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Preface 

This Practicum consists of one manuscript chapter prepared for submission to the journal 

Fire. This journal was selected for contributing to the special issue “Multi-Source and Multi-

System Fire Monitoring Relying on EO Data in Mediterranean Ecosystems", which will focus on 

using GIS geospatial technologies and Earth Observation data for fire monitoring and 

management.   

Abstract  

Remotely sensed data gives us the ability to peer into the past and piece together the 

history of an area. In this study, I used data derived from Landsat and MODIS sensors to assess 

forest changes in the Talassemtane National Park (TNP) in North Africa from 2003-2018. The 

Talassemtane National Park is a protected area in northern Morocco. It is a mountainous region 

which is very biodiverse, with endemic species of concern such as Abies marocana and Macaca 

sylvanus. To help the managers of the TNP better understand how the forest has been impacted 

by fire and other disturbances, I combined information from remotely derived datasets, including 

the Hansen Global Forest Change data, Andela’s Global Fire Atlas (GFA), and surface 

reflectance corrected Landsat data to calculate fire severity and vegetation death. The Hansen 

data were used to understand where and when forest loss occurred. Hansen data are a valuable 

metric of forest change, but no specific causes are provided. Fire is a major agent of forest 

change worldwide and the GFA is a new global tool to identify fire locations and progression. 

Hansen data showed a net loss of 1995 ha over 16 years. The GFA identified nine large fires that 

resulted in 705 ha of forest loss in the same period. Within these fires, detailed image analysis 

showed that GFA fire boundaries were approximately correct and high-severity fire, as 

determined by Relativized differenced Normal Burn Ratio (RdNBR) analysis, made up about 
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15% of burned area. In sum, fires were linked to approximately 35% of the forest loss and the 

GFA was validated as a management tool. This information helps managers develop 

conservation strategies based on concrete data about forest threats. 

 

Keywords 

RdNBR, NDVI, Landsat, Global Fire Atlas, Hansen et al. Global Forest Change, Forest loss, 

Abies marocana  

 

1. Introduction 

Climate change poses challenges for forest sustainability across the globe by altering 

precipitation rates and average temperatures (Valdes et al., 2017), which will affect forest types 

differently and have distinct management implications.  Altered disturbances such as wildfire, 

insect and disease outbreaks, and drought are leading indicators of changing climate’s impacts on 

forests globally (Nagel et al., 2017, Seidel et al. 2017). Fire-dependent ecosystems such as those 

throughout much of western North America, Australia, and the Mediterranean Basin have 

experienced more frequent and severe fires in the last century (Liu et al., 2010, Chergui et al. 

2018).  Rising temperatures in many areas are already showing increased drought-induced forest 

change, which is affecting the productivity of vegetation (Thrippleton et al., 2018). Interactions 

of disturbance and climate change can increase the rate of tree mortality, damage to soil, and 

changes to overall forest structure (O’Connor et al., 2020). Forest loss is of critical concern 

because people all over the world rely on forest ecosystems for resources such as timber, wild 

harvest, spiritual and religious needs, and many other ecosystem services (Sodhi et al., 2010, 
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Cordova et al., 2013). Human pressures such as grazing, logging, urban expansion, altered fire 

regimes, and agriculture have disturbed forest ecosystems, which have often degraded forests.  

Remotely sensed data is a valuable resource for better understanding the dynamics of 

forests to develop improved strategies for reducing loss. Hansen et al. (2013) created a dataset to 

map all forest change beginning in 2000 using Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) data at a spatial resolution of 30 m; the map currently has coverage through 2019. The 

Hansen maps have been widely used to measure deforestation, contributing to national and 

global forest resource inventories and carbon accounting (Allen et al., 2015). However, forest 

change can occur from many different factors, including land clearing, wildfires, insect or 

disease outbreaks, or drought stress. Understanding the specific roles of different factors is 

valuable information that managers and governments can use to develop targeted science-based 

strategies for forest protection. 

Wildfire activity can be directly monitored in real-time through MODIS (Moderate 

Resolution Imaging Spectoradiometer) satellite imagery. MODIS is an instrument on the Terra 

and Aqua satellites which gathers data on the entire Earth’s surface every 1-2 days. The Global 

Fire Atlas (GFA) is a recently published database that integrates MODIS data over time to map 

fires, creating ongoing measurements of the duration and progress of individual events and base 

information for calculating the contemporary fire regime (Andela et al., 2019).  The GFA 

provides data on fires globally from 2003-2018 (through July of 2018 at this writing), created 

using the Collection 6 MCD64A1 MODIS burned area data product at a lower spatial resolution 

of 500 m (Andela et al., 2019).  

