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ABSTRACT

MODELING SOIL SURFACE ROUGHNESS WITH DUAL-POLARIZATION 

ADVANCED SYNTHETIC APERTURE RADAR (ASAR) IMAGERY

KERSTIN HASLINGER

Soil surface roughness was modeled using the Integral Equation Model (IEM) 

which is based on radar backscatter as a function of soil surface roughness and soil 

surface moisture.  The inputs to the IEM are the two backscatter bands from an ASAR 

dual-polarization image taken over the Hopi Reservation in northeast Arizona in May 

2004.  Output are two models of the parameters root mean squared height (hRMS) and 

correlation length (Lc), both of which are generated by the IEM.  Results showed that 

there is weak correlation between the in-field hRMS and the modeled parameters on field 

scale.  Error could be caused by the coarse interval used to determine the modeled hRMS.  

This research could be employed in agricultural decision-making.
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CHAPTER 1 – INTRODUCTION

In the past, mapping of soil surface properties, that is soil moisture, soil texture, 

and soil roughness, has been a tedious undertaking, which required an enormous 

amount of fieldwork and yielded data restricted to the sampled points only (Taylor 

1961; Johnson 1962).  With the emergence of remote sensing tools on airborne and 

orbital platforms, it became easier to track soil surface properties using thermal imagery 

as well as radar imagery, though the methods used were still flawed (Hanks 1980; 

Heidmann 1990; Fung, Li, and Chen 1992; Ulaby, Batlivala, and Dobson 1978).  

During the last decade, research advanced a great deal in terms of soil surface properties 

detection via remote sensing (Ulaby et al. 1996; Ridley et al. 1996; Taconet et al. 1996; 

Chen et al. 1995; Benallegue et al. 1995; Engman and Chauhan 1995; Dobson et al. 

1995; Taconet et al. 1994; Troch 1996; Altese et al. 1996).  Synthetic aperture radar 

(SAR), a type of radar system that uses an antenna which can cover large areas, became 

the tool of choice for many scientists, considering the fact that the physical properties of 

microwave radar interact especially with the dielectric property of water (Moran et al. 

2000; Moeremans and Dautrebande 2000; Wagner et al. 1999; Tansey et al. 1999; 

Meade et al. 1999; Saarenketo 1998; Schoups et al. 1998; Engen and Johnson 1999).  

The dielectric property is an indicator of radar reflectivity (the higher the dielectric 

constant, the more reflection of radar beams).

There still are questions, however, above all about the accuracy of soil moisture 

predictions by use of SAR, especially when using the C-band range.  This range of 

relatively short wavelengths is too short to be effective enough for deep surface 

penetration; it commonly penetrates only up to 5 cm depth, given favorable 
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circumstances (Avery and Berlin 1992; D'Urso and Minacapilli 2006; Altuncu, 

Akduman, and Yapar 2007; Svoray and Shoshany 2004; Baghdadi and Zribi 2006).  

Several factors, such as vegetation and soil texture, are also of importance for a reliable 

interpretation of a SAR scene, thus complicating C-band SAR predictions of soil 

properties.  To overcome these complications, a few models have been constructed 

which analyze the radar backscatter in terms of soil properties.  One of these is the 

Integral Equation Model (IEM) which replicates radar backscatter as a function of soil 

surface height (root mean squared height or hRMS), correlation length (LC), and soil 

surface moisture (ΘS) (Bindlish and Barros 2000; Baghdadi et al. 2004; Rahman et al. 

2008; Baghdadi and Zribi 2006; Baghdadi, Holah, and Zribi 2006).  The hRMS measures 

the standard deviation of corresponding mean soil surface height in centimeters 

(Rahman et al. 2007; Bryant et al. 2007).  The correlation length LC describes the length 

between two points at a distance beyond which the heights of a rough surface are no 

longer correlated to each other (Rahman et al. 2007; Mela and Louie 2001), it is an 

index of homogeneity measuring the furthest distance from a point at which the soil 

surface height is still the same.  Any roughness height values beyond the correlation 

length are considered entirely random.

