasonable spatial match with the distribution of the low income 

households and the distribution of job opportunities. In addition, the non-Hispanic population is 

more representative in peripheral areas where job accessibility is lower. These two facts together 

explain the difference in the correlation coefficients obtained. 

 Not only were the research objectives accomplished and the research questions answered, 

but the workflow developed for the calculation of accessibility was compiled into a custom user-

friendly ArcGIS geoprocessing tool. The main practical contribution of this study is that this tool 

is flexible enough to be reused with different settings and in other locations, as long as the input 

data requirements are met. Generally, that is not a problem given that street network data and 

census datasets are available for virtually every city in the United States. Transportation agencies 

are also increasingly more interested in publicly sharing their transit data through GTFS feeds. 
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 The CalculateAccessibility tool together with the transit-based network dataset can be used 

by transportation agencies in simulations that can assist with the solution of many transit-related 

problems. The tool allows the use of different sets of origins and destinations, and can be adapted 

to perform different types of measurements. For instance, other types of accessibility calculations 

or travel time measurements can also be performed with small adjustments in the Python script. In 

addition, this network dataset not only solves OD cost matrices, but can also solve any other type 

of network problem that could be relevant for public transportation planning (Figure 5). 

 The Add GTFS to a Network Dataset tool (Morang 2016) allows for the integration 

between GTFS feeds of different agencies, being extremely helpful in a coordinated effort setting, 

such as the one in Flagstaff. This has been demonstrated with the network dataset created in this 

study, which includes the transit systems operated by NAIPTA and NAU. Other fixed-route 

services, such as the regional Navajo and Hopi transit systems (FMPO 2017) could be incorporated 

in the network dataset in the future. The accessibility effects of service changes can also be 

simulated with modifications in the GTFS feeds. Service frequencies can be updated, routes can 

be added and excluded, and the accessibility tool can be executed again with the new settings. 

 Geurs and van Wee (2004) highlight the importance of the development of sophisticated 

accessibility measurements that can still be easily interpreted by policy makers. Although Python 

programming skills are required for understanding and manipulating the source code, the custom 

ArcGIS geoprocessing tool can be accessed through the standard user-friendly interface (Figure 

17) that is characteristic of any other ArcGIS tool. Therefore, even the more basic GIS users can 

have access to the tool’s functionality without any programming experience. The transit-based 

network dataset can also be easily used within the ArcGIS user interface. In addition, the maps, 

graphs, and tables presented are simple and relatively easy to be interpreted. 
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 The calculations performed in this study use a door-to-door approach based on transit 

timetable data and, unlike many studies previously developed (Lei and Church 2010), it does not 

overly simplify any of the steps of a trip with transit. In addition, the study also contributes to the 

research agenda by statistically exploring the spatial distribution of accessibility across different 

population groups, something that has not yet been fully explored in the current accessibility 

studies (van Wee and Geurs 2011). The information produced is relevant for transportation 

policies, and the outcomes of using this type of information to guide transportation efforts could 

be later assessed. Although this was not addressed in this study, this is a potential avenue for future 

work (van Wee 2016), and the methodology introduced offers opportunities in this direction. 

 This study also overcomes the limitations associated with the use of proportion-based 

socioeconomic indicators, such as the transit users’ index in the study by Tribby and Zandbergen 

(2012), and the correlations based on percentages of population groups in the study by Farber, 

Morang, and Widener (2014). As already explained, this is especially relevant when the ridership 

versus coverage dilemma is considered (Walker 2015). Proportion-based analyses are deficient 

because different weights are attributed to individuals depending on the total population living in 

a census block or block group. When the calculations are based on percentages or proportions, an 

individual living in an underpopulated area will have a greater effect on the results than an 

individual living in an overpopulated region (Figure 16). 