Wildfire effects, such as spatial patterns of fire severity, can be derived from other 

sensors that detect reflectance changes due to vegetation mortality. Imagery from Landsat 
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sensors is widely used to derive burn severity metrics such as the delta normalized burn ratio 

(dNBR) and its relativized form (RdNBR) (Miller & Thode, 2007). Both the dNBR and RdNBR 

are based on the normalized burn ratio (NBR), which is an index derived by calculating the ratio 

between the near infrared (NIR) and shortwave infrared (SWIR) portions of the electromagnetic 

spectrum (Key and Benson ,2006). The RdNBR, developed by Miller and Thode (2007), with a 

recent update by Parks et al. (2014), has two advantages over an absolute index: (1) relative 

indices provide a more consistent definition of severity which allows better comparison of fires 

across space and time, and (2) classifying from a relative index should result in higher accuracy 

in heterogeneous landscapes. 

The Mediterranean region is a culturally rich and diverse area that has been heavily 

shaped by human influences (Thirgood, 1981) and is characterized by a prominent role of fire 

(Keeley et al., 2012). Fires in North Africa are particularly prevalent close to the Mediterranean 

Sea, where the climate is sufficient in humid to semi-humid regions for abundant fuel production 

(Curt et al., 2020). Intensive land use by rural residents affects forest resources through land-

clearing, grazing, and fire (Chergui et al., 2018, Camarero et al., 2021).  

The Talassemtane National Park (TNP) located in the Rif Mountains of Morocco in 

northwestern Africa, a critical habitat for several endangered species, is subject to wildfires and 

land clearing for agricultural purposes. The national park is a mountainous area with small 

communities located in the valleys. The large changes in elevation allow for many different 

vegetation types to be present within the boundary of the park, making this a highly biodiverse 

area (Figure 1). Endangered or rare species in the park include the endemic Moroccan fir (Abies 

marocana Trab.), black pine of the Atlas Mountains (Pinus nigra subsp. mauretanica Maire & 

Peyerimoff) and the Barbary macaque (Macaca sylvanus).  Cannabis is a traditional crop, but its 
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cultivation has been transformed by high-yield varieties and intensive agriculture since the mid-

2000s (Chouvy, 2018). Forest clearing and fires associated with cannabis cultivation (Figure 1) 

are considered the “main driver” of forest loss in the park (Ben-Said et al., 2020). 

 

 

 
 

Figure 1. A) Abies marocana forest  B) Abies and chaparral intermix  C) cannabis cultivation                

D) Recent cultivation burn 

 

I used multiple sources of remotely sensed data to quantify the role of wildfires as a 

factor of forest loss over a 15-year period. I combined the Hansen Global Forest Change data, the 

Global Fire Atlas data, vegetation coverages provided by Moroccan forester managers from field 

and aerial reconnaissance pre-2000, and processed Landsat satellite data, to determine the role of 

B A 

C D 
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fire in overall forest change from 2003-2018. These data can help forest managers better 

understand the current forest impacts in the park and highlight areas that are of high concern.   

Our objectives were: 

1.  Determine overall forest change (gain/loss) annually from 2003-2018. 

2.  Use GFA data for a rapid estimate of large wildfires and fire regime. 

3.  Apply RdNBR to develop fire severity maps and test the accuracy of the GFA. 

4.  Determine the overall contribution of wildfire to forest loss at TNP, providing actionable 

information to park managers. 

 

 

2. Materials and Methods 

 

2.1 Study Area 

The study area is Talassemtane National Park (TNP) in northwestern Morocco near the 

city of Chefchaouen (Figure 2). The area of the park is ~ 65,000 ha, with 43,616 ha defined as 

forested or forest plus chaparral by vegetation coverages provided by park managers. The 

climate in the TNP is warm and temperate. The winters are rainy while summers are hot and dry. 