This study examines soil surface roughness prediction using C-band SAR imagery 

for mostly homogeneously, barely vegetated semi-arid to arid rangeland, based on the 

IEM.  An IEM derived methodology for the prediction of the soil surface roughness 

parameter hRMS is applied to an Envisat Advanced Synthetic Aperture Radar (ASAR) 

alternating polarization image by use of a Geographic Information System (GIS).  With 
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a successful prediction of soil surface roughness, a deduction about soil surface 

moisture would be possible.
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CHAPTER 2 – LITERATURE REVIEW

SOIL PROPERTIES RETRIEVAL USING SAR SYSTEMS

Earlier work in soil properties detection via SAR concentrated on radar 

wavelengths of the L-band frequency (Engman and Chauhan, 1995).  The L-band has a 

frequency of approximately 1 to 2 GHz and its wavelength ranges from 15 to 30 cm 

(Avery and Berlin, 1992, 162).  This band allows for surface penetration to a depth 

substantial for soil moisture detection, but may be hindered by inopportune properties of 

the cover and subsurface materials.  At the turn of the 21st century, the SAR band used 

for soil roughness and moisture detection changed to C-band, a fact which is most likely 

due to availability and affordability of C-band images (Zribi and Dechambre, 2003; 

Moran et al., 2002; Moran et al., 2000; Magagi and Kerr, 2001).  The C-band has an 

approximate frequency of 4 to 8 GHz (Sullivan 2000, 8) and its wavelength ranges from 

3.8 to 7.5 cm (Avery and Berlin 1992, 162).  Because of its shorter wavelength λ, the C-

band signals cannot reach to the same subsurface depth as L-band signals, thus 

restricting it to soil surface parameters.  As an example, a C-band signal of 5.35 GHz 

penetrates to an average depth of about 5 cm (Moran et al. 2000).

The shallow subsurface backscattering, meaning the radar beams are reflected by 

subsurface material rather than by dielectric property, attained by the C-band SAR 

system is a relatively new method for soil surface properties detection, which appeared 

first in published peer-reviewed articles around 1998.  At the time, its application was 

usually complimented or validated by other methods, such as applications using thermal 

imagery of the same location and access time, soil indices, statistics, or hydrologic 
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models (Zribi and Dechambre 2003; Moran et al. 2002; Magagi and Kerr 2001; 

Chehbouni et al. 2001).  Several of the older articles reviewed for this research project 

discuss the validation of soil moisture rates and soil roughness parameters detected by 

C-band SAR systems, which confirms that researchers are still looking for a fast and 

easy-to-use, yet reliable method for soil surface properties detection via SAR systems.

ENVISAT ASAR

The European Space Agency (ESA, 2004) launched its Envisat satellite into a 

sun-synchronous flight path (meaning it mimics the sun’s motion across the sky) on 

March 1st, 2002 and started the data acquisition four days later (Figure 1).  By January 

2004, Envisat completed its 10,000th orbit, the equivalent of 450 million kilometers of 

travel.

Figure 1. The Envisat satellite (Source: ESA 2005).

The satellite is orbiting the earth from pole to pole fourteen times a day at an altitude of 

roughly 800 kilometers and a speed of 7.45 km/s (European Space Agency, 2005).  
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According to ESA, the satellite repeats its reference orbit once every 35 days (501 orbits 

in a cycle) which translates to complete coverage of the globe in one to three days for 

most of its sensors.  Onboard the satellite is a payload of a dozen remote sensing tools, 

one of which is called ASAR, an acronym that stands for “Advanced Synthetic Aperture 

Radar”.  ASAR is independent of weather and works during the day as well as at night 

(Desnos et al., 2000).  The ASAR remote sensing tool makes use of a matrix of 

incidence angles (the angle at which the beam reaches the earth’s surface) and 

polarizations (the orientation of the oscillation of the radar waves, either vertical or 

horizontal) with the result of 37 different operating modes (ESA, 2004).  This allows for 

a multitude of applications, both at regional and global scale, that include monitoring of 

ice-sheets, oceans, agriculture and forestry, surface elevation, geology, topography, 

hydrology, flooding, and vegetation (Desnos et al., 2000; European Space Agency, 

2005).  The multitude of operating modes, however, consequently calls for a new way 

of testing the accuracy of the ASAR backscatter performance.  The outcome of these 

tests provides an average radiometric resolution of 1.7 dB and an average noise 

equivalent (measures the sensitivity of the radar system) of approximately 23 dB across 

all possible operation modes.  At the same time, the average radiometric stability (a 

measure of precision) is 0.47 dB.  The average spatial resolution (azimuth x range) at 

alternating polarizations for all ASAR products is 29 m x 30 m.