 On the other hand, the analyses carried out in this study still significantly suffer from the 

MAUP because they are still based on aggregated areal units, such as census blocks and block 

groups. Given the unavailability of spatial data in higher resolution, this problem is unlikely to be 

easily solved with the use of open data. A possibility for future work is the use spatial 

microsimulation techniques to reconstruct microdata by combining non-spatial survey data, e.g. 
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the American Community Survey Public Use Microdata Sample (PUMS; USCB 2017b), with 

aggregate spatial data (Lovelace, Ballas, and Watson 2014). PUMS files include untabulated 

records of surveys about individuals and housing units. Another alternative would be requesting 

access to restricted-use census-based microdata under the supervision of the Census Bureau in a 

Federal Statistical Research Data Center (USCB 2015). Qualified researchers can request access 

to census-based microdata to address important research questions. 

 It is also possible that different types of datasets that could be useful for this type of analysis 

will be available in the near future. It has never been easier to collect, store, process and produce 

data, and data is being continuously generated from people’s interaction with other people, 

machines, the environment, cities, and virtual codes and architectures (Graham and Shelton 2013). 

Currently, much more data are produced within two days than it has previously been produced in 

years, and a great deal of these datasets are spatially and temporally enabled, offering many 

opportunities for improving the understanding of geographical phenomena (Kitchin 2013). This 

large scale automatic data generation through sensors is currently relevant for movement and 

transport in places that are now referred to as smart cities (Batty 2013). Some examples include 

the travel card based automatic detection systems (ADCs) used in Chicago (Zhao, Rahbee, and 

Wilson 2007), London (Batty 2013), and Brisbane, Australia (Tao et al. 2014). 

 Ideally, an accessibility measurement should not ignore or overly simplify any of the four 

basic components defined in the reviews by Geurs and Ritsema van Eck (2001) and Geurs and van 

Wee (2004). The accessibility calculation employed accounts for the land-use, transportation, and 

temporal components in a comprehensive way. The individual component is addressed separately 

in the socioeconomic characterization of the study area with regard to the need for transit, and in 

the correlations performed to estimate the relationships between accessibility and socioeconomics. 
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Although the level of generalization is relatively higher in the individual component, mainly due 

to the unavailability of socio-demographic microdata, the other components are properly addressed 

without any kind of excessive generalization that could significantly compromise the results. 

 Despite the fact that the Python script developed (Appendix A) successfully automated the 

accessibility calculations, it can still be further improved. Datasets with large numbers of origins 

and destinations may take a long time to be processed and require large amounts of storage space. 

The storage space requirements could be minimized if the individual origin-destination line feature 

classes were processed in-memory instead of being processed after being permanently saved in a 

geodatabase. This would also eliminate some of the operations that are repeated in each one of the 

individual custom functions that make up the tool, resulting in processing time savings. On the 

other hand, since this operation would end up merging some of the individual functions into a 

continuous process, the flexibility of changing the script to perform specific steps separately 

instead of the entire workflow would be compromised. This is especially useful when small 

adjustments are necessary. Therefore, the ideal solution that enables both flexibility and efficiency 

would be to break down the tool into five separate tools for the individual functions, and an 

additional tool that executes the complete workflow. 

 Finally, it is also important to highlight that, although the results produced aim to benefit 

transportation planning efforts, the accessibility levels experienced are not only the result of the 

spatial configuration of the transit system. As demonstrated in this study, high accessibility can be 

experienced even when the transit network is not as dense as in other areas. This proves that the 

land-use patterns have a great influence on accessibility. Therefore, the decentralization of 

facilities and mixed land-use planning strategies can also aid in improving the accessibility 

scenario (Cheng and Bertolini 2013). In addition, as addressed by Levine et al. (2012), the 
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transportation network density also plays a role in accessibility. For that reason, the construction 

of new roads or even the improvement of pedestrian access to transit stops may be more effective 

and less costly than improving travel speeds or service frequencies. Consequently, transit systems 

are only one of the several variables that make up the accessibility equation. 