The average rainfall is 880 mm per year and the average temperature is 15.3° C at the weather 

station in Chefchaouen, which is at an elevation of 600 m (ECMWF, 2021). However, the park 

has elevations exceeding 2000 m, which results in cooler weather and varying forest types in the 

higher areas. There are an estimated 1380 plant species, 314 of which are endemic to Morocco, 

and 86 are endemic to the park (Benabid, 2000). The dominant forest types are Moroccan fir and 

black pine (Abies marocana and Pinus nigra) and maritime pine (P. pinaster) forest intermixed 

with many different oak species (e.g., Quercus rotundifolia Lam., Q. faginea Lam., Q. suber L.), 

while the lower elevation of the park is composed mostly of shrubs (Benabid, 2000). The lower 
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slopes of the mountains have been heavily cultivated for agricultural purposes, especially for 

high yields of cannabis production since the mid-2000s (Chouvy, 2018). Agriculture is 

encroaching into higher reaches of the mountains, deforesting pine and threatening fir forests. 

The use of fire is a common practice for clearing land for agricultural purposes but can be used 

improperly and start forest fires. 

 

Figure 2: The red pin shows the general location of the TNP. The map below shows the 

boundary of the park in orange. The coast bordering the Alboran Sea, part of the Mediterranean 

Sea, can be seen in the northeast corner of the map. 

 

2.2 Hansen et al. Global Forest Change  

Disturbance-induced change in forest composition occurs regularly, whether it be a stand-

replacing forest fire or a harvest from a timber company. Forest disturbances are picked up 

indiscriminately by the algorithm used by Hansen et al., (2013) to estimate global-scale forest 
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change. This data product maps forest cover extent, loss, and gain between 2000 through the 

present using Landsat data at a spatial resolution of 30 m. The forest loss and gain in this dataset 

are not attributed to any specific causes. Loss is defined as a stand-replacing disturbance or 

complete removal of tree canopy cover more than 5m in height with a minimum 25% coverage at 

the Landsat pixel level (Hansen et al., 2013). Loss is updated annually. In the present study, I 

used the Hansen map as the basis for measuring annual forest loss in Talassemtane National Park 

(Figure 3). The Hansen loss includes fires, clearing being done for agriculture or construction, 

and tree cutting.  Comparing the Hansen data to the Global Fire Atlas will help quantify the role 

of fire as an agent of forest loss in the park. 

 

Figure 3. Forest cover in the park as defined by the Hansen et al. data. Area in brown 

represents areas not defined as forest by Hansen. 
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2.3 Global fire Atlas (GFA) 

The Global Fire Atlas provides data on fires worldwide from 2003-2018 using the 

MODIS collection 6 burned-area dataset (Giglio et al. 2018). The near daily availability of 

MODIS data allows for quick updates on fires and detection of daily ignitions. The GFA dataset 

is what allows me to have definite cause for forest loss and is a cornerstone to being able to do 

this research. The algorithm used in the GFA tracks daily progress of individual fires at 500 m 

resolution to create fire behavior metrics in raster and vector formats (Andela et al. 2019). In the 

original publication, Andela et al. (2019) reported that the algorithm detected 13.3 million 

individual fires over the study period, and they showed that specific individual test case fires had 

good agreement with other sources of fire information in the United States (Andela et al., 2019).  

While the GFA is potentially a useful tool worldwide, to our knowledge the present study is the 

first test case from outside North America. The data can be accessed freely at 

https://www.globalfiredata.org/fireatlas.html. Data can be downloaded by year for the entire 

globe. The attributes of the data include ignition dates and locations, size of the fire, perimeter, 

speed, direction of spread, and duration. However, fire severities are not defined in the data.  

Fire boundaries for the GFA fires that occurred in the park were obtained using the data 

explorer tool on the GFA website (Figure 4).  Data can be found by locating the area of interest 

and then specifying the year. For every year that had a confirmed fire in or overlapping the park 

boundary, I downloaded data from the website for that year. The data downloaded are in GIS 

ready file formats (GeoTIFF and shapefiles) that show individual fire perimeters and ignition 

locations.  

about:blank
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Figure 4: The data explorer tool on the Global Fire Atlas website. Fires can be searched by 

location. The green shapes pictured on the map are fires that happened in 2003.  

