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ABSTRACT

MODELING SOIL SURFACE ROUGHNESS WITH DUAL-POLARIZATION

ADVANCED SYNTHETIC APERTURE RADAR (ASAR) IMAGERY

KERSTIN HASLINGER

Soil surface roughness was modeled using the Integral Equation Model (IEM)
which is based on radar backscatter as a function of soil surface roughness and soil
surface moisture. The inputs to the IEM are the two backscatter bands from an ASAR
dual-polarization image taken over the Hopi Reservation in northeast Arizona in May
2004. Output are two models of the parameters root mean squared height (hgys) and
correlation length (L), both of which are generated by the IEM. Results showed that
there is weak correlation between the in-field hgys and the modeled parameters on field
scale. Error could be caused by the coarse interval used to determine the modeled hgys.

This research could be employed in agricultural decision-making.
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CHAPTER 1 — INTRODUCTION

In the past, mapping of soil surface properties, that is soil moisture, soil texture,
and soil roughness, has been a tedious undertaking, which required an enormous
amount of fieldwork and yielded data restricted to the sampled points only (Taylor
1961; Johnson 1962). With the emergence of remote sensing tools on airborne and
orbital platforms, it became easier to track soil surface properties using thermal imagery
as well as radar imagery, though the methods used were still flawed (Hanks 1980;
Heidmann 1990; Fung, Li, and Chen 1992; Ulaby, Batlivala, and Dobson 1978).

During the last decade, research advanced a great deal in terms of soil surface properties
detection via remote sensing (Ulaby et al. 1996; Ridley et al. 1996; Taconet et al. 1996;
Chen et al. 1995; Benallegue et al. 1995; Engman and Chauhan 1995; Dobson et al.
1995; Taconet et al. 1994; Troch 1996; Altese et al. 1996). Synthetic aperture radar
(SAR), a type of radar system that uses an antenna which can cover large areas, became
the tool of choice for many scientists, considering the fact that the physical properties of
microwave radar interact especially with the dielectric property of water (Moran et al.
2000; Moeremans and Dautrebande 2000; Wagner et al. 1999; Tansey et al. 1999;
Meade et al. 1999; Saarenketo 1998; Schoups et al. 1998; Engen and Johnson 1999).
The dielectric property is an indicator of radar reflectivity (the higher the dielectric
constant, the more reflection of radar beams).

There still are questions, however, above all about the accuracy of soil moisture
predictions by use of SAR, especially when using the C-band range. This range of
relatively short wavelengths is too short to be effective enough for deep surface

penetration; it commonly penetrates only up to 5 cm depth, given favorable



circumstances (Avery and Berlin 1992; D'Urso and Minacapilli 2006; Altuncu,
Akduman, and Yapar 2007; Svoray and Shoshany 2004; Baghdadi and Zribi 2006).
Several factors, such as vegetation and soil texture, are also of importance for a reliable
interpretation of a SAR scene, thus complicating C-band SAR predictions of soil
properties. To overcome these complications, a few models have been constructed
which analyze the radar backscatter in terms of soil properties. One of these is the
Integral Equation Model (IEM) which replicates radar backscatter as a function of soil
surface height (root mean squared height or hgys), correlation length (Lc), and soil
surface moisture (®s) (Bindlish and Barros 2000; Baghdadi et al. 2004; Rahman et al.
2008; Baghdadi and Zribi 2006; Baghdadi, Holah, and Zribi 2006). The hgys measures
the standard deviation of corresponding mean soil surface height in centimeters
(Rahman et al. 2007; Bryant et al. 2007). The correlation length L¢ describes the length
between two points at a distance beyond which the heights of a rough surface are no
longer correlated to each other (Rahman et al. 2007; Mela and Louie 2001), it is an
index of homogeneity measuring the furthest distance from a point at which the soil
surface height is still the same. Any roughness height values beyond the correlation
length are considered entirely random.

This study examines soil surface roughness prediction using C-band SAR imagery
for mostly homogeneously, barely vegetated semi-arid to arid rangeland, based on the
IEM. An IEM derived methodology for the prediction of the soil surface roughness
parameter hrys is applied to an Envisat Advanced Synthetic Aperture Radar (ASAR)

alternating polarization image by use of a Geographic Information System (GIS). With



a successful prediction of soil surface roughness, a deduction about soil surface

moisture would be possible.
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CHAPTER 2 — LITERATURE REVIEW

SOIL PROPERTIES RETRIEVAL USING SAR SYSTEMS

Earlier work in soil properties detection via SAR concentrated on radar
wavelengths of the L-band frequency (Engman and Chauhan, 1995). The L-band has a
frequency of approximately 1 to 2 GHz and its wavelength ranges from 15 to 30 cm
(Avery and Berlin, 1992, 162). This band allows for surface penetration to a depth
substantial for soil moisture detection, but may be hindered by inopportune properties of
the cover and subsurface materials. At the turn of the 21% century, the SAR band used
for soil roughness and moisture detection changed to C-band, a fact which is most likely
due to availability and affordability of C-band images (Zribi and Dechambre, 2003;
Moran et al., 2002; Moran et al., 2000; Magagi and Kerr, 2001). The C-band has an
approximate frequency of 4 to 8 GHz (Sullivan 2000, 8) and its wavelength ranges from
3.8to 7.5 cm (Avery and Berlin 1992, 162). Because of its shorter wavelength A, the C-
band signals cannot reach to the same subsurface depth as L-band signals, thus
restricting it to soil surface parameters. As an example, a C-band signal of 5.35 GHz
penetrates to an average depth of about 5 cm (Moran et al. 2000).

The shallow subsurface backscattering, meaning the radar beams are reflected by
subsurface material rather than by dielectric property, attained by the C-band SAR
system is a relatively new method for soil surface properties detection, which appeared
first in published peer-reviewed articles around 1998. At the time, its application was
usually complimented or validated by other methods, such as applications using thermal

imagery of the same location and access time, soil indices, statistics, or hydrologic
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models (Zribi and Dechambre 2003; Moran et al. 2002; Magagi and Kerr 2001;
Chehbouni et al. 2001). Several of the older articles reviewed for this research project
discuss the validation of soil moisture rates and soil roughness parameters detected by
C-band SAR systems, which confirms that researchers are still looking for a fast and

easy-to-use, yet reliable method for soil surface properties detection via SAR systems.

ENVISAT ASAR

The European Space Agency (ESA, 2004) launched its Envisat satellite into a
sun-synchronous flight path (meaning it mimics the sun’s motion across the sky) on
March 1%, 2002 and started the data acquisition four days later (Figure 1). By January

2004, Envisat completed its 10,000th orbit, the equivalent of 450 million kilometers of

travel.

AATSR

SCIAMACHY
MWR

Ka-band
Antenna

DORIS
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Antenna

Solar Array
(not shown)

Figure 1. The Envisat satellite (Source: ESA 2005).

The satellite is orbiting the earth from pole to pole fourteen times a day at an altitude of

roughly 800 kilometers and a speed of 7.45 km/s (European Space Agency, 2005).
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According to ESA, the satellite repeats its reference orbit once every 35 days (501 orbits
in a cycle) which translates to complete coverage of the globe in one to three days for
most of its sensors. Onboard the satellite is a payload of a dozen remote sensing tools,
one of which is called ASAR, an acronym that stands for “Advanced Synthetic Aperture
Radar”. ASAR is independent of weather and works during the day as well as at night
(Desnos et al., 2000). The ASAR remote sensing tool makes use of a matrix of
incidence angles (the angle at which the beam reaches the earth’s surface) and
polarizations (the orientation of the oscillation of the radar waves, either vertical or
horizontal) with the result of 37 different operating modes (ESA, 2004). This allows for
a multitude of applications, both at regional and global scale, that include monitoring of
ice-sheets, oceans, agriculture and forestry, surface elevation, geology, topography,
hydrology, flooding, and vegetation (Desnos et al., 2000; European Space Agency,
2005). The multitude of operating modes, however, consequently calls for a new way
of testing the accuracy of the ASAR backscatter performance. The outcome of these
tests provides an average radiometric resolution of 1.7 dB and an average noise
equivalent (measures the sensitivity of the radar system) of approximately 23 dB across
all possible operation modes. At the same time, the average radiometric stability (a
measure of precision) is 0.47 dB. The average spatial resolution (azimuth x range) at
alternating polarizations for all ASAR products is 29 m x 30 m.

Due to the fact that ASAR uses an active antenna which can cause gain and phase
instabilities, a threefold of radiometric calibrations has been devised, made up of
internal and external calibration, as well as external characterization (Desnos et al.,

2000; ESA, 2004). The calibration includes algorithms like chirp replica construction
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(a correlation function which adjusts the SAR backscatter) and elevation gain
(backscatter amplification) monitoring. The external characterization is done by use of
an image of the Amazon rainforest, which is known for being “a stable, large-scale,
isotropic distributed target with a relatively high backscatter and a well-understood
relationship between backscatter and incidence angle” (ESA 2004: 2.11.4.1). The
absolute calibration of the ASAR operating mode used for this study is further discussed
in the methodology.

According to the Envisat-1 Products Specifications, the Level 0 Alternating
Polarization (AP) product consists of time ordered Annotated Instrument Source
Packets (AISPs) which are collected in the instrument’s image mode. In the case of the
data used for this study, the alternating polarization (AP) cross-polar H Level 0 is used
which has a polarization combination of horizontal / horizontal (HH) and horizontal /
vertical (HV). These two polarizations are co-registered within 0.25 of a sample.

The Alternating Polarization Ellipsoid Geocoded Image (AP_APG) is a Level 1
product that has been generated from an AP cross-polar H Level 0 product by use of
SPECAN (spectral analysis) algorithm, corrections, and relative calibration. The
AP_APG imagery used in this study is geolocated and resampled to WGS-84, Lat Long
map projection.

The geometric sampling has a pixel spacing of 12.5 m by 12.5 m (European Space
Agency 2005). The geometric accuracy as given by the Envisat Products Specifications
is 25 m. The algorithms used for generation of the AP-APG imagery include: data

decompression; raw data correction; calibration pulse processing; antenna elevation
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gain function calculation; noise power estimation; image formation (SPECAN);

geolocation; and map projection resampling.

THE INTEGRAL EQUATION MODEL
These complex derivations take into account Fourier transforms (W™, a kind of

signal processing) of the surface correlation coefficient, Fresnel reflection coefficients

(description of wave reflection), and Kirchhoff surface Field Coefficients (£, , F, q; ,

description of wave scattering on rough surfaces). Baghdadi et al. further calibrated the
formula with semi-empirical values for the optimal correlation length (Lp) so that it
can be used especially on bare agricultural soils (Baghdadi et al. 2004).

The IEM is a physical model established on electromagnetic scattering theories,
thus it can be applied on any surface conditions or radar set-up, while statistical models
are only valid for like radar and surface conditions as in the experimental set-up they are
derived from (Baghdadi et al. 2004). With the IEM, radar backscatter o’ is predicted as

a function of sensor configuration and surface conditions that simplified can be stated as

0" = (O huys: Le )
whereby all three parameters (soil surface moisture ®s, soil roughness hrys, and
correlation length L) are typically unknown parameters (Rahman et al. 2007). By
inversion of this function, one can predict each of the soil surface parameters by
substituting the other two parameters with calibration data (for example by in-field
measurements).

Rahman et al. developed an inversion of the IEM using a so-called dry scene

where the soil moisture content is minimal, thus leaving only the two soil roughness
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parameters as unknowns (Rahman et al. 2007). This allows for an accurate prediction
of the soil surface roughness parameters. Because the correlation length Lc is directly
related to the soil surface roughness hrys, it is then possible to construct a valid
derivation of the correlation length. In turn, with the correlation length known, the IEM
can be used to estimate the soil roughness parameter hrys (Rahman et al. 2008).
Rahman et al. expanded their research to predict soil surface moisture, now that they
derived both roughness parameters. For their study, the authors used multi-angle ASAR
imagery, meaning imagery with more than one incidence angle. In their conclusion,
Rahman et al. noted that the alternative multi-polarization imagery (i.e. AP_APQG)
would be advantageous, because it would do away with registration errors that may

happen when matching multi-angle imagery.