 The findings of this study and the methodology developed open up a range of possibilities 

that can play an important role in transit planning processes. As demonstrated in this study, 

geographic information systems and spatial analysis techniques can be used to translate complex 

relationships between transit systems, transportation networks, land-use parameters, and 

socioeconomics into simple user-friendly networks with problem-solving capabilities. This transit-

based network dataset can greatly benefit transit planning processes with realistic simulations that 

can be used not only to analyze the current transit configuration, but also to forecast potential 

future scenarios. The GTFS-based system seamlessly combines transit information from different 

providers, making it significantly easier for transit agencies to coordinate their efforts. Transit 

planners that employ this methodology will be able to draw more accurate conclusions about the 

advantages and disadvantages of different alternatives for the configuration of transit networks in 

the future. Therefore, this study is significantly valuable for the improvement of the processes that 

determine the way that public transit resources are delivered, ultimately increasing accessibility 

and improving the quality of service for transit users. 
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APPENDICES 

Appendix A: CalculateAccessibility Geoprocessing Tool Source Code (Python Script) 

#---------------------------------------------------------------------------- 

# Tool name: CalculateAccessibility 

# 

# Description: Automates the calculation of accessibility from a 

#              transit-enabled network dataset for several times of a day. 

#              Results are recorded in a table. 

# Input Parameters: 

#                  ---REQUIRED--- 

#                  OD Cost Matrix Layer (layer file) 

#                  Output Geodatabase (file geodatabase) 

#                  Weekend (Boolean) 

#                  Census Blocks Jobs (point feature class) 

#                  Census Blocks Table (table) 

# 

# Output: Census Blocks Table (table) -- contains the accessibility for each 

#         location at each calculated time. 

#---------------------------------------------------------------------------- 

 

# import required modules 

import arcpy, datetime, math 

 

############################################################################# 

 

def SolveMatrix(matrix_lyr, outputGDB, weekend): 

    """ 

    Iteratively solves the OD Cost Matrix Layer and saves the individual 

    feature classes in the output geodatabase. 

    """ 

    arcpy.AddMessage("Solving OD Cost Matrix loop...") 

 

    # checks the network analyst extension 

    arcpy.CheckOutExtension("Network") 

 

    # accesses the network analysis layer properties 

    matrix_solver = arcpy.na.GetSolverProperties(matrix_lyr) 

 

    # specifies whether the analysis will be performed for weekday or weekend 

    if weekend: # True for weekend 

        # start time 

        matrix_solver.timeOfDay = datetime.datetime(1900, 1, 6, 3,20,0) 

        # end time 

        end = datetime.datetime(1900, 1, 6, 23,55,0) 

    else: # False for weekday 

        # start time 

        matrix_solver.timeOfDay = datetime.datetime(1900, 1, 1, 3,20,0) 

        # end time 

        end = datetime.datetime(1900, 1, 1, 23,55,0) 
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    # establishes time interval between two consecutive calculations 

    increment = datetime.timedelta(minutes=5) 

    # stores the network analysis sublayer names 

    subLayerNames = arcpy.na.GetNAClassNames(matrix_lyr) 

 

    # while loop that iteratively solves the network analysis layer 

    while True: 

        arcpy.na.Solve(matrix_lyr) # solves OD cost matrix layer 

        # holds the layer with the result 

        outputMatrix = arcpy.mapping.ListLayers(matrix_lyr, 

                                                subLayerNames["ODLines"])[0] 

 

        # standardizes the names for the output feature classes: MatrixHHMM 

        if matrix_solver.timeOfDay.hour < 10: 

            hour = '0' + str(matrix_solver.timeOfDay.hour) 

        else: 

            hour = str(matrix_solver.timeOfDay.hour) 

        if matrix_solver.timeOfDay.minute < 10: 

            minute = '0' + str(matrix_solver.timeOfDay.minute) 

        else: 

            minute = str(matrix_solver.timeOfDay.minute) 

 

        # holds the name of the output FC: MatrixHHMM 

        outputName = "Matrix" + hour + minute 

        # copies the feature class to the output geodatabase 

        arcpy.CopyFeatures_management(outputMatrix, 

                                      outputGDB + "/" + outputName) 

        arcpy.AddMessage("Matrix solved: " + outputName[-4:]) 

        # checks if the end time for the calculation was reached 

        if matrix_solver.timeOfDay == end: 

            break # exits the loop 

        # adds the time increment for the next calculation 

        matrix_solver.timeOfDay += increment 

 

    # clean up 

    del matrix_lyr 

    del matrix_solver 

 

    # returns the network analyst extension 

    arcpy.CheckInExtension("Network") 

 

############################################################################# 

 

def AddIDfields(outputGDB): 

    """ 

    Creates separate attribute fields for the origin and destination unique 

    IDs for each feature class in the output geodatabase. 