 

2.4 NBR and RdNBR 

I calculated fire severity and vegetation change using the Normalized Burn Ratio (NBR) 

and Relativized delta normalized burn ratio (RdNBR) using Landsat 5 Thematic Mapper (TM), 

Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) Tier 2 surface reflectance 

products.  Surface reflectance data has been adjusted for atmospheric effects using atmospheric 

correction algorithms to have a Bottom of Atmosphere view (BOA), which can improve results 

in change detection (Song, 2001).  Multiple satellites were used because of the changes in 

satellite technology over the study period.  I acquired Landsat imagery from the USGS 



14 

 

EarthExplorer (https://earthexplorer.usgs.gov/) website.  The dates for the Landsat scenes were 

picked from the dates provided by the Global Fire Atlas for each individual fire that happened 

within the park. A scene was selected pre- and post-fire with the lowest cloud cover available. 

Post-fire images were within one year of the end date of the fire. Scenes were picked during the 

same seasons to avoid any effects from seasonal change in foliage. Summer (June-August) was 

when all but one fire took place, which is the most cloud-free time of the year in the region. The 

scenes were clipped to fit the boundary of the park to reduce file sizes and speed up processing 

times. The area of the park falls within one Landsat scene, so only one scene was needed for pre- 

and post-fire for every fire detected.  

I calculated NBR using the near infrared (NIR) and shortwave infrared (SWIR) 

wavelengths. The bands for NIR are different for Landsat 5, 7, and 8 as follows: 

For Landsat 4-7 TM and ETM+, NBR = (Band 4 – Band 7) / (Band 4 + Band 7). 

For Landsat 8 OLI, NBR = (Band 5 – Band 7) / (Band 5 + Band 7). 

I calculated dNBR as the difference between the NBR from pre-fire and post-fire images. dNBR 

values were multiplied by 1000 and converted to integer format. I calculated RdNBR using the 

formula of Miller and Thode (2007):  

 

Fire severity is defined by Key and Benson (2006) as, “the quality or state of distress 

inflicted by a force. The magnitude of environmental change caused by a fire, or the resulting 

cost in socioeconomic terms.” Severity is often difficult to quantify.  For the present study, I 

focused on the environmental impacts of the fire which included physical and chemical changes 

https://earthexplorer.usgs.gov/
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to the soil, loss of vegetation, and changes to forest structure or composition. The USGS 

Landscape Assessment (LA) Sampling and Analysis Methods (Key and Benson, 2006) 

recommends the use of ground measurements called the Composite Burn Index (CBI) to assess 

burn severity to validate the satellite data. However, CBI is not widely used in Africa and no 

field CBI values exist for the fires that took place within the boundary of the TNP.  The lack of 

ground data is a common situation affecting most satellite-based fire severity assessments, even 

in nations with more resources available (Singleton et al., 2019). Following standard practice, we 

used the predicted RdNBR regression modeled thresholds developed by Miller and Thode (2007) 

(Table 1). Their thresholds were developed based on CBI field data in Mediterranean-climate 

coniferous forests with shrub understories, relatively similar to those of the Moroccan study site. 

 

Table 1. Regression model thresholds from Miller and Thode (2007). The final column contains 

the values used for the severity thresholds. 

Severity 

category 

Field measured  

CBI severity 

value 

Predicted 

dNBR 

Predicted 

RdNBR 

Unchanged 0-0.1 <41 <69 

Low 0.1-1.24 41-176 69-315 

Moderate 1.25-2.24 177-366 316-640 

High 2.25-3.0 >=367 >=641 

 

After the data were classified, I manually created fire perimeter polygons digitized at a scale 

between 1:24000-1:50000 to include any detectable fire impacts derived from the RdNBR 

calculations (MTBS, 2021, Figure 5). 

Areas of high severity in gaps in Landsat 7 data were estimated by using the existing 

RdNBR severities for 2012 to see where there were areas where high severity was stopped 
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abruptly along a scan line. I paired the RdNBR data with the NBR values calculated from a 2013 

Landsat 8 image to fill in the missing data. I estimated there to be 116 ha of high severity area 

that was missing in the scan line gaps. 

 
Figure 5. 2003 fire A) RdNBR showing areas of high severity in grey   B) The areas of loss 

defined by Hansen for 2003.  C) The Global fire atlas polygon for the 2003 fire.  D) NBR image 

for the 2003 fire. Burn area can be seen in white. 