EFFECT OF VEGETATION

Depending on the wavelength of the radar beam, the backscatter will include
vegetation. As a general guideline it can be said that the longer the wavelength, the
better the penetration of vegetation by the radar beam (Jensen 2007). Therefore, an X-
band radar with a wavelength of less than 3 cm will result in a backscatter of the top
part of the vegetation present at the site, while an L-band radar with a wavelength of
more than 20 cm will result in a backscatter that includes the entire vegetation as well as
the soil surface. Therefore, C-band radar with a wavelength range from 3.8 to 7.5 cm
will produce backscatter that penetrates vegetation to some degree. This, of course,
depends on the height of the vegetation: a forest with tall trees will require longer
wavelength to penetrate than ankle-high grasses. According to Moran in her email, the

following applies to C-band radar backscatter on vegetation (Moran 2008):
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“a) the C-band radar seems to penetrate our sparse grassland vegetation (LAI<1)
and particularly so when it is dry;
b) we found that radar could be used to map shrub density (so it is more sensitive to
woody vegetation, even though vegetation is sparse); ...”
This means that the vegetation present at the site, measured by the LAI (leaf area
index), will not alter the radar backscatter over all, if the vegetation of the study site
consists of sparse, dried-out grasses and is void of woody vegetation.

In an article by Thoma et al., the authors adjusted the scale of the radar imagery in
order to rid the image of backscatter errors due to vegetation (Thoma et al. 2008). Their
imagery had an original resolution of 7 m x 7 m per pixel. The authors used a 5x5
median filter to reduce speckle, followed by a spatial averaging of the image to obtain
higher accuracy. The resulting image had to be adjusted due to filtering and averaging,
resulting in a product that had a resolution of 162 m x 162 m per pixel for their
watershed site in southern Arizona (Walnut Gulch Experimental Watershed). The
article by Thoma et al. is complementing an article by Hutchinson on the detection of
near-surface soil moisture in grasslands of Kansas (Hutchinson 2003). In his study,
Hutchinson concluded that C-band radar is “capable of monitoring general near-surface
soil moisture conditions over highly productive vegetated ecosystems such as tallgrass
prairie” (Hutchinson 2003, 234-235). . Though that study focused on soil surface
moisture retrieval, it also validates this soil surface roughness study: both soil surface
moisture and soil surface roughness are measured at the same level (i.e. at the soil
surface) and both parameters are included in the IEM. Furthermore, the study sites in
Kansas and southern Arizona feature more and denser vegetation than the study site

used for this research project, thus vegetation is no hindrance in terms of C-band radar

backscatter.
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CHAPTER 3 — DATA ACQUISITION AND PROCESSING

STUDY SITE

This research is designed for soil surface properties detection on semi-arid to arid
rangeland. A location suitable for this study features sparse, homogeneously distributed
short vegetation. Also it should not feature rocks or rock fragments (surface or
subsurface). The study site offers a wide variety of locales for random field sampling;
at least 30 samples are needed for a viable statistical analysis. Furthermore, the
sampled locations have to be either level surface or of gentle slope to (a), ensure an
even distribution of soil surface properties over a large area, and (b), reduce the risk of
topology error of the radar image analysis.

The Hopi Reservation is most suitable for this study, because it fulfills all the
above requirements. An already ongoing project --an analysis of soils on the Hopi
Reservation suitable for agriculture by Pinnacle Mapping Technologies (Flagstaft,
Arizona) from May 2004-- provided the ASAR data and soil surface properties sample
information needed for this study. Said project and the use of its data for this study
were authorized by the Hopi Tribe’s Department of Natural Resources, Water
Resources Program, Consulting Agreement #03-050, and supervised by Mr. Nat
Nutongla. Aside from sampling of soil moisture rates at depth, surface roughness and
soil texture throughout the reservation conducted by Pinnacle Mapping Technologies,
no other fieldwork was necessary. Because of this study’s focus on soil surface
properties modeling via ASAR data, site descriptions were general only; out of respect
for the Hopi Tribe, any possible cultural location were neither studied nor mentioned in

this study.
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The Hopi Reservation is located on the Colorado Plateau at an approximate
elevation of 5,675 feet (according to GPS data available for this study) (Map 1).
Though the area features buttes, mesas, and rolling hills, the sample sites are all located
on level ground (Figure 1). The sample sites all have a slope of less than 5%, most of
them are considered flat (less than 2% slope). The vegetation is sparse, composed
mainly of desert grasses (Figure 2). Most of the grasses are short (in at least one case
due to overgrazing)(Figure 3), sometimes accompanied by short brush like snakeweed,
saltbush, or sage. A few of the sites also feature scattered taller bushes like Mormon tea
or pinion pine with juniper in the distance (Figure 5). A biological or organic soil crust
has been noted at only two sample sites, which have been determined shrubland,
featuring mainly saltbush and snakeweed. Most of the other sample sites have a crust of
dried topsoil that may be a sign of high clay or clay-sized particle content (Figure 4).
For the most part, this crust is easily disturbed, meaning it crumbles when lightly
touched. At some sites, the crust consists of a thick layer of baked topsoil with
mudcracks (Figure 6). None of the sample sites include rock fragments at or below the
surface. Though there is a site where the soil has been compacted (fragipan), the

majority of sample sites consist of sandy material.
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Figure 2. Study Site: Sample Site Locations on Hopi Reservation.
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Figure 4. Sample site 79. Vegetation is extremely short and dried out; the patches of desert grass
are overgrazed.
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Figure 5. Sample site 6. The soil is covered by a clayey crust that crumbles easily when disturbed
(for example, by walking on it).

Figure 6. Sample site 117. Here, also, an easily disturbed clayey crust covers the sandy soil.
Visible in the distance is a patch of scattered pinion pine and juniper.
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Figure 7. Sample site 55. The thick clay crust at this site shows signs of the mudcrack pattern usual
for a dry playa.

Figure 8. Sample site 3. Short grasses and brush are spread over a crusted sandy soil.
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DATA ACQUISITION AND PREPARATION

With permission of the Hopi tribe, the author of this research through Pinnacle
Mapping Technologies obtained ASAR data. The radar imagery was further described
in the header analysis below. The ASAR image was taken on May 8, 2004, which
makes the image a “dry scene”, meaning there has been little rainfall and the soil
moisture content is very low.

Other information necessary for this study included GIS layers of hydrology, soil
types, and infrastructure present on the reservation; a Digital Elevation model (DEM);
and data collected in the field May 7 to 9, 2004. The sample sites were generated by
random, using slope as the main characteristic to ensure a reasonably flat surface. The
field data products consisted of gravimetric and volumetric soil moisture rates, GPS
locations, vegetation profiles, soil texture categorization, and micro-relief calculations
for each of the 70 sample sites.

In the field, several procedures were completed at each sample site. First, a
volumetric soil moisture measurement was taken at a depth of 0 to 20 cm, using one of
three products: ESI MP-917, Campbell Scientific TDR 100 and TRASE. A soil sample
of roughly 250 g was collected and stored in an airtight bag for further analysis. The
vegetation in the vicinity of the sample site was recorded. Digital photographs were
taken to document the surrounding area of each sample site. The soil surface roughness
was traced several times in the immediate neighborhood (< 10 m) of the sample site by
use of a pin-meter, consisting of 50 one-centimeter diameter rods that record the local

elevation at micro-scale level.
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At the lab, the field data were then transcribed into an Excel table that was used
for several calculations. First, the radar reflectivity of the study site was checked by
means of the Raleigh Criterion and the Peak & Oliver Modified Criterion. Both
criterions are indicators of soil surface roughness respective to radar scattering and
penetration. The Peak & Oliver Modified Criterion features an intermediate category
and therefore allows for more detailed distinguishing than the Raleigh Criterion that

only decides between smooth and rough surfaces. For this study, the Raleigh Criterion

was determined by the formula 4, > ﬁ for rough surfaces, and the Peak &
cos

Oliver Modified Criterion by 4, < Lfor smooth, A < hpys < A for
25*cos©® 25 4.4%*cos®
intermediate and 4, > A for rough surfaces, where A = 5.3GHz. The two

4.4*cos®
criterions were evaluated at maximum (43.5°), average (41.2°), minimum (38.9°), and
random incidence angle ® (40.5°) in order to check the full range of possible outcomes
(Appendix A). The results, especially those of the Peak & Oliver Modified Criterion
calculations, indicated that generally all sample sites are suitable for this study. The
reflectivity calculations were stored in an Excel table.

In this Excel workbook, called “FieldDataWork™ (FDW), each sample site was a
record with the site number and a unique ID. The UTM easting, northing, and elevation
also functioned as an identifier. Another column in the table was set up for the
dominant vegetation. The vegetation as described in the field was stored in the Excel

workbook (Appendix B), where the different types of vegetation in general and plants in
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particular, as well as the decision about the dominant vegetation (e.g. grasses versus
shrubs) were recorded.

Also recorded in the Excel workbook was the soil moisture information
(Appendix C). The soil samples collected in the field were taken to the U.S. Forestry
Service’s soil laboratory on campus for gravimetric soil moisture analysis. There,
portions of roughly 100 g of each sample were weighed before and after a 24-hour
drying period. For each sample site, the resulting difference between wet and dried soil

was used to compute the soil moisture percentage present. Also, the gravimetric water

w

ms

content was calculated by the formula w =

, where w is the gravimetric water

content, my, the mass of water, and mg the mass of dry soil (van Es and Ogden 1997).
The in-field volumetric soil moisture measurements, taken with three different probes
and calibrated by Pinnacle Mapping Technologies, were also recorded in the table.
Because the probes averaged the soil moisture data for a soil column from top to 20cm
depth, the resulting volumetric soil moisture data were used only as an approximation in
the decision on whether the May 2004 ASAR image could be used as a “dry scene” or

not. However, the gravimetric soil moisture test, though from samples at depth, resulted

in a mean gravimetric water content of 0.06 m’m™ for all sample sites. Digging out the
soil samples, the common observation was that soil moisture increased with depth
which further supported the decision that the top soil had to be drier than the
gravimetric water content of the soil samples. A gravimetric water content between
0.02 m’m™ and 0.08 m’m~ was considered dry (Rahman et al. 2007), and therefore

the May 2004 ASAR image could indeed by used as a “dry scene”.
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For the soil texture analysis, a methodology has been devised after consulting
several authors’ analyses (Birkeland 1999; Integrated Publishing 2004; Western Upper
Peninsula Center for Science 2004; Francek and Valek 2004; Butler 2004; Gerakis and
Baer 1999). The remaining share of all soil samples, about 150 g, was left to dry out at
room temperature, each sieved with a 4 mm sieve to rid the soil sample of all larger
particles (of which there were only a few), then portioned to a 100 g sample. These
weighed samples were then, one-by-one, analyzed for soil texture consistency by use of
a shaker at the Northern Arizona University Forestry department’s soil science
laboratory. The shaking apparatus consists of several mesh grids, stacked from coarse
to fine: 2mm > x > 1mm and lmm > x > 0.5mm for sand, 0.5mm > x > 0.063mm for
silt, and 0.063mm > x for clay distinction. Each sample was shaken at a constant rate
for a set time period of 15 minutes, and the content left in each of the mesh grids was
weighed individually. These recorded weights were then converted into percentages
using an Excel table in the FDW workbook. The subsequent soil type classification was
based on these percentages and was done in part with the soil texture triangle software
called TRIANGLE by Gerakis and Baer (Gerakis and Baer 1999). The results showed
that soils were mostly of silt loam, followed by silt and sandy loam (Appendix D). The
clay content in all of the soils was less than 10%.

The root mean square height (hgrys) of each sample site was calculated by the

2

1,3 . . :

formula \/ (— * Z(zl. - z)] , where z is the mean height measurement, z; is an
n -

individual height measurement, and n is the count of height measurements. There were

several pinmeter readings taken at each sample site, but only one data set of averaged
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height measurements per sample site is currently available for this study. The hrus
equation was applied on these averaged readings (by use of an Excel table in the FDW)
and therefore the results were only approximations (Appendix E).