    """ 

 

    arcpy.AddMessage("Creating ID fields for outputs...") 

 

    # sets the workspace environment to the output geodatabase 
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    arcpy.env.workspace = outputGDB 

 

    # creates a list of all feature classes in the workspace 

    FClist = arcpy.ListFeatureClasses() 

 

    # for loop that iterates through the feature classes in FClist 

    for fc in FClist: 

 

        arcpy.AddMessage("Adding ID fields for: " + fc) 

 

        # creates a new attribute field for the origin IDs 

        arcpy.AddField_management(fc, "GEOID10", "TEXT", field_length=15) 

        # creates a new attribute field for the destination IDs 

        arcpy.AddField_management(fc, "JOBID", "TEXT", field_length=15) 

 

        # creates an update cursor based on the current FC 

        cursor = arcpy.da.UpdateCursor(fc, ["Name", "GEOID10", "JOBID"]) 

        # for loop that iterates over the rows in the update cursor 

        for row in cursor: 

            # writes the origin ID in the GEOID10 field 

            row[1] = row[0].split(" - ")[0] 

            # writes the destination ID in the JOBID field 

            row[2] = row[0].split(" - ")[1] 

            # updates the current row 

            cursor.updateRow(row) 

 

    # clean up 

    del row 

    del cursor 

 

############################################################################# 

 

def JoinField(outputGDB, BlockJobs): 

    """ 

    Joins the values for the number of jobs from the census blocks feature 

    class to each feature class in the output geodatabase. 

    """ 

    arcpy.AddMessage("Joining JOBS field to outputs...") 

 

    # sets the workspace environment to the output geodatabase 

    arcpy.env.workspace = outputGDB 

 

    # creates an empty dictionary to hold the {Job ID : Number of Jobs} pairs 

    JobDict = {} 

 

    # creates a search cursor based on the census blocks FC 

    cursor = arcpy.da.SearchCursor(BlockJobs, ["JOBID", "JOBS"]) 

    # for loop that iterates over the rows in the search cursor 

    for row in cursor: 

        # adds an entry in the dictionary -> JOBID:JOBS 

        JobDict[row[0]] = row[1] 

 

    # clean up 



 

110 

 

    del row 

    del cursor 

 

    # creates a list of all feature classes in the workspace 

    FClist = arcpy.ListFeatureClasses() 

 

    # for loop that iterates through the feature classes in FClist 

    for fc in FClist: 

 

        arcpy.AddMessage("Joining JOBS fields to: " + fc) 

 

        # adds an attribute field for the number of jobs in the destinations 

        arcpy.AddField_management(fc, "JOBS", "DOUBLE") 

 

        # creates an update cursor based on the current FC 

        cursor = arcpy.da.UpdateCursor(fc, ["JOBID", "JOBS"]) 

        # for loop that iterates over the rows in the update cursor 

        for row in cursor: 

            # writes the number of jobs in the JOBS field 

            row[1] = JobDict[row[0]] 

            # updates the current row 

            cursor.updateRow(row) 

 

    # clean up 

    del row 

    del cursor 

 

############################################################################# 

 

def Calculate_ajti(outputGDB): 

    """ 

    Calculates the individual aj/ti values and records the results in a new 

    attribute field. 

    """ 

    arcpy.AddMessage("Calculating individual (aj/ti) values...") 