 

 

3.      Results 

Our initial comparison was between the Hansen forest cover data for the TNP and the 

vegetation type coverage for the park provided by Moroccan forest managers from field and 

aerial reconnaissance pre-2000. The forest coverages provided by the Moroccan foresters (Figure 

6) showed 43,507 ha of forest cover while Hansen data showed 38,331 ha, a difference of 5,285 

ha between the base years of both datasets. From the year 2003 to 2018, Hansen estimated 1,995 

A B 

C D 
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ha of forest loss in the TNP, which equals 5% loss of forest cover, defined by the 2000 Hansen 

forest cover base year, in the park over 16 years (Table 2). The average annual loss of forests 

according to the Hansen data was 125 ha per year.  Of the overall Hansen loss in the park, 705 ha 

(35%) were within the Landsat fire polygons, accounting for a 1.8% loss of total forest cover 

from 2003 values.  

The area of Abies marocana forest cover in the TNP, the rarest endemic forest in the 

region and one of only two Abies forests in Africa, was 4,441 ha at the start of the study period in 

2003, including Abies/chaparral mix.  Of this area, 113 ha (<3%) was lost to fire during the study 

period (Table 2). The total loss of Abies was 344 ha, about 8%. The greatest year for Abies loss 

was 2014, when a fire occurred entirely in what was defined as Abies forest cover and accounted 

for 83% of the total Abies loss from 2003-2018. 

In all instances of comparing the nine fires in the study area, the Global Fire Atlas fire 

polygons extracted from 500 m resolution MODIS imagery had a lower area than the fire 

polygons I manually digitized from 30 m resolution Landsat imagery (Table 3).  However, the 

areas of GFA polygons were highly correlated with the areas of Landsat fire polygons (r = 0.99) 

and Landsat forest loss (r = 0.92). The year with the lowest percent difference was 2007 (27%) 

and the greatest percent difference was in 2017 (80%). The average difference between the GFA 

and Landsat polygons was 201 ha with a total difference of 1,413 ha between the sums of the 

GFA and Landsat areas. In all cases, the GFA data in some way correlated with forest loss and 

showed evidence of fire activity. 
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Figure 6. Vegetation coverages provided by the Moroccan Forest Service. The vegetation types 

of interest for this study are Abies marocana, Cedrus atlantica, Pinus nigra, Pinus pinaster, and 

oak forests. 
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Table 2. Comparison of forest change and fires that happened from 2003-2018 in the park. 

Forest area (Hansen) tracks forest loss from year to year from the Hansen loss. This is not 

attributed to fire specifically, rather any loss that has happened in the park from the previous 

year. GFA fires is the number of fires that occurred in the year. Fire Area (GFA) is the area 

within the GFA polygons. Fire area (LS) is the area of the polygons created from the RdNBR 

data classified by Landsat imagery. Forested fire area, areas of high severity, and area of Abies 

forest loss were all calculated using the Landsat polygons. 

 

Year 

Forest 

Area 

(Hansen), 

ha 

Annual 

forest 

loss 

from 

year 

prior, 

ha 

GFA 

Fires 

GFA 

Fire 

Area, 

ha 

LS 

Fire 

Area, 

ha 

Forested 

fire area 

LS, 

ha+ 

Area considered 

“loss” by Hansen 

within LS fire 

perimeters—lost 

by the next year, 

ha 

Area of 

forested 

high 

severity 

RdNBR, 

ha 

Area of 

pine/Abies 

forest loss 

to fire, 

ha 

2003 38,222 109! 2 901 1405 1,139 79 274 11 

2004 38,079 143 none 0 0 0 0 0  0 

2005 37,983 96 None 0 0 0 0 0  0 

2006 37,983 21 None 0 0 0 0 0  0 

2007 37,957 5 2 1051 1343 599 39 147 0 

2008 37,943 123 None 0 0 0 0 0  0 

2009 37,643 200 None 0 0 0 0 0  0 

2010 37,622 12 None 0 0 0 0 0  0 

2011 37,591 31 None 0 0 0 0 0  0 

2012* 37,521 70 1 1953 2865 1475 317 461 8 

2013 37,124 397 None 0 0 0 0 0  0 

2014 36,919 205 1 193 214 296 97 80 94 

2015 36,759 160 1 86 176 120 37 62 0 

2016 36,710 49 None 0 0 0 0 0  0 

2017 36,628 82 1 129 301 289 12 5 0 

2018 36,336 401 1 129 238 217 124 3 0 

Totals 36,336 1995 9 4442 6542 4,135 705 1005 113 

 
*The only available imagery for the 2012 fire were Landsat 7 without the scan line corrector so 

there are some gaps in the data which were filled with a best estimate. +Area within the Landsat 