Due to the fact that ASAR uses an active antenna which can cause gain and phase 

instabilities, a threefold of radiometric calibrations has been devised, made up of 

internal and external calibration, as well as external characterization (Desnos et al., 

2000; ESA, 2004).  The calibration includes algorithms like chirp replica construction 



14

(a correlation function which adjusts the SAR backscatter) and elevation gain 

(backscatter amplification) monitoring.  The external characterization is done by use of 

an image of the Amazon rainforest, which is known for being “a stable, large-scale, 

isotropic distributed target with a relatively high backscatter and a well-understood 

relationship between backscatter and incidence angle” (ESA 2004: 2.11.4.1).  The 

absolute calibration of the ASAR operating mode used for this study is further discussed 

in the methodology.

According to the Envisat-1 Products Specifications, the Level 0 Alternating 

Polarization (AP) product consists of time ordered Annotated Instrument Source 

Packets (AISPs) which are collected in the instrument’s image mode.  In the case of the 

data used for this study, the alternating polarization (AP) cross-polar H Level 0 is used 

which has a polarization combination of horizontal / horizontal (HH) and horizontal / 

vertical (HV).  These two polarizations are co-registered within 0.25 of a sample.

The Alternating Polarization Ellipsoid Geocoded Image (AP_APG) is a Level 1 

product that has been generated from an AP cross-polar H Level 0 product by use of 

SPECAN (spectral analysis) algorithm, corrections, and relative calibration.  The 

AP_APG imagery used in this study is geolocated and resampled to WGS-84, Lat Long 

map projection.

The geometric sampling has a pixel spacing of 12.5 m by 12.5 m (European Space 

Agency 2005).  The geometric accuracy as given by the Envisat Products Specifications 

is 25 m.  The algorithms used for generation of the AP-APG imagery include: data 

decompression; raw data correction; calibration pulse processing; antenna elevation 
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gain function calculation; noise power estimation; image formation (SPECAN); 

geolocation; and map projection resampling.

THE INTEGRAL EQUATION MODEL

These complex derivations take into account Fourier transforms ( mW , a kind of 

signal processing) of the surface correlation coefficient, Fresnel reflection coefficients 

(description of wave reflection), and Kirchhoff surface Field Coefficients ( qpF , *
qpF , 

description of wave scattering on rough surfaces).  Baghdadi et al. further calibrated the 

formula with semi-empirical values for the optimal correlation length (Lopt) so that it 

can be used especially on bare agricultural soils (Baghdadi et al. 2004).

The IEM is a physical model established on electromagnetic scattering theories, 

thus it can be applied on any surface conditions or radar set-up, while statistical models 

are only valid for like radar and surface conditions as in the experimental set-up they are 

derived from (Baghdadi et al. 2004).  With the IEM, radar backscatter σ0 is predicted as 

a function of sensor configuration and surface conditions that simplified can be stated as

 CRMSS Lhf ,,0 

whereby all three parameters (soil surface moisture ΘS, soil roughness hRMS, and 

correlation length LC) are typically unknown parameters (Rahman et al. 2007).  By 

inversion of this function, one can predict each of the soil surface parameters by 

substituting the other two parameters with calibration data (for example by in-field 

measurements).

Rahman et al. developed an inversion of the IEM using a so-called dry scene 

where the soil moisture content is minimal, thus leaving only the two soil roughness 
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parameters as unknowns (Rahman et al. 2007).  This allows for an accurate prediction 

of the soil surface roughness parameters.  Because the correlation length LC is directly 

related to the soil surface roughness hRMS, it is then possible to construct a valid 

derivation of the correlation length. In turn, with the correlation length known, the IEM 

can be used to estimate the soil roughness parameter hRMS (Rahman et al. 2008).  

Rahman et al. expanded their research to predict soil surface moisture, now that they 

derived both roughness parameters.  For their study, the authors used multi-angle ASAR 

imagery, meaning imagery with more than one incidence angle.  In their conclusion, 

Rahman et al. noted that the alternative multi-polarization imagery (i.e. AP_APG) 

would be advantageous, because it would do away with registration errors that may 

happen when matching multi-angle imagery.