All results were combined in an Excel table in the WDF workbook (Appendix F).
This table was converted to dBase IV (DBF) format in order to employ it in an ArcGIS
project. The field data results table was imported into a new ArcGIS project and the
XY data were displayed using the table fields “Easting” and “Northing” from the GPS
locations as X and Y fields, respectively. Though ArcView reported that the XY data
event layer had no known projection, the GPS locations were in UTM Zone 12N WGS-
84. Two buffered layers of the sample site event layer were created with buffer radiuses
of 110 m and 200 m. For their study of the Walnut Gulch Experimental Watershed,
Rahman et al. used an initial buffer of 110 m x 110 m in their study (Rahman et al.
2008) which they widened to 150 m x 150 m due to image registration errors. Such
image registration errors were not present in this study because of the use of dual band
imagery, therefore a 110m x 110m buffer was deemed sufficient. Thoma et al. argued
that best results could be achieved with the driest soils at broadest scale (Thoma et al.
2008). The authors found that a ground resolution of 162 m was the smallest effective
resolution for their Walnut Gulch Experimental Watershed study site (same as used by
Rahman et al.). For this study, a second buffer with an increase in buffer radius of
approximately 80 percent (= 200m) was chosen to verify or contrast results of the initial
110 m buffer radius (Figure 9). Figure 9 also depicts the variety of pixel values possible

in side the buffers which may have negatively influenced the final results.
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3
l.i

Figure 9. Sample Site XY-data point with two buffer rings (110 m, 200 m) on HH-band, showing individual
pixels.

Several GIS layers obtained by Pinnacle Mapping Technologies were also
employed, mainly as cartographic references. These layers included an outline of the
Hopi reservation, major streams, and roads. All GIS layers were previously reprojected

to UTM Zone 12 WGS-84.
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Figure 10. Flowchart Field Data Collection and Preparation.

ASAR HEADER ANALYSIS
The ASAR Handbook gives a detailed description of the image header file

(Appendix G) (ESA 2009). The ASAR image used for this project is a level B1

product, meaning it had already been processed by ESA (Appendix G)). Level 1 (N1)

products are only one processing step above raw data (higher level products are also

available from ESA). According to the ASAR handbook,
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“Level 1B products are geolocated products in which data has been
converted into engineering units, auxiliary data has been separated from
measurements, and selected calibrations have been applied to the data. These
products are the foundation from which higher-level products are derived. Level 0
products are transformed into Level 1B products by application of algorithms and
calibration data to form a baseline engineering product.” (ESA 2004, Chapter 2).

The ASAR operating mode product for this research is named ASA_ APG_1P,
which translates to alternating polarization, ellipsoid geolocated ASAR imagery (ESA
2004). The image consists of two co-registered bands acquired simultaneously (time
ordered). The first band, or Image Data Set (MDS), has cross-polarization HV
(Appendix H). The second MDS has co-polarization HH (Appendix H). The incidence
angle and worst-case backscatter oy depend on the Image Swath (IS), which in this case
is IS6. This translates to an incidence angle of 39.1 to 42.8 degrees and a worst-case oy
of —22.0 dB; further a swath width of 70 km and a ground position from nadir of 550 to
620 km. The projection is WGS 84 Lat Long (UTM, by resampling); the pixel size is

12.5 m by 12.5 m. The imagery has a radar frequency of 5.33 GHz (Appendix G)).

ASAR PREPROCESSING BY ESA

As mentioned in the literature review, every raw ASAR image has been
preprocessed by ESA before application of any other parameters or formatting steps.
The included processes were: validation of raw ASAR data; block adaptive quantization
(BAQ) decoding; raw data analysis; raw data correction; replica construction and power
estimation; and noise power estimation (ESA 2004: 2.6.1.2.1). For backscatter
calibration of ground range detected products (of which ASA_APG-1P is one of them),

the calibration formula is
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2
0 _ DNi,f * ol
O-i’j_T Slnai’j

0 fori=1...L and j=1...M,
oy

Vij =
cosla, ;

where K is the absolute calibration constant; DNzi,j is the pixel intensity value at image
line and column “1,j”; oi; is sigma naught at image line and column “1,j”; a;; is the
incidence angle at image line and column “1,j’; vi; is gamma at image line and column
“1,)”; and LM are number of image lines and columns (Rosich and Meadows 2004).

Sigma naught is converted to decibel by the following formula:
0 _ % 0
a’[dB]=10 logm(a )
Because ASAR images arrive already calibrated by ESA, further calibration may not be

necessary. However, adding more processing steps, such as speckle filters (median or

Lee), to the level 1B product after acquisition from ESA will increase the error.
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ASAR PROCESSING

The processing and analysis steps of this study tracked the example given by
Rahman et al. (Rahman et al. 2008). The authors documented their project of
employing the IEM to predict soil surface roughness parameters and soil surface
moisture in a series of journal articles, using the like-polarized bands of four different
ASAR APG images (Thoma et al. 2004; Rahman et al. 2007; Rahman et al. 2008). The
equations developed by Rahman et al. were also utilized in this study. This was
possible, because the conditions present and images employed for their research were
similar to the conditions and image in this study.

The software employed for processing and image analysis of the ASAR image is
called Nest ESA SAR Toolbox (NEST) and available free of charge from ESA
(ESA/Array Systems Computing Inc. 2009). ESA has developed a series of software
tools to aid the conversion and filtering of raw Envisat data (as in Level 1B AP data
format), previously released as Basic Envisat SAR Toolbox (BEST), which lacked user
friendliness and tended to crash. Perhaps due to these disadvantages, ESA developed
NEST, a user-friendly application with intuitive GUI (graphical user interface), better
control options, and more processing and analysis tools. The current version of NEST
is Nest 3B, released in October 2009, and can be downloaded at
http://www.array.ca/nest/tiki-index.php. The steps taken with NEST included header
analysis, amplitude to power conversion, speckle filtering, statistical analysis, and band
arithmetic.

The raw image file is in ESA N1 file format and could not be imported into any of

the standard image processing software available to the author, consequently had to be
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converted into a standard image file first. The ASAR May scene available for this study
was imported into NEST. By importing an ASAR image, the software automatically
added all image information grouped by metadata and bands to the project. Any
alterations or processing steps on the image completed had to be saved in order to not
accidentally lose them; NEST uses the BEAM-DIM file format for this.

The first processing step was the conversion of both amplitude bands (HH and
HV) from “Linear to dB”. It was necessary to convert to decibel units (dB), because the
raw image’s digital numbers (DN) were given in units of amplitude which were values
local to this particular image and cannot be used globally. The conversion was done
automatically by NEST; no further user input was needed to calculate the dB values.
The converted image was then speckle filtered. The NEST speckle filter tool allows for
different filtering options. A median filter with 9 by 9 pixels was used for de-speckling
the image, cleaning the salt-and-pepper raw image by removing noise (Appendix I).
After the speckle filtering, the band statistics and histograms were calculated and the
file was saved (Appendix I). Further image enhancement was not deemed necessary,
because there were no extreme data values. Also, image registration was not needed,
because the two bands were co-registered, and image-to-ground registration was evened

out by an increase in pixel size later on.
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CHAPTER 4 -MODELING ROUGHNESS WITH THE IEM

BACKSCATTER DIFFERENCE

In NEST, the image file was saved as BEAM-DIM after de-speckling and dB

conversion. Using the NEST utility tool “Band Arithmetic”, a backscatter difference
map Ac’ was created (Appendix J). According to Zribi and Dechambre, the

backscatter difference Ac’is a proportion of the roughness parameters hgps and L (Z-
index), such that

E:
glac’)= T
when two different incidence angles are applied, all else being equal (Zribi and
Dechambre 2003). In the case of this study, the incidence angle (range) was virtually
the same for both bands, however the polarization was different. It was assumed that
the function by Zribi and Dechambre was applicable for this study, as long as all else
was equal. The formula entered in the Equation Calculator in NEST was
Ac’=c"HH -c"HV ,
where Ac”HH is the backscatter of the HH band and Ao’ HV the backscatter of the
HYV band (Appendix J).
Rahman et al. modified the above Z-index formula and set it equal to another function

developed by Zribi and Dechambre (Zribi and Dechambre 2003; Rahman et al. 2008):

(0.618+0.09%Ac®) A2
(1-0.138*Ac") L

c
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The left side of this formula was used to calculate the Z-index. This was also done with
the NEST “Band Arithmetic” tool. The resulting image depicted the proportion of both

roughness parameters for each pixel value (Appendix J).

NUMERICAL SOLUTION FOR Hrys AND CALCULATION OF L.

Since the Z-index maps the proportion of the roughness parameters, it was
plugged into a formula that Rahman et al. fitted with their data as an approximation of

the IEM (Rahman et al. 2008):

Y, = —27.94 432585 —18.78h2,5 +2.653

PR S (- 1.40h25 +0.86h%5 +0.12h% )

z —index

2
+ (¥j #(0.05h3,5 — 0.04h¢,5 )
z —index

This exponential formula cannot be solved other than numerically. An Excel table was
created for this task, with possible hrys values on the x-axis and Z-index values (as
determined from the Z-index map histogram) on the y-axis. Each possible pair of Z-
index and hrys values was plugged in the exponential formula so that every cell returns
a particular solution for a pair of hgyms and Z-index values (Appendix K). By means of

this look-up table, an hgys reclassification scheme was devised that groups common

GSW and Z-index pairs with an hrys value. Back in NEST, the afl),yHH band was

reclassified by a set of virtual bands of which each was assigned a particular hrys value
(Figure 12). All of these virtual bands were then combined in one band by adding them
with the NEST “Band Arithmetic” tool. The resulting band depicts the hrms map

(Appendix L).

37



Dry Scene Backscatter Reclassification

Classification of hRMS hRMS
Amplitude_HH_dB >= 25 ?0.1:0 0.1
Amplitude_HH_dB<25 and Amplitude_HH_dB>=2470.3:0 0.3
Amplitude_HH_dB<24 and Amplitude_HH_dB>=2373.0:0 3.0
Amplitude_ HH_dB<23 and Amplitude_HH_dB>=2270.2:0 0.2
Amplitude_HH_dB<22 and Amplitude_HH_dB>=21 and Zindex2<0 ?2.2:0 2.2
Amplitude_HH_dB<22 and Amplitude_HH_dB>=21 and Zindex2>=0 ?3.2:0 3.2
Amplitude_HH_dB<21 and Amplitude_HH_dB>=2070.3:0 0.3
Amplitude_HH_dB<20 and Amplitude_HH_dB>=19 and Zindex2<0 ?2.1:0 21
Amplitude_HH_dB<20 and Amplitude_HH_dB>=19 and Zindex2>0 ?3.1:0 3.1
Amplitude_HH_dB<19 and Amplitude_HH_dB>=1870.4:0 0.4
Amplitude_HH_dB<18 and Amplitude_ HH_dB>=1772.1:0 21
Amplitude_HH_dB<17 and Amplitude_HH_dB>=1670.5:0 0.5
Amplitude_HH_dB < 16 ?1.3:0 1.3
If Statement : Statement ? True : False

Table 1. hgys Classification

With the hrps map available, one can now solve the Z-index equation for the roughness

parameter L.. The formula

2.5

z —index = 45

was applied on the hrms map, again using the NEST “Band Arithmetic” tool. The
resulting image illustrates the L values for this particular ASAR image. As a result of
this study, the two roughness parameters hgys and L. have been mapped using the [EM

and a dual-polarity ASAR image (Figures 15 and 16, Appendix L).
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CHAPTER 5 — STATISTICAL ANALYSIS AND DISCUSSION

EXTRACTING VARIABLE VALUES

Though NEST is a very good tool for ASAR image processing and band
arithmetic, it lacks statistical analysis tools. The NEST file format for ASAR images is
not applicable in other image processing and GIS software packages, therefore all bands
of interest have to be converted to GeoTIFF file format for further processing and
analysis. Unfortunately, the NEST version of the GeoTIFF format cannot be imported
into ArcGIS, so it has to be converted to IMG format using ERDAS Imagine first. All
relevant bands of the de-speckled image were exported as GeoTIFF and imported in
ERDAS Imagine. With the import, the bands were converted to IMG format. They
were also reprojected to UTM Zone 12 WGS-84 to fit the GIS layers and XY-event
layer.