(LS) fire area that is defined as forested by the Hansen data. !Annual forest loss in 2003 is all the 

loss that had happened 2000-2003 and is not included in the total. 
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Table 3. Difference in area (hectares) between the GFA polygons and the manually digitized 

Landsat fire polygons for all years that had fires. Percent difference between the original GFA 

polygons and the polygons manually digitized from the Landsat data. Negative numbers in the 

final column show that the Hansen loss value was greater than the area defined as high severity. 

Year  

(# of fires) 

Landsat vs GFA 

area Difference, ha 

LS vs GFA area 

Percent Difference 

RdNBR High Severity vs 

Hansen Difference, ha 

2003 (2) 504 43% 168 

2007 (2) 292 24% 108 

2012 (1) 912 37% 144 

2014 (1) 105 42% -17 

2015 (1) 90 68% 25 

2017 (1) 172 80% -7 

2018 (1) 109 59% -121 

  

The RdNBR classification of high severity fire within the manually digitized Landsat fire 

polygons in previously forested areas and Hansen loss within those same polygons differed 

in all years (Table 3). The high severity areas within the Landsat polygons had a greater sum 

loss than the Hansen loss areas but the Hansen loss was greater for three years of the study 

(Table 3). The total loss to fire defined by the Hansen data was 705 ha while the RdNBR 

classification showed 1,005 ha of loss due to high-severity fire. The previously forested high 

severity areas defined by RdNBR and the Hansen loss had a positive correlation (r =0.79). 

 

 

4. Discussion 

 

 

4.1 Management Implications 

 

Our first objective was to determine overall forest change (gain/loss) annually in the park 

from 2003-2018. I found a net loss averaging 124 ha/yr, ranging from 0 to 317 ha/yr. While 

relatively small compared to the current estimate of 36,336 ha of forest in the park (0.3% per 

year), evidence of a lack of stability is of concern in any protected area because the forests of the 

TNF are incredibly unique to the region. They provide critical habitat for many species, 
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ecotourism to stimulate the local economy, and provide traditional medicine to many locals 

(Redouan et al., 2020, Rhattas et al., 2015). Knowing where forest loss is happening, and better 

understanding fire frequencies and severities is valuable information when deciding how to 

manage a protected area. Identifying areas with high impact can bring attention to areas in need 

of post-fire rehabilitation.  

Our second objective, to use GFA data for a rapid estimate of large wildfires and fire 

regime, proved to be a fast and straightforward technique. I found that the Global Fire Atlas was 

a reliable and simple tool for mapping fires. Advantages of GFA include a lower resolution that 

allows the sensor to pick up fires every other day, giving the GFA a robust amount of fire data 

that is openly available to the public. Even with just using the data explorer tool on the GFA 

website, managers can surmise fire frequency and peak fire season. Overall, the GFA polygons 

provide a quick way to highlight fire areas and better understand the environmental changes that 

are happening in the area in the last 16 years in relation to changing climates. 

The third objective, apply RdNBR to develop fire severity maps and test the accuracy of 

the GFA, was successful. Andela et al. (2019) had previously shown that a test set of GFA fires 

was consistent with burned area analysis using detailed Landsat data in the US from the 

Monitoring Trends in Burn Severity (MTBS) program. Our results confirm a strong relationship 

between easily accessed GFA data and detailed Landsat fire severity analysis in our North 

African study area. Landsat imagery is quite versatile to better understand the impacts of fires. 

The fire severity metrics can help identify the general area where action is most needed. Areas 

classified as high severity can be potential areas for high erosion, low soil productivity, and a 

potential shift in species composition.  
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Finally, our last objective was to determine the overall contribution of wildfire to forest 

loss at TNP, providing actionable information to park managers. Fire was a sizable contributor to 

the overall forest loss in the park, accounting for about 5% loss of overall forest cover and 35% 

of the Hansen defined forest loss over the 16-year period. In a study done on the role of fire in 

global forest loss dynamics during the period from 2003 - 2018 on average 38± 9% of global 

forest loss was associated with fire (Van Wees et al., 2021) . Fire was a particular threat to the 

rarest forest type, the endemic Abies marocana, killing trees on 94 ha in a 2014 fire. While Abies 

forests in general are characterized by infrequent but severe stand-replacing fire regimes (CITE), 

special attention is warranted in the case of a highly restricted, rare species such as A. marocana. 