EFFECT OF VEGETATION

Depending on the wavelength of the radar beam, the backscatter will include 

vegetation.  As a general guideline it can be said that the longer the wavelength, the 

better the penetration of vegetation by the radar beam (Jensen 2007).  Therefore, an X-

band radar with a wavelength of less than 3 cm will result in a backscatter of the top 

part of the vegetation present at the site, while an L-band radar with a wavelength of 

more than 20 cm will result in a backscatter that includes the entire vegetation as well as 

the soil surface.  Therefore, C-band radar with a wavelength range from 3.8 to 7.5 cm 

will produce backscatter that penetrates vegetation to some degree.  This, of course, 

depends on the height of the vegetation: a forest with tall trees will require longer 

wavelength to penetrate than ankle-high grasses.  According to Moran in her email, the 

following applies to C-band radar backscatter on vegetation (Moran 2008):
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“a) the C-band radar seems to penetrate our sparse grassland vegetation (LAI<1) 
and particularly so when it is dry;
b) we found that radar could be used to map shrub density (so it is more sensitive to 
woody vegetation, even though vegetation is sparse); …”

This means that the vegetation present at the site, measured by the LAI (leaf area 

index), will not alter the radar backscatter over all, if the vegetation of the study site 

consists of sparse, dried-out grasses and is void of woody vegetation.

In an article by Thoma et al., the authors adjusted the scale of the radar imagery in 

order to rid the image of backscatter errors due to vegetation (Thoma et al. 2008).  Their 

imagery had an original resolution of 7 m x 7 m per pixel.  The authors used a 5x5 

median filter to reduce speckle, followed by a spatial averaging of the image to obtain 

higher accuracy.  The resulting image had to be adjusted due to filtering and averaging, 

resulting in a product that had a resolution of 162 m x 162 m per pixel for their 

watershed site in southern Arizona (Walnut Gulch Experimental Watershed).  The 

article by Thoma et al. is complementing an article by Hutchinson on the detection of 

near-surface soil moisture in grasslands of Kansas (Hutchinson 2003).  In his study, 

Hutchinson concluded that C-band radar is “capable of monitoring general near-surface 

soil moisture conditions over highly productive vegetated ecosystems such as tallgrass 

prairie” (Hutchinson 2003, 234-235).  .  Though that study focused on soil surface 

moisture retrieval, it also validates this soil surface roughness study: both soil surface 

moisture and soil surface roughness are measured at the same level (i.e. at the soil 

surface) and both parameters are included in the IEM.  Furthermore, the study sites in 

Kansas and southern Arizona feature more and denser vegetation than the study site 

used for this research project, thus vegetation is no hindrance in terms of C-band radar 

backscatter.
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CHAPTER 3 – DATA ACQUISITION AND PROCESSING

STUDY SITE

This research is designed for soil surface properties detection on semi-arid to arid 

rangeland.  A location suitable for this study features sparse, homogeneously distributed 

short vegetation.  Also it should not feature rocks or rock fragments (surface or 

subsurface).  The study site offers a wide variety of locales for random field sampling; 

at least 30 samples are needed for a viable statistical analysis.  Furthermore, the 

sampled locations have to be either level surface or of gentle slope to (a), ensure an 

even distribution of soil surface properties over a large area, and (b), reduce the risk of 

topology error of the radar image analysis.

The Hopi Reservation is most suitable for this study, because it fulfills all the 

above requirements.  An already ongoing project --an analysis of soils on the Hopi 

Reservation suitable for agriculture by Pinnacle Mapping Technologies (Flagstaff, 

Arizona) from May 2004-- provided the ASAR data and soil surface properties sample 

information needed for this study.  Said project and the use of its data for this study 

were authorized by the Hopi Tribe’s Department of Natural Resources, Water 

Resources Program, Consulting Agreement #03-050, and supervised by Mr. Nat 

Nutongla.  Aside from sampling of soil moisture rates at depth, surface roughness and 

soil texture throughout the reservation conducted by Pinnacle Mapping Technologies, 

no other fieldwork was necessary.  Because of this study’s focus on soil surface 

properties modeling via ASAR data, site descriptions were general only; out of respect 

for the Hopi Tribe, any possible cultural location were neither studied nor mentioned in 

this study.
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The Hopi Reservation is located on the Colorado Plateau at an approximate 

elevation of 5,675 feet (according to GPS data available for this study) (Map 1).  

Though the area features buttes, mesas, and rolling hills, the sample sites are all located 

on level ground  (Figure 1).  The sample sites all have a slope of less than 5%, most of 

them are considered flat (less than 2% slope).  The vegetation is sparse, composed 

mainly of desert grasses (Figure 2).  Most of the grasses are short (in at least one case 

due to overgrazing)(Figure 3), sometimes accompanied by short brush like snakeweed, 

saltbush, or sage.  A few of the sites also feature scattered taller bushes like Mormon tea 

or pinion pine with juniper in the distance (Figure 5).  A biological or organic soil crust 

has been noted at only two sample sites, which have been determined shrubland, 

featuring mainly saltbush and snakeweed. Most of the other sample sites have a crust of 

dried topsoil that may be a sign of high clay or clay-sized particle content (Figure 4).  