The ASAR image bands hrys, Le, HH-dB, and Z-index were imported into
ArcGIS. First, the XY-data event layer of the field data points and the buffered layers
were stripped of all points and buffers that were not located on the ASAR image
(Appendix M). The buffer layers were then checked to verify that their ID values
coincide with their corresponding points of the XY-data layer. This step had to be taken
to ensure that the field data for each sample location was matched with the correct
location on the ASAR image.

Using the Zonal Statistics tool in the Spatial Analyst extension, the mean value for
each buffer zone was calculated on each of the four calculated ASAR bands. Thus, all
pixel values within each of the two buffered zones around each sample site were

statistically evaluated (Figure 9). The resulting statistical description was stored in
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look-up tables (LUT) which were related to the appropriate buffer layer: the statistical
mean and standard deviation for each point in the 110 m buffer zones were stored in a
LUT and related to the 110 m buffer layer; the statistical mean and standard deviation
for each point in the 200 m buffer zones are stored in another LUT which is related to
the 200 m buffer layer. A set of Vonoroi plots depicted a Thiessen Polygon comparison
of the hrys values of the field data and the two buffered mean values for each sample
point (Appendix N). The statistical information was then transcribed to the XY-data
layer of the field data points. The XY-data event layer was then saved as a shapefile

(SHP) that stores the XY-data in a DBF format table.

Export Geo-TIFF (MEST)

Aot | [ Zindex | {mRMs [/ Le
Import and Conversion to IMG (ERDAS)

L

Reproject to WGS-84 UTM, Zone 12 (ERDAS)

[ nav | [zmdex [ [wRms [ [ L
I_."'FieIdData Xy Layerl,-': i l l l
I Zonal Statistics (ArcMap)

Create Buffers 110m and 200m

I

Clip to Study Area )
l Statistical Analysis:
Least Squares Regression
Combine Information from Correlation Pearson
all GIS Field Data Layers " Scatterplot
Basic Statistics
(MYSTAT)

Figure 16. Flowchart Data Preparation for Statistical Analysis
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STATISTICAL ANALYSIS

The DBF format can be opened by Excel, where the tables are rearranged and
then transcribed into MYSTAT, the free-of-charge student version of the statistical
software SYSTAT. In MYSTAT, the table was prepared for the statistical analysis: the
table itself had to be variable values only, so the column headers were cut and pasted to
the appropriate table variable name boxes; some variables were imported in string
format and had to be changed to number format. The statistical analysis consisted of
three parts, namely descriptive statistics, correlation and regression (Figures 18, 19 and
20, respectively). It focused mainly on the relationships between the in-field value of
hrums and the modeled mean values of Z-index and hrys within the buffered areas.
There were 43 valid cases of in-field hgys mean values, therefore the statistical analysis
was reduced to those modeled sites which corresponded with these in-field values
(Figure 18). Compared to the mean in-field hgys, the arithmetic mean decreased

slightly in the modeling of the Z-index, but almost doubled in the modeled hgrys.

HRMS_IN_FIELD n Z12 ¢ HRMS1 | HRMS2
N of Cases 43 52 52 52 52
Minimum 0.450¢ 0.807¢ 0.823 0.548 0.863
Maximum 2850 1499 1373 3.135 2.859
Arithmetic Mean 1398 1.0731 1.072 2018 2.019
99.0% Lower Confidence Limit 1.163 ¢ 1.015¢ 1.022 1.7449 1.804
99.0% Upper Confidence Limit 16331 11321 1121 2.287 2235
Standard Deviation 0.571! 01561 0.134 0.726 0.581
Variance 0326 0.024¢ 0.018 0.527 0337

Table 2. Descriptive Statistics of in-field hgys in combination with the buffered means of Z-index
and hyys (Where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).

The correlation analysis featured the four pairings of the in-field hrys and the
buffered counterparts from the Z-index and hgrys bands (Figure 19). Of these pairings,

the combinations in-field hryms and modeled Z-index had a Pearson’s R of 0.240 for the

45



110m buffer and 0.298 for the 200m buffer, while the corresponding modeled hrys
mean values of these buffered areas had a Pearson’s R of 0.118 and 0.174, respectively.
The elliptical shape of the correlation plots illustrated a weak correlation between in-
field hrms and Z-index values and an almost non-existent correlation between the in-
field hryms and the modeled counterparts. It was not surprising that the combination of
hrms1 (110 m buffer) and hrpms2 (200 m buffer) revealed a large correlation (0.889);
after all, the entire 110 m buffer zone was included in the 200 m buffer. The correlation

between Z-index1 (110m buffer) and Z-index2 (200m buffer) is even stronger (0.928).
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Figure 17. Pearson Correlation Matrix of hrys in combination with the buffered means of Z-
index and hiys (Where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).
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Pearson Correlation Matrix

HRMS_IN_FIELD 1 Z12{ HRMS1 ! HRMS2
HRMS_IN_FIELD 1.000
211 0.240¢ 1.000
12 0.208: 0.928¢ 1.000
HRM 51 0118: 0072 0.065 1.000
HRM 52 0174% 0.081% 0133 0.5889 1.000

Table 3. Pearson Correlation Matrix of hgrys in combination with the buffered means of Z-index
and hgrys (Where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).

The regression analysis paired in-field hgys with the modeled Z-index and hgyvs

values, as well as the two modeled hrys values with each other and with the backscatter

band O';)W in least squares regression, all at a confidence interval of 0.99%. For the

combinations of in-field hrys with modeled hrpsl (110 m buffer) and hgys2 (200 m
buffer), the values of regression coefficient R indicated moderate relation of R =0.118
at a P-value of 0.452 and R = 0.174 at a P-value of 0.263, respectively (Figure 20). The
pairings of in-field hrys with Z-index1 (110m buffer) and Z-index2 (200m buffer)
resulted in a regression coefficient of R = 0.240 at a P-value of 0.120 and 0.298 at a P-
value of 0.052, respectively (Figure 20). The least squares regression of the two
buffered hgrys values against each other yielded a near perfect regression correlation of

R = 0.889 with a mean squared error of 0.067 and a P-value of 1.68*10™".
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Figure 18. Least Squares Regression Plots of in-field hgrys in combination with the buffered means

of Z-index and hgys (Where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).

Neither the in-field hrps nor the modeled values of hryms and Z-index showed

any relation with the O'EW band (Figure 21). The mean values of L, were not included

in the statistical analysis, because L. is proportional to hrys as defined by the Z-index.
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DiScuUSSION

The mapping of distributed soil surface roughness used to be a tedious
undertaking. It encompassed several days of fieldwork that only yielded data restricted
to the sampled points. Furthermore, the data were only valid for the point in time of
their collection, hence the data could not be utilized to cover a larger area or time range.
These shortcomings have been partially remedied by use of remote sensing tools, such
as thermal imagery. During the last decade, radar technology has been employed to
enhance the modeling and mapping of soil surface properties. Especially C-band radar
imagery seemed to be a perfect candidate for modeling soil surface properties because
of its short penetration rate. The Integral Equation Model (IEM) has been constructed
as a tool to predict soil surface properties by use of radar imagery, however it needed
several in-field variables to work properly. Recently, a method was developed which
maps the soil surface roughness parameters solely with radar images instead of in-field
parameters. That study by Rahman et al. focused on multi-angled radar data (Rahman
et al. 2008), which added error to the process due to the incidence angle estimations and
the time lag between the capture of the images.

The use of an ASAR dual polarity image in this study removed the problematic
time lag, as well as the incidence angle discrepancy, because both like- and cross-
polarized bands were taken with the same sensor at the same time, using the same
incidence angle. The dual polarity image used for this study was taken during dry
conditions, which reduced the number of unknown IEM variables to just the roughness
variables hrys and L. The Z-index illustrates the relationship between these two

variables. Both roughness variables hgys and L, were modeled with IEM. First, a
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difference map of the two polarized bands was calculated and employed to retrieve the
Z-index. With the help of an Excel table the possible values of hrys for each Z-index
value was calculated, which in turn were used to prescribe a hryvs classification look-up
table. The resulting hgpms map was then utilized to find the corresponding L values.
The statistical analysis showed a relationship between the in-field and the
modeled mean values of the roughness parameter hgys, though the correlation is weak.
There seemed to be a trend whereby the modeled values of this research were distorted
which can be detected by comparison of the arithmetic mean. The arithmetic mean of
the in-field hrys was calculated at 1.398 cm, while it was nearly twice as high for the
modeled values (2.018 cm for the 110 m buffer and 2.019 cm for the 200 m buffer).
Contrary to the modeled hgrys statistical values in correlation and regression, the Z-
index performed at a much better rate (Figures 16 and 17). The decrease in Pearson’s R
values and regression coefficients between the Z-index map and the modeled hgys map
most likely can be attributed to the classification scheme which determined hgrys. The
numerical solution was calculated using a coarse sequence of Z-index / hrps pairings; a
finer interval may have yielded a different classification scheme and therefore could
have resulted in a more accurate hgys map. An increase in classes could also have
resulted in a better fitting correlation of in-field and modeled mean values. In addition,

the IEM equations applied in this study were derived for a similar study by Rahman et

al. that utilized like-polarized o° radar images with multi-angle images on a
p dry, VvV g g g

comparable study site (Rahman et al. 2008, 393). An adjustment in these equations may
have been helpful, though the outcome of this study resembled that of the study by

Rahman et al..
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The same decrease in relation was also seen in the regression analysis of Z-index

map and hrpms map paired with afl),y . It became evident that by employing the IEM, that

is calibrating hrms by use of the polynomial equation, the results were distorted.
However, this did not necessarily mean that the calculation was wrong, as the in-field
hrms values performed almost at the same rate as the modeled hgys map.

Another observation of the statistical analysis was that there was only a slight
increase in correlation between the 110 m buffered values and the 200 m buffered
values. In their study, Rahman et al. had to increase the scale of the buffered area to
150 m by 150 m because of unfavorable sub-surface phenomena (Rahman et al. 2008,
394). In hindsight, the increased buffer size (from 110 m to 200 m) did not seem to be
necessary in my study, mainly because of the homogeneity of the soil-surface and sub-
surface, though a larger buffer size generally results in a better fit.

This research compared similarly to the study by Rahman et al. in 2008. The
image-derived hrvs and L, values behaved in the same way in both studies. Though
Rahman et al. attributed most of their error to sub-surface rock fragments, these were
not present at the Hopi Reservation sample sites. It could be that the model itself is in
need of an adjustment. For example, the error could have been due to the size of the
speckle filter, as Rahman et al. reasoned in their study. However, concluding their

study with the modeling of soil surface moisture 6,, the prediction of the study by

Rahman et al. met the in-field measurements with minimal error. This outcome was
validated by a study by Thoma et al. (Thoma et al. 2006) which compared different

methods of retrieving soil surface roughness and consequently soil surface moisture 6, .
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It can be said that the method of modeling soil surface roughness applied herein is
valid on similar surfaces (semi-arid rangeland) with a resolution slightly lower than that
of the ASAR image. This method can be helpful in determining soil surface properties
for various applications without the use of ancillary data. As Rahman et al. did in their
study (Rahman et al. 2008), once the soil surface roughness variables hgrys and L, have
been calculated and adjusted, the IEM can be utilize to calculate of the soil surface

moisture @, . It is then possible to model soil surface roughness and soil surface
moisture @, for entire regions exclusively without or with minimal fieldwork. This

could be of benefit to regional planning as much as agriculture. It could assist by
selection of rangelands suitable for agriculture, or determination of the state of the soil
before planting or shortly thereafter. It could also be employed to detect overgrazing of
rangelands.