Mapping of the severe fire area could be applied to post-fire surveys of regeneration, for 

example, to assess the recovery trajectory of the burned area. 

By separating out which areas were not affected by fire, the non-burned Hansen Global 

Forest Change data can indicate areas that are potentially being targeted for agricultural 

expansion. Areas outside of the fire polygons that show loss could identify areas being 

encroached upon by agriculture. Paired with the vegetation coverages, the Hansen and GFA data 

can highlight areas where important forest types are being lost to help conserve biodiversity in 

the park. The Hansen data also shows reforestation but does not indicate what type of forest is 

being regenerated in the place of the former vegetation type. It will be up to management to 

follow up on what is regenerating in the areas of loss.  

 

4.2 Limitations 

Burn severity classification is limited in many ways due to inherent differences between 

vegetation types, lack of field data, and differing spectral characteristics of different sensors used 
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over time. Lacking ground data from the post fire areas, I chose to use the regression model 

thresholds developed by Miller and Thode (2007). These thresholds were created for ecosystems 

found in California. Areas in both this and the Miller & Thode (2007) studies contained conifer 

and oak species with shrubby understories growing in a Mediterranean climate. However, these 

similarities cannot make the thresholds match perfectly. There is expected to be about 60% user 

accuracy overall using this method (Miller & Thode, 2007).  I found in most cases greater areas 

for the high severity than for the Hansen loss. I speculate that this may be attributed in some part 

to the intermix of forest cover and chaparral which by the Hansen dataset is not defined as forest 

but still had great change from pre- to post-fire. It may also indicate that our threshold for “high 

severity” is set too low to create the forest mortality detected by the Hansen analysis. 

The fire that burned in the park in 2012 occurred when the Landsat 5 satellite was non-

functional and before Landsat 8 had been launched. Therefore, Landsat 7 had to be used for 

analysis. The Landsat 7 data has blank scan lines of missing data which for this analysis resulted 

in 33% of the area inside of the Landsat fire polygon to be missing for the severity calculations.   

  One region in the southeastern area of the park had four fires which overlapped during 

the study period. Overlapping fires may have resulted in some inaccuracies in total forest 

cover/forest loss from the Hansen data. In 2017 and 2018, the high severity area was lower than 

the forest loss area. This was most likely due to the overlap in the fire areas. These were the only 

two years where the forest loss area was greater than the fire severity area.  

Because of the coarse resolution of MODIS data there are some fires that were too small 

to be picked up by the sensor. Some fire loss will not be accounted for because of this and will 

be considered general loss for this study. The Hansen data can give us a relatively good guess as 
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to how accurate the fire severity metrics are but without ground data there is no way for sure to 

say how accurate the RdNBR values are. 

There was a 5,285-ha difference between the forest coverages provided by the Moroccan 

foresters and the Hansen 2000 forest cover base year. This large gap was mainly because of the 

forest plus chaparral intermix classes in the forest coverage layer. Much the intermix did not 

meet the minimum tree coverage defined by Hansen. Of the total 43,616 ha, 23,776 ha was 

defined as chaparral intermix and 18,730 defined as forest. The Hansen data overlapped with 

17,601 ha, which is a 6,165 ha difference. The Hansen 2000 base year was 880 ha greater than 

the area that was defined as forest (without chaparral intermix). Some areas defined as pure 

chaparral by the vegetation coverages overlapped with the Hansen forest cover. The difference 

between the chaparral intermix was much greater than the “pure” forest types.  