For the most part, this crust is easily disturbed, meaning it crumbles when lightly 

touched.  At some sites, the crust consists of a thick layer of baked topsoil with 

mudcracks (Figure 6).  None of the sample sites include rock fragments at or below the 

surface.  Though there is a site where the soil has been compacted (fragipan), the 

majority of sample sites consist of sandy material.
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Figure 2. Study Site:  Sample Site Locations on Hopi Reservation.
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Figure 3.  Sample site 88.  Desert grasses and snakeweed are prominent at this sample site.

Figure 4.  Sample site 79.  Vegetation is extremely short and dried out; the patches of desert grass 
are overgrazed.
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Figure 5.  Sample site 6.  The soil is covered by a clayey crust that crumbles easily when disturbed 
(for example, by walking on it).

Figure 6.  Sample site 117.  Here, also, an easily disturbed clayey crust covers the sandy soil.  
Visible in the distance is a patch of scattered pinion pine and juniper. 
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Figure 7. Sample site 55.  The thick clay crust at this site shows signs of the mudcrack pattern usual 
for a dry playa.

Figure 8.  Sample site 3.  Short grasses and brush are spread over a crusted sandy soil.
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DATA ACQUISITION AND PREPARATION

With permission of the Hopi tribe, the author of this research through Pinnacle 

Mapping Technologies obtained ASAR data.  The radar imagery was further described 

in the header analysis below.  The ASAR image was taken on May 8, 2004, which 

makes the image a “dry scene”, meaning there has been little rainfall and the soil 

moisture content is very low.

Other information necessary for this study included GIS layers of hydrology, soil 

types, and infrastructure present on the reservation; a Digital Elevation model (DEM); 

and data collected in the field May 7 to 9, 2004.  The sample sites were generated by 

random, using slope as the main characteristic to ensure a reasonably flat surface.  The 

field data products consisted of gravimetric and volumetric soil moisture rates, GPS 

locations, vegetation profiles, soil texture categorization, and micro-relief calculations 

for each of the 70 sample sites.

In the field, several procedures were completed at each sample site. First, a 

volumetric soil moisture measurement was taken at a depth of 0 to 20 cm, using one of 

three products: ESI MP-917, Campbell Scientific TDR 100 and TRASE.  A soil sample 

of roughly 250 g was collected and stored in an airtight bag for further analysis.  The 

vegetation in the vicinity of the sample site was recorded.  Digital photographs were 

taken to document the surrounding area of each sample site.  The soil surface roughness 

was traced several times in the immediate neighborhood (< 10 m) of the sample site by 

use of a pin-meter, consisting of 50 one-centimeter diameter rods that record the local 

elevation at micro-scale level.
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At the lab, the field data were then transcribed into an Excel table that was used 

for several calculations.  First, the radar reflectivity of the study site was checked by 

means of the Raleigh Criterion and the Peak & Oliver Modified Criterion. Both 

criterions are indicators of soil surface roughness respective to radar scattering and 

penetration.  The Peak & Oliver Modified Criterion features an intermediate category 

and therefore allows for more detailed distinguishing than the Raleigh Criterion that 

only decides between smooth and rough surfaces.  For this study, the Raleigh Criterion 

was determined by the formula 



cos*8


RMSh for rough surfaces, and the Peak & 

Oliver Modified Criterion by 



cos*25


RMSh for smooth, 




cos*4.425


RMSh for 

intermediate and 



cos*4.4


RMSh for rough surfaces, where λ = 5.3GHz.  The two 

criterions were evaluated at maximum (43.5°), average (41.2°), minimum (38.9°), and 

random incidence angle Θ (40.5°) in order to check the full range of possible outcomes 

(Appendix A).  The results, especially those of the Peak & Oliver Modified Criterion 

calculations, indicated that generally all sample sites are suitable for this study.  The 

reflectivity calculations were stored in an Excel table. 