Further research could explore the modeling of soil surface roughness and
subsequently the modeling of soil surface moisture with dual-polarization ASAR
imagery by means of adjusted IEM equations and a revised hryvs reclassification. The
IEM derived equations applied in this study were taken from a similar study. Though
the study sites were similar, an adjustment in the equations may foster more accurate

results. Fine tuning the hgys classification could be done several ways. For one, in the
numerical solution for 03,% .y that was used to define the hryvs classification, 03,% .
was calculated by means of a coarse interval of possible values of hrys and the Z-index.
A more refined interval may result in a different pattern and therefore a refined hrys

classification. Also, the hrys classification’s range of classes could be expanded which

may improve the results as well.
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APPENDICES

APPENDIX A. RALEIGH CRITERION AND PEAK & OLIVER MODIFIED

CRITERION EVALUATION

Site # ' fem) Afem) 3 Raleigh P&O £ Raleigh . PEO ¥ Raleigh P&O £ Raleigh P&O
3 1,25 53 38,9 rough intermediate | 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
5 3,25 53 38,9 rough rough 4,2 rough rough | 43,5 rough rough 40,5 rough intermediate
7 22 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
8 23 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
¢ 2,25 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
10 145 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
11 41 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough rough
14 3,25 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
16 3,05 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
19 245 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
22 18 53 38,9 rough rough 9,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
25 3 53 38,9 rough rough 4,2 rough rough | 43,5 rough rough 40,5 rough intermediate
26 2,65 53 38,9 rough rough 4,2 rough rough | 43,5 rough rough 40,5 rough intermediate
28 1,55 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
30 186 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
39 2,35 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
41 12 53 38,9 rough intermediate | 41,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
43 05 53 38,9 smooth intermediate | 41,2 rough rough | 43,5 rough rough | 40,5 smooth smooth
48 26 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
48 14 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
49 2,35 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
s1 2,05 53 38,9 rough rough 9,2 rough rough | 43,5 rough rough 40,5 rough intermediate
52 17 53 38,9 rough rough 9,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
54 1.1 53 38,9 rough intermediate | 41,2 rough rough | 43,5 rough rough 40,5 smooth ermediate
55 3,15 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
56 4,55 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough rough
57 1,1 53 38,9 rough intermediate | 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
8 25 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
59 3,05 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
62 2,7 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
64 13 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
68 2,55 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
72 1,75 53 38,9 rough rough 9,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
74 21 53 38,9 rough rough 9,2 rough rough | 43,5 rough rough 40,5 rough intermediate
76 12 53 38,9 rough intermediate | 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
78 1,35 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
83 19 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
88 22 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 rough intermediate
2 175 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
93 24 53 38,9 rough rough 4,2 rough rough | 43,5 rough rough 40,5 rough intermediate
96 41 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough rough
98 1,65 53 38,9 rough rough M,2 rough rough | 43,5 rough rough | 40,5 smooth intermediate
103 2,75 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
104 41 53 38,9 rough rough M,2 rough rough | 43,5 rough rough 40,5 rough rough
109 27 53 38,9 rough rough 1,2 rough rough | 43,5 rough rough 40,5 rough intermediate
110 1,45 53 38,9 rough rough M,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
111 1,45 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
113 3,05 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
117 14 53 38,9 rough rough M,2 rough rough | 43,5 rough rough 40,5 smooth intermediate
120 2,05 53 38,9 rough rough 1,2 rough rough | 43,5 rough rough 40,5 rough intermediate
KFarm1 4,95 53 38,9 rough rough M,2 rough | rough | 43,5 rough rough | 40,5 rough rough
Kachina Met St 35 53 38,9 rough rough #,2 rough rough | 43,5 rough rough 40,5 rough intermediate
Navajo Farm 2,65 53 38,9 rough rough 41,2 rough rough | 43,5 rough rough 40,5 rough intermediate
Navajo Farm 1,08 53 38,9 rough intermediate | 41,2 rough | rough | 43,5 rough rough | 40,5 smooth intermediate
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APPENDIX B. VEGETATION AT THE SAMPLE SITES

Dominant |Dominant [s] Other Abbreviations |Genus Species Comman hame
Point#  |Veg type |shrub grass SAVE Sarcobatus vermiculatus greasewood
in BOLD GUSA Gutierrezia sarathrag shakeweed
2[shrubland |ATCA unk grass BRTE Bramus tectorum cheat grass
3|grassland |Ephedra spp., GUSA ORHY ATCA Atriplex canescens  Four wing saltbush
&[shrubland |ATCA ORHY SPAM, BRTE LEMC Lepidium momtanum  pepperweed
6|grassland ORHY, BOGR |low density veg- sparse CELA Ceratoides lanata winter fat
7[shrubland |SAVE HIJA Hilaria jamesii galleta grass
8|grassland |GUSA ORHY Ephedra, Juniper, YUAN ORHY Qryzopsis hymoides indian rice grass
9|grassland |Ephedra spp., GUSA ORHY, BOGR |YUAN CHNA Chrysothamnus nauseosus  rabbit brush
10|grassland |CHNA, GUSA ORHY fallow ag field YUAN Yucca angustissil narrow leaf yucca
11|grassland |CHNA, GUSA ORHY, SPAI |dow density veg on sand dunes PHCE Phacelia crenulata scarpion weed
14|grassland |ATCA ORHY HIA, SPFL,BRTE SPAI Sporobolis airoides alkalai sacaton-grass
16|barren GUSA, CHNA unk grass very low density veg SPAM Sphaeralcea ambigua globe mallow
16|grassland |CHNA, GUSA, unk grass unk unknown plant
19|grassland |CHNA SPAI ORHY, YUAN SPFL Sporobolis flexuosus mesa dropseed-grass
22|grassland |GUSA ORHY Ephedra, Juniper, YUAN BOGR Bouteloua gracilis blue grama grass
25|shrubland |CHNA,GUSA no grasses present HOJU Hordeum jubatum fox tail barley grass
26|grassland |CHNA HIJA GUSA, YUAN, BRTE, Salsala tumbleweed, russian thistle
28|shrubland |SAVE HIJA claret cup cactus BSC Biological Soil Crusts
30|grassland |GUSA, CHNA ORHY BOGR, HOJU, juniper spp. ARFI Artemesia filifolia sand sage
39|grassland |ATCA, Ephedra unk
41|shrubland |SAVE
43|shrubland |ATCA lots of arganic soil-dark
48|grassland |ATCA ORHY
48|grassland |ATCA ORHY guard rail 250m west (First site)
49|grassland SPAM {annual?) LEMO
51 |shrubland |CHNA,GUSA HIJA LEMO
52|grassland |ATCA, ARFI unk low density shrubs nearby
64 (grassland |ATCA HIJA
66|shrubland |unkown unknown unk succulent
56|grassland |GUSA PHCE ephedra, SPAI
67 |grassland SPFL
68|grassland |ATCA, Cholla spp. HIJA
5§9|shrubland |CHNA ORHY GUSA, SPFL
61|shrubland |ATCA
62| mixed GUSA, SAVE unk grass
64|shrubland |Ephedra spp. BOGR ORHY, BRTE, HOJU, YUAN, GUSA
68|shrubland |CELA Cholla spp.
72|shrubland |GUSA, ATCA Salsala ald farm plot
73|shrubland |Ephedra spp. CHNA
74|grassland |Ephedra ORHY GUSA, BOGR, HIJA
76|grassland unk sparse grasslands
78|grassland unk
79| mixed LEMO LEMO, site near farm
82|farmland |none none recently tilled scil SE edge of K-town
85|grassland |CELA HIJA
86|barren minor grasses
88|shrubland |GUSA BOGR ATCA
90(shrubland |GUSA BOGR ATCA, Ephedra.
92|shrubland |Ephedra spp. HIJA CELAATCA,
93|shrubland |GUSA, ATCA ORHY BSC,
96|grassland |GUSA, Ephedra spp. BOGR, ORHY |HOJU, HIJA, YUAN
98|shrubland |GUSA sparse P/J present
102[grassland |ATCA unk grass CHNA, GUSA
103 |grassland |Ephedra spp. unk grass
103 [grassland |Ephedra spp. unk grass
103 |grassland |Ephedra spp. unk grass
103|grassland |Ephedra spp. unk grass
104 (grassland |Ephedra spp., GUSA ORHY, BOGR |YUAN
107 [shrubland |SAVE GUSA, SPAM
109(grassland |GUSA, YUAN BOGR, ORHY
110|shrubland |GUSA ORHY ATCA
111|shrubland |ATCA GUSA,LEMO
112(shrubland |ARFI old farm plot
113([grassland |GUSA BRTE
114 |barren Navajo farm
117|grassland |Ephedra spp., ORHY Juniper
120|grassland |GUSA BOGR, ORHY
Kachina(shrubland |ATCA SPAI
K-farm1|grassland |CHNA, GUSA ORHY, BOGR |*adjacent o current ag site (pt 10)
Tovar|grassland |[ATCA ORHY
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APPENDIX C. SOIL MOISTURE RATE AT THE SAMPLE SITES

Sample |Soil-moist| Tin |Wet + Tin Dry + Tin Soil-dry Percentage| Sample u=w/s
2 10,15 |26,28| 36,43 35,27 399 12,90 2 0,129
3 10,11 |27,35| 3746 36,66 9,31 8,59 3 0,086
6 10,12 |28,59| 38,71 38,12 9,53 6,19 6 0,062
7 10,56 |26,70| 37,26 36,25 9,55 10,58 7 0,106
9 10,19 27,39 37,58 37,12 9,73 4,73 9 0,047
10 10,24 |28,10| 38,34 37,62 9,52 7,56 10 0,076
11 10,10 |28,97| 39,07 38,84 9,87 2,33 11 0,023
14 10,08 |28,66| 38,74 38,40 9,74 3,49 14 0,035
16 10,05 ]29,43| 3948 38,77 9,34 7,60 16 0,076
16 10,43 |27.71| 38,14 37,08 9,37 11,31 16 0,113
19 10,18 |27.30| 3748 37,12 9,82 3,67 19 0,037
22 10,14 126,84 36,98 36,35 9,51 6,62 22 0,066
25 10,17 129,79| 39,96 39,62 9,83 3,46 25 0,035
26 10,25 |27.48| 37,73 37,05 9,57 7,11 26 0,071
28 10,09 |2543| 35,52 34,82 9,39 7,45 28 0,075
30 10,14 |26,39| 36,53 35,91 9,52 6,51 30 0,065
41 10,12 |27,86| 37,98 37,16 9,30 8,82 41 0,088
43 10,15 |28,79| 38,94 38,26 9,47 7,18 43 0,072
48 10,05 |27,72| 37,77 37,56 9,84 2,13 48 0,021
49 10,38 |28,04| 3842 37,96 9,92 4,64 49 0,046
54 10,06 (29,45 39,51 38,91 9,46 6,34 54 0,063
55 10,57 |26,51| 37,08 35,65 9,14 15,65 55 0,156
56 10,24 |28,80| 39,04 38,50 9,70 5,57 56 0,056
57 10,19 28,32 38,51 37,80 9,48 7,49 57 0,075
58 10,23 |28,18| 3841 37,57 9,39 8,95 58 0,089
59 10,19 129,99 40,18 39,89 9,90 2,93 59 0,029
61 10,22 |28,67| 38,89 37,72 9,05 12,93 61 0,129
62 10,41 |30,75| 41,16 40,71 9,96 4,52 62 0,045
64 10,08 29,44 39,52 39,24 9,80 2,86 64 0,029
68 10,23 |27.43| 37,66 36.85 9,42 8,60 68 0,086
72 10,14 2741 37,55 36.90 9,49 6,85 72 0,068
73 10,01 |27.87| 37,88 37,64 9,77 2,46 73 0,025
74 10,05 |25,44| 3549 35,02 9,58 4,91 74 0,049
76 10,22 |28,44| 38,66 37,57 9,13 11,94 76 0,119
78 9,96 |28,14| 38,10 37,69 9,55 4,29 78 0,043
79 10,18 |28,93| 39,11 38,50 9,57 6,37 79 0,064
83 10,08 |29,36| 3944 38,49 9,13 10,41 85 0,104
86 10,17 |27,49| 37,66 37,38 9,89 2,83 86 0,028
90 10,03 |28,60| 38,63 38,29 9,69 3,51 90 0,035
92 10,01 |28,05| 38,06 37,62 9,57 4,60 92 0,046
93 10,13 |29,86| 39,99 39,63 9,77 3,68 93 0,037
96 10,06 |28,81| 38,87 38,56 9,75 3,18 96 0,032
98 10,10 130,77| 40,87 40,17 9,40 7,45 98 0,074