 

5. Conclusion 

 Baseline data on how the forest is changing can help managers understand the possible 

new trends in forest change brought on by human activities and warming climate. Using multiple 

remote sensing data sets, I was able to quantify the forest change history over16 years in the TNP 

and identify severe wildfires as the cause for about a third of the forest loss. These data will help 

identify highly impacted areas, better understand fire return intervals, and identify potential areas 

of encroachment. Landsat data can give a good overview of fire history, severity, and size with 

relatively accurate results. The Global Fire atlas is a simple tool to identify fires. The frequency 

of the MODIS scans allows it to almost never miss a large fire. Individually each dataset that I 

used for this project has great utility but combined they create a robust history of forest change.  
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Appendix A: 
 
GIS Steps and Tools Used 

 

This project was completed using ArcGIS Pro version 2.4. 

 

● NBR 

o Landsat scenes for NIR and SWIR were sized down to the park boundary using 

Clip Raster.  

o The resized raster data was then used to calculate NBR using the Raster 

Calculator (spatial analyst tool) done for pre- and post-fire 

▪ For Landsat 4-7 TM and ETM+, NBR = (Band 4 – Band 7) / (Band 4 + Band 7). 

▪ For Landsat 8 OLI, NBR = (Band 5 – Band 7) / (Band 5 + Band 7). 

● dNBR 

o The pre- and post- fire image for each year there was a fire were then used to 

calculate dNBR. In this step dNBR was multiplied by 1000 to convert to integer 

format. Done using Raster Calculator (spatial analyst tool) 

▪ 𝑑𝑁𝐵𝑅 = (
𝑝𝑟𝑒−𝑝𝑜𝑠𝑡

𝑝𝑟𝑒+𝑝𝑜𝑠𝑡
) ∗ 1000 

● RdNBR 

o Done using Raster Calculator (spatial analyst tool) 

▪  

● Severity Classification 

o Thresholds were defined by Miller and Thode, 2007 (Table 1) 

▪ Image Classification was used to create classes for low, moderate, high, 

and unburned areas. 

▪ Classification Wizard was used to define severity using values that fell 

within the class values. 
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▪ A new polygon Feature Class was created for each fire year. Using Create 

Features in the edit tab, I manually digitized a new polygon around the 

perimeter of the classified RdNBR using the MTBS guidelines Mapping 

Methods | MTBS .  

▪ The classified RdNBR values were then clipped to new fire polygon 

feature class.  

▪ The RdNBR layer was then converted by using Raster to Polygon 

conversion tool. The high severity class was then selected by attribute and 

the selected layer was then a new feature class was the created from the 

selection.  

▪ A new attribute was then created in the attribute table to calculate area in  

hectares using the Calculate Geometry Attributes data management tool. 

  

https://www.mtbs.gov/mapping-methods
https://www.mtbs.gov/mapping-methods
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Appendix B: 

NDVI  

The Normalized Difference Vegetation Index (NDVI) was initially intended to be a part of the 

project but decided against in this practicum project. The same Landsat scenes were used for 

calculating NDVI that were used for calculating RdNBR. NDVI is calculated using the red band 

and NIR band. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑟𝑒𝑑)/(𝑁𝐼𝑅 + 𝑟𝑒𝑑) 

𝐿𝑎𝑛𝑑𝑠𝑎𝑡 4 − 7, 𝑁𝐷𝑉𝐼 =  
(𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3)

(𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3)
 

𝐿𝑎𝑛𝑑𝑠𝑎𝑡 8, 𝑁𝐷𝑉𝐼 =
(𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4)

(𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 4)  
 

Every scene was sized down to the boundary of the park using the Clip Raster Tool. This was 

done for every scene. NDVI was calculated using the respective bands in the Raster Calculator 

tool. Once NDVI was calculated I used a test threshold of 0.2-0.25 which was an average value 

for bare soil defined by the USGS and a rough estimate from a few other studies (Malak and 

Pausas 2006, Ryu et al. 2018). Severity classification was done using the same tools and 

approaches as the RdNBR classification (Appendix A) but with different threshold values. 

Although the total loss of area is closer between NDVI and Hansen loss than the RdNBR high 

severity and Hansen loss the correlation between NDVI and Hansen was negative ( r= -0.35). 

The year 2014 showed no values from 0-.02.  
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Table B1. Area of NDVI with a value between 0- 0.2 that fall within the manually created 

Landsat polygons. 

Year NDVI 

area (ha) 

Hansen 

Loss 

(ha) 

2003 109 79 

2007 130 39 

2012* 96 317 

2014 0 97 

2015 153 37 

2017 217 12 

2018 165 124 

Totals 716 705 
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