 

    # sets the workspace environment to the output geodatabase 

    arcpy.env.workspace = outputGDB 

 

    # creates a list of all feature classes in the workspace 

    FClist = arcpy.ListFeatureClasses() 

 

    # for loop that iterates through the feature classes in FClist 

    for fc in FClist: 

 

        arcpy.AddMessage("Calculating aj/ti for: " + fc) 

 

        # adds a new attribute field for the aj/ti values 

        arcpy.AddField_management(fc, "aj_ti", "DOUBLE") 

 

        # creates an update cursor based on the current FC 

        cursor = arcpy.da.UpdateCursor(fc, ["aj_ti", "JOBS", 

                                            "Total_TransitTravelTime"]) 
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        # for loop that iterates over the rows in the update cursor 

        for row in cursor: 

            # if travel time is less than 1 minute: aj/ti = JOBS 

            if row[2] <= 1.0: 

                row[0] = row[1] 

            # else: aj/ti = JOBS/Total_TransitTravelTime 

            else: 

                row[0] = row[1]/row[2] 

            # updates the current row 

            cursor.updateRow(row) 

 

    # clean up 

    del row 

    del cursor 

 

############################################################################# 

 

def Calculate_Ai(outputGDB, CensusBlocksTable): 

    """ 

    Sums up the aj/ti values and calculates the accessibility (Ai) value for 

    each origin location (census block centroid) at each calculated time. 

    Results are recorded in the output table (rows with census block ID and 

    columns with the time of the day). 

    """ 

    arcpy.AddMessage("Calculating accessibility (Ai) by time...") 

 

    # sets the workspace environment to the output geodatabase 

    arcpy.env.workspace = outputGDB 

 

    # creates a list of all feature classes in the workspace 

    FClist = arcpy.ListFeatureClasses() 

 

    # for loop that iterates through the feature classes in FClist 

    for fc in FClist: 

 

        arcpy.AddMessage("Calculating Ai for: " + fc) 

 

        # creates an empty dictionary to hold the 

        # {Census Block ID : Accessibility} pairs 

        Ai_Dict = {} 

 

        # creates a search cursor based on the current FC 

        cursor = arcpy.da.SearchCursor(fc, ["GEOID10", "aj_ti"]) 

        # for loop that iterates over the rows in the search cursor 

        for row in cursor: 

            # if ID already exists in the dictionary, aj/ti value is added to 

            # the current value 

            if Ai_Dict.has_key(row[0]): 

                Ai_Dict[row[0]] += row[1] 

            # if ID is encountered for the first time, the current aj/ti 

            # value is assigned to this ID 

            else: 

                Ai_Dict[row[0]] = row[1] 
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        # clean up 

        del row 

        del cursor 

 

        # adds a new field to the output table: AiHHMM (based on the name of 

        # the current feature class) 

        arcpy.AddField_management(CensusBlocksTable, 

                                  "Ai" + fc[-4:], "DOUBLE") 

 

        # creates an update cursor based on the output table 

        cursor = arcpy.da.UpdateCursor(CensusBlocksTable, 

                                       ["GEOID10", "Ai" + fc[-4:]]) 

        # for loop that iterates over the rows in the update cursor 

        for row in cursor: 

            # updates the row by retrieving the corresponding Ai value from 

            # the dictionary 

            row[1] = Ai_Dict[row[0]] 

            # updates the current row 

            cursor.updateRow(row) 

 

        # clean up 

        del row 

        del cursor 

 

############################################################################# 

 

# gets the input parameters from the ArcGIS script tool 

matrix_lyr = arcpy.GetParameter(0) 

outputGDB = arcpy.GetParameterAsText(1) 

weekend = arcpy.GetParameter(2) 

BlockJobs = arcpy.GetParameter(3) 

CensusBlocksTable = arcpy.GetParameter(4) 

 

# executes the individual parts (functions) of the analysis using the input 

# parameters provided 

SolveMatrix(matrix_lyr, outputGDB, weekend) 

AddIDfields(outputGDB) 

JoinField(outputGDB, BlockJobs) 

Calculate_ajti(outputGDB) 

Calculate_Ai(outputGDB, CensusBlocksTable) 