102 10,03 |27,41| 37,44 36,99 9,58 4,70 102 0,047
103 10,01 |27,79| 37,80 37,35 9,56 4,71 103 0,047
104 10,11 |27,52| 37,63 37,26 9,74 3,80 104 0,038
109 10,19 |27,66| 37,85 37,41 9,75 4,51 109 0,045
110 10,14 28,84 38,98 38,64 9,80 3,47 110 0,035
111 10,19 |25.26| 3545 34,89 9,63 5,82 111 0,058
112 10,14 |29,18| 39,32 38,14 896 13,17 112 0,132
113 10,02 |28,17| 38,19 37,41 9,24 8,44 113 0,084
114 10,12 |29,32| 3944 39,28 9,96 1,61 114 0,016
114-1 10,16 |27,87| 38,03 37,82 9,95 2,11 114-1 0,021
117 10,06 |27,61| 37,67 37,02 9,41 6,91 117 0,069
120 10,19 |27,95| 38,14 37,46 9,51 7,15 120 0,072
K MET 10,01 |25,91| 35,92 35,55 9,64 3,84 KMET 0,038
KFarm1| 10,28 |28,57| 3885 38,03 9,46 8,67 KFarm1| 0,0867




APPENDIX D.
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APPENDIX E. IN-FIELD Hryms VALUES

Site hRMS
3 0,515
5 2,254
7 1,072
8 1,469
9 1,041
10 0,789
11 2,437
14 2,334
16 1,771
19 1,601

22 0,962
25 2,319
26 1,575
28 1,105
30 0918
39 1,389
41 1,079
43 1,001
48 1,522
48 0,887
49 1,949
51 1,847
52 0,791
54 1,255
55 1,759
56 2,846
57 0,553
58 1,387
59 2,068
62 1,378
64 0,656
68 1,862
72 1,071
74 0,925
76 0,447
78 1,127
85 1,688
88 1,019
92 1,836
93 1,577
96 2,190
98 1,199

103 1,462

104 2,607

109 1,239

110 2,326

111 1,407

113 1,845

117 0,758

120 0,894

KFarm1 2,495
Kachina Met Station 2,381
Navajo Farm 1,434
Navajo Farm 0,547




APPENDIX F.

FIELD WORK RESULTS TABLE

Site # Easting Northing  Altitude (m) Aspect hRMS _SoilMoist% | Vegetation | Soil Texture | % Sand | %Clay | Raleigh Criterion | Peake&0liver Lc
2 557100,56 | 3944578,69 172852 12,9 Sandy Loam 54 02
3 535613,61 | 400219281 6150,46 3-5% W 0,51 8,6 Silt Loam 26 08 smooth intermediate 16
5 55754525 | 3941323,29 1714,02 <5% 2,25 shrubland rough intermediate 51
6 517021,78 | 3976409,37 1728.60 <2% N 6,2 SiltLoam 22 1.4
7 550998,72 399246451 1821,98 0 1,07 10,6 shrubland | sandy Loam 62 01 rough intermediate 16
8 519706,04 = 3944003,70 1596,67 <2% 8 147 rough intermediate 22
9 503719,50 | 3991546,99 1678.46 3-5% W 1,04 47 Silt 11 03 rough intermediate 16
10 528437,91 | 3984853 51 1775,44 <2% E 0,79 76 Silt Loam 42 0,1 smooth intermedi ate 16
11 503719,50 | 3991546,99 5506,79 5% W 2,44 23 Silt 17 0.2 rough rough 59
14 511214,28 928995,84 0,00 <B% W 2,33 35 SiltLoam 37 0.2 rough intermediate 54
16 556269,80  3951631,63 5858,26 0 1,77 11,3 barren silt 18 22 rough intermediate 31
19 503221,33 | 3947062,73 1594,88 3% NW 1,60 3,7 grassland Silt Loam 30 04 rough intermediate 26
22 50938976  3072979,18 1958 93 5% N 0,96 66 Silt Loam 28 05 smooth intermediate 6
25 535685,84 | 3941058,64 1588,96 <3% 2,32 35 shrubland Silt 10 08 rough intermediate 54
26 526055,72 | 3988978,98 6073,64 o] 1,58 71 SiltLoam 25 1 rough intermediate 25
28 55892342 3976406,34 1799,67 3-5% W 1,10 75 shrubland | sandy Loam 58 07 smooth intermediate 16
30 526833,70 | 3988166,12 6124,25 0 0,92 6,5 Silt Loam 21 08 smooth interrnediate 16
39 543933,10 3947126,86 5379,67 ) 1,39 Sandy Loam 57 01 rough intermediate 19
41 547541,77 | 398803542 1796,89 o] 1,08 88 shrubland Silt Loam 27 73 smooth intermediate 16
43 533583,38 | 3963083,85 0,00 <2% S-SW = 1,00 7,2 shrubland Silt 11 52 smooth smooth 16
48 54504840 | 3958603,80 514,94 <3% 1,52 21 Silt 11 52 rough intermediate 23
48 545051,70 3958603,48 5621,00 <3% 0,89 land silt 3 4.1 smooth intermediate 16
49 569876,29 | 3943598,81 5910,43 <56% 1,95 46 grassland rough intermediate 38
S1 552133,60 . 3977834,97 0,00 0 1,85 shrubland rough intermediate 34
52 562395,71 | 3944760,21 5783,66 <3% N 0,79 smooth intermedi ate 16
54 524529,86 | 4000714,83 1749,18 o] 1,25 6,3 SiltLoam 26 03 smooth intermediate 16
S5 538929,68 | 3947875,73 5304,57 o] 1,76 15,6 shrubland | Sandy Loam 54 12 rough intermediate 31
56 54535446  3935607,89 0,00 <2% 2,85 56 land Silt Loam 29 04 rough rough 8.1
87 519880,01 . 395012961 5463,36 0 0,55 75 Silt Loam 46 05 smooth intermediate 18
S8 558823,04 3941862,57 5662,14 0 1,39 89 Silt Loam 36 02 rough ir i 19
59 515469,25 | 3938803,40 1597 52 5-7% N-NW 207 29 shrubland Silt 14 0,2 rough intermediate 43
61 572243,65 | 3944655,32 1823,00 <2% 12,9 SiltLoam 40 0.1
62 538980,72 | 3944933,77 5297,33 1,38 4,5 mixed SiltLoam 25 0.2 rough intermediate 19
64 508671,76 | 399690266 5492,39 3-5% N 0,66 29 shrubland SiltLoam 39 05 smooth intermediate 16
68 556956,52 . 2983167,71 1855,21 0 1,86 86 shrubland Silt Loam 33 18 rough intermediate 35
72 544417,59 | 398552141 1787,07 0 1,07 6,8 shrubland Silt Loam 25 5 smooth intermediate 16
73 528921,30  3960545,40 1676.12 25 Silt 16 02
74 514863,85 | 3948038,31 1693,05 <2% E 0,92 4,9 Silt 7 03 rough intermediate 16
76 568647,97 | 394596460 5930,00 o] 0,45 11,9 Sandy Loam 57 0.1 smooth intermediate 16
78 530326,71 | 399002487 1898,98 o] 1,13 4,3 Silt 12 6.1 smooth intermediate 16
79 51828378 399222290 1810.72 <% W 64 Silt Loam 45 08
85 549042,42 3973417,82 1829,87 0 1,69 10,4 grassland Silt Loam 44 11 smooth intermediate 28
86 515050,84 = 3930717,78 1523 .57 0 28 Silt 9 11
88 509699,28 | 3964189,32 1637,34 o] 1,02 shrubland rough intermediate 16
90 50661843 | 3974494 40 1818.31 2% S 35 Silt Loam 20 12
92 524407,26 = 3960430,53 1734,88 2% S 1,84 4,6 shrubland Silt Loam 20 05 smooth intermediate 34
93 534260,66  3988579,94 1804,81 <2%E 1,58 37 shrubland Silt Loam 35 12 rough intermediate 25
9% 510071,57 | 398753756  5779,09 <Q%NE | 2,19 32 st 14 02 rough rough 43
98 530581,92 399581,97 1881,74 0 1,20 74 shrubland Silt Loam 35 14 smooth intermediate 16
102 537211,92 | 3973753,75 1729.83 <3% E-NE. 4,7 Silt Loam 37 04
103 545579,90  3942386,72 5688,74 <3%E 1,46 47 land Silt Loam 28 08 rough 2.1
104 503601,42 | 3994338,51 5476,72 35%N 2,61 38 grassland Silt 8 08 rough rough 6,8
109 51144204 | 395232407  1688,60 0 1,24 45 st 19 04 rough 16
110 556903,18 | 39726002,28 1779,67 5% W 2,33 35 shrubland smooth intermediate 54
111 551325,95 | 3989613,15 1826,16 na 1,41 58 shrubland Silt Loam 24 6 smooth intermediate 20
112 51154984 = 3946350,77 1626.16 0 13,2 Sand 93 0
113 546654,27 @ 3982847,18 1829,30 5% W 1,84 84 grassland Sandy Loam 72 0 rough intermediate 34
114 512593,71 | 3995011,71 170943 <2%N 1,9 Silt Loam 31 03
117 530975,63 | 3990557,88 6241,00 0 0,76 6,9 Silt 19 62 smooth 16
120 503481,12 | 3988878,78 5558,23 0 0,89 7,2 Sandy Loam 55 01 rough 16
Kachina Met St. | 521773,50 3942881,30 1589,44 0 2,38 38 shrubland Silt Loam 31 o1 rough 57
KFarm1 527318,85  3980681,23 175843 0 2,50 87 grassland Silt Loam a1 03 rough rough 6,2
Navajo Farm 0,00 1,43 rough 2.1
Navajo Farm 0,00 0,55 smooth 16
Site # Easting Northing Altitude (m) Aspect hRMS o Soil Texture | % Sand | % Clay Raleigh Criterion Peake&0liver Le
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APPENDIX G. ASAR METADATA STRUCTURE, METADATA FILE HEADER
AND MAP PROJECTION

6.2.1 ASA_APG_1P: ASAR Alternating Polarization Ellipsoid Geocoded Image
Table 6.4

ASA APG_1P

ASAR Alternating Polarization Ellipsoid Geocoded Image

File Structure
Data Sets 14

MPH 6.6.1. EMVISAT-1 MPH

SPH 6.6.11. ASAR Image Products SPH
MDS1 50 ADS 6.6.16. S50 ADSR=

MDS2 50 ADS 6.6.16. 50 ADSREs

MAIN PROCESSING FARAMS ADS 6.6.12. Main Frocessing parameters
DOP CENTROID COEFFS ADS 6.6.8. Coppler Centroid parameters
SR GR ADS 6.6.17. g;;%i?:grg: to Ground Range conversion
CHIRF PARAMS ADS 6.6.7. Chirp parameters

MDOS1 ANTENNA ELEY PATT ADS 6.6.6. Antenna Elevation patterns(s)
MDS2 ANTEMMA ELEV PATT ADS 6.5.6. Antenna Elevation patterns(s)
GECLOCATION GRID ADS 6.6.59. Geolocation Grid ADSRs

MAF PROJECTION GADS 6.6.13. Map Projection parameters
MDS1 6.6.10. Measzurement Data Set 5
MD52 6.6.10. Measurement Data Set 5

Format Version 114.0



Name Value Type unit

PRODUCT ASA APG TPNDPAZ00403208 172050 000000162026 00370 11446 D011.M1 null Product name

PRODUCT TYPE ASA APG 1P null Product typ
SPH_DESCRIPTOR AP Mode Geacoded Image null Description

MISSION ENWISAT null Satellite mission

PROC TIME 03-JUN-2004 07:29:44.000000 ute Processed fime

Processing sysiem identifier |ASAR/I.08 null Processing system identifier
CYGLE 26 null Cycle

REL_ORBIT 370 null Track

ABS_ORBIT 11446 null Orhit

STATE VECTOR TIME 08-MAY-2004 17.21:00 000000 ute Time of orbit state vector
VECTOR SOURCE FR null State vector source

NUM SLICES 1 null Murmber of slices
first_ling_time: 08-MAY-2004 17:20:50.878385 ute First zero dappler azimuth time
last_line_time 08-MAY-2004 17:21:06.885083 ute Last zero dappler azimuth time
firsl_near [at 3.695.612.5964 .086.910 deq

First_near fong -11.104.022.979.736.300 deq

First_Tar_fat 3.695.231.473.830.070 deg

first_far_iong -11.004.521.179.189.200 deq

last_near_iat 3.550.026.321.411.130 deq

last near iong -1.110.386.957.397 460 deq

last far Jat 394.965.934 753418 deq

last far long -11.005.786.895.751.900 deq

SWATH 156 null Swath name

PASS DESCENDING null ASCENDING or DESCENDING
SAMPLE TYPE DETECTED null DETECTED or COMPLEX
mdsi fx_ix_poiar HY null Palarization

mds2 fx X _poiar HH null

ALGORITHM SPECAN null

AZIMUTH L O0KS 2 null

RANGE [ OOKS 3 null

RANGE SPACING 12, Mai m

AZIMUTH SPACING 12, Mai m Azimuth sample spacing
puise_repetition_frequency 1.705.227 294 921 870 Hz PRF

radar_frequency 5.331.004 416 MHz Radar frequenc

LINE TIME_INTERVAL 0.0 5

total size 267472373 ils] Total product size
num_output iines 9370

num_samplies_per_line 7128

s flag | flag SRGR appiied
avg_scene_height 0.0 m Average coene height ellipsoid
map profecion UTM Zone 12 null iMap projection applied
is_ferrain_coirecied 0 flag ortharectification applied
dem null Digital Elevation Model used
qeo_ref_sysiem WES-54 null geographic reference systemn
iat_piel_res 0.0 deqg pixel resolution in geocoded image
ion pikel res 0.0 deq

glant range fo first pixel 1.039.775.728.241.870 m

ant_elev_corr fiag 1 flag

range_spread_comp_fiag 1 flag range spread compensation applied
replica_power_corr_flag 0 flag Replica pulse power correction applied
abs_calibration_fiag 0 flag Product caliorated
calibration factor 944 449 875

range_samping rale 1.920.768 MHZ

muitiiook_fiag 0 flag Product multilnoked
external_caliibration_file ASA HCA AMVIEC20040406_160451_20030211_000000_20041231_000000 null External calibration file used
arbit_state_vector_fiie AUY_FRO_AXVPDS20040511_000526_20040507_221000_20040510_005000 null Orhit file used

time 08-mMAY-2004 17:20:50 876306 ute

blielel} -1420989.81

v pos 5671859.08

Z_pos 4131368.71

vl -276.193 637

v vel -368.186.393

Z vel -598.779.316

time 08-MAY-2004 17.20:54 080026 ute

X _pos -1429827 4

v pos 5683607 61

Z_pos 4112175.08

% _vel -275.872.218

v Vel -366.094.392

z_vel -60.021.113

time 08-MAY-2004 17:20:57 281667 ute

% _pas -1438654 64

v pos 5685295 09

Z pos 4092935.58

x_vel -275.846.779

y_vel -363.998 485

zZ_vel -601.640.285

time 08-mMAY-2004 17:21:00 483307 ute

blielel} -1447471.39

v pos 5706591541

Z_pos 407365043

vl -275.217.303

v vel -361.898 689

Z vel -603.062.745

time 08-MAY-2004 17.21:03 684947 ute

x_pos -1486277 93

v pos 5718468 44

Z_pos 4054319.85

% _vel -274.8083.792

v Vel -359.795.027

z_vel -604 478 462

Zeva_dopnler_time 08-MAY-2004 17:20:50.878386 ute

Ground_range_origin 0.0 m

argr coel 9.002.743.129

grgr coel 0.6319937705993652
srgr_coef 3,67E+019

srgr_coef -2,39E+02

stgr_coef 8,91E-05
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Name Value Type
map_descripfor UNIVERSAL TRAMSWVERSE MERCATOR ascli

samples 7128 *

lines 9370 *
sample_spacing 12 Mai m
iine_spacing 12 Mai m

arlentation 0.0 deg

heading -16.642 825 deg
ellipsoid_name WESE4 ascii
semi_major 63781370 m
aemi_minar B356752.0 m

shiff_dx 0.0 m

shiff_dy a0 m

shiff dz a0 m

avg_height 18 466,307 ®
projeciion_descnpiion LT ascli
utm_descripfor UNIVERSAL TRAMSWVERSE MERCATOR ascli
uim_zone 12 ascii
uim_origin_easiing S00000.0 m
utm_origin_naorthing 0.0 m
utm_cenfer_long -111000000 (1e-6) degrees
utm_cenfer lat 0 (1e-6) degrees
uim paraf -112.5 deg
uim_para? -109.5 deg
utm_scale 0.9396 ®
upg_descriptor UNWVERSAL POLAR_STEREOQGRAPHIC ascli
ups_cantsr_long 0 (1e-6) degrees
ups_center_lal a (1e-6) degrees
ups_scale a0 *
nsp_descriptor ascii
arlgin_aasting 0.0 m
arigin_norhing 0.0 m

centar_lang 0 (1e-6) degrees
canter_laf a (1e-6) degrees
ASAR Man GADS sdfstandard_parallel paramelersparaf a0 deg
ASAR Map GADS sdfstandard_parailel paramelars.paraZ’ a0 deg

ASAR Map GADS. sd/standard paralial_parameltsrs.paral 0.0 deg

ASAR Map GADS.sd/standard paralial_parametsrs.parad 0.0 deg

ASAR Map GADS. ed/cantral_meridian_parametars.cenfral_mf 0.0 deg
ASAR Mapn GADS sdicentral_meridian_parametars.cenfral_m2 0.0 deg
ASAR Man GADS sdiceniral_meridian_parameleis.cenfral_ m3 a0 deg
ASAR Mapn GADS sdéosition_narthings_eastings.tl_norihing 4045641 .0 m
ASAR Map GADS sd/pasifion_northings_eashings.i! easting 496393 33 m

ASAR Map GADS.ediposifion_northings _eastings.fr_northing 4045641.0 m

ASAR Map GADS. eddposifion_northings eastings.fr easiing 5854809 m

ASAR Map GADS. eddpasifion_northings eastings.br_norhing 39285285 m
ASAR Mapn GADS sdiosition_narthings_eastings.br_sasiing 5854809 m
ASAR Map GADS sdéosition _narthings_eastings.bi_narthing 3928528 5 m
ASAR Map GADS sdiosition_northings_easlings.bi_easting 496393 38 m

ASAR Map GADS eddposilion lat_long.il lat 36556186 (1e-6) degrees
ASAR Map GADS. eddpasifion lat long.il long -111040302 (1e-6) degrees
ASAR Map GADS.sdiposifion lat long.fr laf 36552367 (1e-6) degrees
ASAR Map GADS. sdiposifion_lat_long.fr long -110044865 (1e-6) degrees
ASAR Mapn GADS sdéosition lal_lang br_lal 35496637 (1e-6) degrees
ASAR Map GADS sdéosition lal_lang br_long -110057525 (1e-6) degrees
ASAR Mapn GADS sdéosition lal lang bi lai 35500311 (1e-6) degrees
ASAR Map GADS.sdiposifion lat long. bl lang -111038768 (1e-6) degrees

image fo_map cosfs

496380.88,0.0,12.498999,0.0 4045653.5,-1250.0,00

map to_image cosfs

323652.268-9.752071E-19,-0.08,0.0,3871047,0.08 7 4176263E-18,0.0
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APPENDIX H.

Band 1
HV

RAW IMAGE DATA
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Band 2
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APPENDIX I. IMAGE DATA AFTER SPECKLE FILTERING AND DB CONVERSION

Band 1 HV
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Band 2 HH
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Histogram for Amplitude_HH_dB

195 200 205 210 215 220 225 230 235 240 245 250 255
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Band: Amplitude HV dB
Only ROI pixels considered:
Number of pixels total:
Number of considered pixels:
Ratio of considered pixels:

No
66789360

66789360
100.0 %

Minimum: 0.0 amplitude dB
Maximum:  25.563024520874023 amplitude dB

Mean: 14.628729211880351 amplitude dB
Std-Dev: 9.066932969802487 amplitude dB

Coefficient of Variation:

Band: Amplitude HH dB
Only ROI pixels considered:
Number of pixels total:
Number of considered pixels:
Ratio of considered pixels:

0.6268496521098054 amplitude dB

No
66789360

66789360
100.0 %

Minimum: 0.0 amplitude dB
Maximum:  30.718820571899414 amplitude dB

Mean: 16.185127945503847 amplitude dB
Std-Dev: 10.053462488495423 amplitude dB

Coefficient of Variation:

0.6322963995506239 amplitude dB
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APPENDIX J. BACKSCATTER DIFFERENCE IMAGE AND Z-INDEX MAP

Backscatter Image
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Histogram for z-index

Freguency

075 100 125 150 175 200 225 250 275 300
z-index ()

Band: HH-HV

Only ROI pixels considered: No
Number of pixels total: 66789360
Number of considered pixels: 66789360

Ratio of considered pixels: 100.0 %

Minimum:  -23.24282455444336 1
Maximum:  22.648178100585938 1

Mean: 1.5563987336234886 1
Std-Dev: 1.1502677346896022 1
Coefficient of Variation: 1.3125757426850428 1

Z-index
(0.618+ (0.09* '"HH-HV"))/ (1- (0.138* '"HH-HV"))

Band: Z-index

Only ROI pixels considered: No
Number of pixels total: 66789360
Number of considered pixels: 66789360
Ratio of considered pixels: 100.0 %

Minimum:  -1057.1448974609375 1
Maximum:  1089.78564453125 1

Mean: 1.0345145778675149 1
Std-Dev: 0.46303314749511487 1
Coefficient of Variation: 182.41845276214084 1

85



APPENDIX K. NUMERICAL SOLUTIONS TO THE IEM DERIVATIVE EQUATION
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APPENDIX L. THE Hrys AND L. MAPS

hrms
Map
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APPENDIX N. MAPS OF IMPORTED ASAR BANDS AND XY-DATA POINTS.

v83 ‘salbojouyos | Buiddepy sjoeuuld
JabulseH unsiay|
6002 19qWaAON
NZL Uo7 #g-SOM IN1IN

slepwoly 0L G 0

0000000 : Mo

1¥2180'0¢€ : UBIH
anje
Burfoid qp™y

T

M
&)

deiy HH

91



vs3 ‘seibojouyoe | Buiddely ejoeuuld
19buiseH unsiay
6002 JoqUISA0N
NC| dUoZ 8-SOM LN

sielewolly 0l g 0

/91212°€E- - MO

112580'ce 1 UbIH

anje
Bunfoid " xapui

00170077 AX

N

dep xapuj-z

92



vS3 ‘salbojouyda | Buiddely sjoeuuld
JaBulseH unsiay
6002 JaqWiaAoN
NZL 8UOZ ¥8-SOM INLN

sieuwoly 0} g 0

0000000 : MOT

00000z € © UbIH
anje

Bwi-foad"swu

0047002 AX

dein SINYY

93



vS3 ‘saibojoutpa | Buiddely sjceuuld
J1eBuliseH unsiay|
600 19qWaroN
NCL SUOZ #8-SOM INLN

slelswol 0l G 0

¥166.9°6- - Mo

2oclee'ee t UBH
anje,

Buwirfoid™a

0017002 AX

94



APPENDIX N. COMPARISON OF Hgrys VALUES IN VONOROI PLOTS.

Voronoi Map
Type: Simple

Data Source:

Layer: XY_200_100
Attribute: HRMSMEAN_2

hRMS Mean Values
of 200m Buffer

Data Source:

Voronoi Map
Type: Simple

Layer: XY_200_100
Attribute: hRRMSField

hRMS Values
from Field Data

Voronoi Map
Type: Simple

Data Source:

Layer: XY_200_100
Attribute: HRMSMEAN _1

hRMS Mean Values
of 110m Buffer

hRMS Results
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APPENDIX M.

Site

0O = 0 L I

102
103
109
112
114
117

Hrms_in_figld HH2
0.51
225
1.07
1.47
0.79
177

1.6
0.95
232
1.58

1.1
0.9z
1.39
1.08

1
1.52
0.89
1.95
1.85
079
1.25
1.76
285
0.55
1.39
1.38
0.66
1.07
0.9z
0.45
1.13
1.69
1.02
1.84
1.58
2159
1.48
1.24
1.41
1.84
0.78
238
25

STATISTICS.

20.9083
215849
21.0725
22244
20,7852
212785
21.0374
207702
21.438
209351
21.8015
21.82
225873
20,7351
21.3488
21.4788
21.2581
212601
21.2554
21,4268
21.5152
21.0038
21.4204
21.25961
212817
212454
20.88
21.3088
21.504
21.0044
21.0261
21,2983
23.0658
228822
21.3561
227852
21.313:
212384
20,7529
222817
211785
228754
21.8799

Hrms2
1.70554001
273580003
2.13533993
1.816750904
1.085025585
1.61108005

1.77607
0.92142893
1.51613558
1615855585
1.95139003
2.62641001
1857599555

0.862048
215557003
260221004
273836008
274301004
2 604880086
2.282930993

282358
1.84885585
2 64650011

1.88817
1.97478558

2 3556599
1.44254005
2.85861993
2.059308008
1.69695097
1.92548001
2.83397007
1.57581557
1.25138585

2 54863
1.61003995
221183004

24145959
0.96317202
1.70000005
224022007
160792004
25427599

Zi2
1.107135595
1.018575998
1.014530M1
1.35877006
0.859775002
0.8957121M1
1.133825395
0.82250601
1.04633555
0.924055998
1.082770M1
1.18778004
117075597

0.858043
0.95133598
1.05650595
1.04114557
1.04042595
117357005
1.12331558
1.15840008
0.947232M1
1.05061596
1.023505998
1.01382005

1.10275
0.89550002
0.94652303
1.111525585

0.930143
1.12257005
1.01015897
1.37251002
1.317405995
1.05857003

1.287T13
0.897141403
1.10318002
0.85454795

1.32804
0.87510202
1.25405597
1.167395997

Hrms1
1.51612897
290136003
1.88303006
0.97257255%
0.955905908
1.01384005
1.77636003
1.2753359096
1321965995

1.45451
1.96273005
2. 703635998

0.230769
0.932726808
1.47567995%
254727006
3.002265908
30022659098
23447001
279725854
3.13488003
1.45954508
243555003
2100905995

230864
2039905908
1.72387004
2911675998

230091
1.65602005
206413007
2.9059858%

1.80273
1.40987003
3.00091004
1.30682003

247788
2395591002
0.70138501
1.35385001
2082580995
183182001
3.09135991

Zil

1 15665006

1.01954597
0.95693198
1.45648001
0.80688058
0.88535702
118272538

0.839504
0.87653258
0.97957402
1.01543004
1.14321005
1.185050M
0.92882502

0.56502459

1.058175997
111321558
1.11245008
1.14115005
1.08842003
1.156827003
0.87520803
1.06677997
1.10230005

1.09598
1.10500002
0.98858202
0.97834098
1.08535595
0.90470302
1.183965997
1.02223008
1.38156598
1.480845995

1.02091002]

1.325350094
1.01288003
1.03840995

0.8559874
1.31742001
0.95654703
1.285950M1
17707002
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Correlation Hms_in_field Hrms1
Hrms_in_field 1
Hrms1 0.117810979 1
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.117810979
R Square 0.013879427
Adjusted R Square -0.010172295
Standard Error 0.702000169
Observations 43
ANOVA
df SS MS F Significance F

Regression 1 0.284380492 0.284380492 0.577065841  0.451810671
Residual 41 2020497372 0.492804237
Total 42 2048935421

Coefficients Standard Emor t Stat P-value Lower 95% Upper 95%  Lower 99.0% Upper 99.0%
Intercept 1.768585449  0.285957005 6.184794971 2.3617E-07  1.191083567 2.346087331 0.996163734 2541007164
Hrms in field 0.144045964  0.189621864 0.759648499 0451810671 -0.238903155 0526995083 -0.368157068 0.6562483997

Hims_in_fiel Hms2

Hrms_in_fi 1
Hrms2 0.174432 1
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.174432

R Square  0.030426
Adjusted F 0.006778
Standard E 0.558087

Observatio 43
ANOWVA
df 58 MS F gnificance F

Regressior 1 0400737 0400737 1.286633 0.263258
Residual 41 12.76992 0.311461
Total 42 13.17065

Coefficientstandard Err t Stat P-value Lower 95% Upper 95% ower 99.0%/pper 99.0%
Intercept ~ 1.765845 0227335 7.767601 1.39E-09 1.306733 2.224957 1151773 2.379917
Hrms_in fi 0.170994 0.150749 1.134299 0.2632568 -0.13345 0475437 -0.23621 0.578193

Hms in fiel  Zit
Hrms_in_fi 1
Zi1 0.240316 1
I
[}
SUMMARY QUTPUT
Regression Statistics
Multiple R 0.240316
R Square  0.057752
Adjusted F 0.03477
Standard E 0.160832
Observatio 43
ANOVA

df S8 MS F gnificance F

Regressior 1 0.065002 0.065002 2512947 0.120598
Residual 41 1.060541 0.025867
Total 42 1.125543

Coefficientstandard Em__ t Stat P-value Lower 95% Upper 95% ower 99.0%ipper 99.0%
Intercept ~ 0.980357 0.065514 14.96404 3.28E-18 0.848048 1.112665 0.803391 1.157322
Hrms_in_fi 0.068868 0043443 1.585228 0.120598 -0.01887 0.156603 -0.04848 0.186216
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Hrms _in_fiel  Zi2
Hrms_in_fi 1
Zi2 0.298208 1

SUMMARY QUTPUT

Regression Statistics
Multiple R 0.298208

R Square 0.088928
Adjusted F 0.066707
Standard E 0.131731

Observatio 43
ANOWVA
df SS
Regressior 1 0.069446
Residual 41 0711474
Total 42 0.78092
Goefficientstandard Em

P-value Lower 95% Upper 95% ower 99.0%/pper 99.0%

Intercept  0.970322  0.05366
Hrms_in_fi 0.071183 0.035583

0.861954 1.078691
-0.00068 0.143043

0.825377 1.115268
-0.02493 0.167298

Hrms1 Hims2

Hrms1 1
Hrms2 0.889112 1
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.889112

R Square = 0.79052
Adjusted F 0.785411
Standard E 0.259408

Observatio 43
AMNOVA
df 55
Regressior 1 1041166
Residual 41 275899
Total 42 13.17065
Coefficientstandard Em

P-value Lower 95% Lpper 95% ower 99.0%/pper 99.0%

Intercept 0.60064 0.119629
Hrms1 0.712846 0.057308

1.05E-05 0.359045 0.842235 0.277501
0.59711 0.828583 0.558046 0.867647

HH2 Hrms1
HH2 1
Hrms1 -0.04125 1
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.041248

R Square  0.001701
Adjusted F -0.02265
Standard E 0.706322

P-value Lower 95% Upper 95% ower 99.0%pper 99.0%

Observatio 43
ANOWVA
df 55

Regressior 1 0.034861
Residual 41 20.45449
Total 42 2048935

GCoefficientstandard Emr
Intercept  3.008423 3.929734
HH2 -0.04838 0.183022

0.448327 492784 10.94468
0418 0.321239

-7.6065 13.62335
-0.54276 0.445995




HHZ Hrms2
HH2 1
Hrms2 0.002859 1
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.002859
R Square  8.17E-06
Adjusted F -0.02438
Standard E 0.566774
Observatio 43
ANOWVA
df S8 MS F ignificance F
Regressior 1 0.000108 0.000108 0.000335 0.955484
Residual 41 13.170685 0.321233
Total 42 13.17065
Coefficientstandard Em__ t Stat P-value Lower 95% Upper 95% ower 99.0%pper 99.0%
Intercept ~ 1.947257 3.153339 0.617522 0.540305 -4.42104 B8.315555 -B6.57048 10.465
HH2 0.002688 0.146862 0.018305 0985484 -0.29391 0.299283 -0.39401 0.39939
HH2 Zi1
HH2 1
Zil 0.779453 1
SUMMARY OUTPUT
Regression Siatistics
Multiple R 0.779453
R Square 0.607547
Adjusted F 0.597975
Standard E 0.103797
Obsemvatio 43
ANOWVA
df S8 MS F ignificance F
Regressior 1 0.68382 068382 6347105 7.37E-10
Residual 41 0441723 0.010774
Total 42 1.125543
Coefficientdandard Em__ t Stat P-value Lower 95% Upper 95% ower 99.0%pper 99.0%
Intercept  -3.5223% 0577483 -6.0995 312E-07 468866 -235613 -5.0823 -1.96249
HH2 0.214275 0.026896 7.966872 V.37TE-10 0.159958 0.268592 0.141625 0.286925
HHZ Zi2
HH2 1
Zi2 0.836323 1
SUMMARY QUTPUT
Regression Statistics
Multiple R 0.836323
R Square 0.699436
Adjusted F 0.692105
Standard E 0.075662
Observatio 43
ANOVA
df S8 MS F gnificance F
Regressior 1 0546203 0546203 9541003 2.91E-12
Residual 41 0234717 0.005725
Total 42 0.78092
Coefficientstandard Err__t Stat P-value Lower $5% Upper 95% ower 99.0%/pper 99.0%
Intercept  -3.04045 042096 -7.22265 8.01E-09 -3.8906 -2.1903 417754 -1.90336
HH2 0.191504 0.019606 9.767806 2.91E-12 015191 0.231098 0.138546 0.244462
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Zit Zi2

Zi1 1
Zi2 0.927581 1
SUMMARY QUTPUT

Regression Statistics
Multiple R 0.927581

R Square 0.860406
Adjusted £ 0.857001
Standard E 0.061905

Observatio 43
ANOVA

df S8 MS F ignificance F
Regressior 1 0.968423 0.968423 252.7086 3.92E-19
Residual 41 0157119 0.003832
Total 42 1.1255843

Coefficientstandard Err__{ Stat P-value Lower 95% Upper 95% ower 99.0%pper 99.02
Intercept  -0.11474 0.075538 -1.51896 0.136446 -0.26729 0.037813 -0.31878 0.089302
Zi2 1.1136 0.070052 15.89681 3.92E-19 0.972128 1.255073 0.924378 1.302823
HH2  ims in_field
HH2 1
Hrms_in_fi 0.370213 1

SUMMARY QUTPUT

Regression Statistics
Multiple R 0.370213

R Square 0.137058
Adjusted £ 0.116011
Standard E 0.559885

Observatio 43
ANOVA

df 55 M3 F ‘grificance F
Regressior 1 2041285 2.041285 6511883 0.01454
Residual 41 12.8523 0.313411
Total 42 14.89358

Coefficientsandard Em  t Stat P-value Lower 95% Upper 95% ower 99.0%/pper 99.0%
Intercept  20.92366 0.228067 91.74358 4.44E-49 2046307 21.38425 20.30761 21.53971
Hrms_in fi 0.385926 0.151234 2551839  0.01454 0.080502 0.691348 -0.02259 0.794436
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