In this Excel workbook, called “FieldDataWork” (FDW), each sample site was a 

record with the site number and a unique ID.  The UTM easting, northing, and elevation 

also functioned as an identifier.  Another column in the table was set up for the 

dominant vegetation.  The vegetation as described in the field was stored in the Excel 

workbook (Appendix B), where the different types of vegetation in general and plants in 
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particular, as well as the decision about the dominant vegetation (e.g. grasses versus 

shrubs) were recorded.

Also recorded in the Excel workbook was the soil moisture information 

(Appendix C).  The soil samples collected in the field were taken to the U.S. Forestry 

Service’s soil laboratory on campus for gravimetric soil moisture analysis.  There, 

portions of roughly 100 g of each sample were weighed before and after a 24-hour 

drying period.  For each sample site, the resulting difference between wet and dried soil 

was used to compute the soil moisture percentage present. Also, the gravimetric water 

content was calculated by the formula 
ms

m
w w , where w is the gravimetric water 

content, mw the mass of water, and ms the mass of dry soil (van Es and Ogden 1997).  

The in-field volumetric soil moisture measurements, taken with three different probes 

and calibrated by Pinnacle Mapping Technologies, were also recorded in the table.  

Because the probes averaged the soil moisture data for a soil column from top to 20cm 

depth, the resulting volumetric soil moisture data were used only as an approximation in 

the decision on whether the May 2004 ASAR image could be used as a “dry scene” or 

not.  However, the gravimetric soil moisture test, though from samples at depth, resulted 

in a mean gravimetric water content of 0.06 33 mm for all sample sites.  Digging out the 

soil samples, the common observation was that soil moisture increased with depth 

which further supported the decision that the top soil had to be drier than the 

gravimetric water content of the soil samples.  A gravimetric water content between 

0.02 33 mm and 0.08 33 mm was considered dry (Rahman et al. 2007), and therefore 

the May 2004 ASAR image could indeed by used as a “dry scene”.
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For the soil texture analysis, a methodology has been devised after consulting 

several authors’ analyses (Birkeland 1999; Integrated Publishing 2004; Western Upper 

Peninsula Center for Science 2004; Francek and Valek 2004; Butler 2004; Gerakis and 

Baer 1999).  The remaining share of all soil samples, about 150 g, was left to dry out at 

room temperature, each sieved with a 4 mm sieve to rid the soil sample of all larger 

particles (of which there were only a few), then portioned to a 100 g sample.  These 

weighed samples were then, one-by-one, analyzed for soil texture consistency by use of 

a shaker at the Northern Arizona University Forestry department’s soil science 

laboratory.  The shaking apparatus consists of several mesh grids, stacked from coarse 

to fine: mmxmm 12  and mmxmm 5.01  for sand, mmxmm 063.05.0  for 

silt, and xmm 063.0 for clay distinction.  Each sample was shaken at a constant rate 

for a set time period of 15 minutes, and the content left in each of the mesh grids was 

weighed individually.  These recorded weights were then converted into percentages 

using an Excel table in the FDW workbook.  The subsequent soil type classification was 

based on these percentages and was done in part with the soil texture triangle software 

called TRIANGLE by Gerakis and Baer (Gerakis and Baer 1999).  The results showed 

that soils were mostly of silt loam, followed by silt and sandy loam (Appendix D).  The 

clay content in all of the soils was less than 10%.

The root mean square height (hRMS) of each sample site was calculated by the 

formula  
2

*
1











n

i
i zz

n
, where z is the mean height measurement, zi is an 

individual height measurement, and n is the count of height measurements.  There were 

several pinmeter readings taken at each sample site, but only one data set of averaged 
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height measurements per sample site is currently available for this study. The hRMS

equation was applied on these averaged readings (by use of an Excel table in the FDW) 

and therefore the results were only approximations (Appendix E).

All results were combined in an Excel table in the WDF workbook (Appendix F).  

This table was converted to dBase IV (DBF) format in order to employ it in an ArcGIS 

project.  The field data results table was imported into a new ArcGIS project and the 

XY data were displayed using the table fields “Easting” and “Northing” from the GPS 

locations as X and Y fields, respectively.  Though ArcView reported that the XY data 

event layer had no known projection, the GPS locations were in UTM Zone 12N WGS-

84.  Two buffered layers of the sample site event layer were created with buffer radiuses 

of 110 m and 200 m.  For their study of the Walnut Gulch Experimental Watershed, 

Rahman et al. used an initial buffer of 110 m x 110 m in their study (Rahman et al. 

2008) which they widened to 150 m x 150 m due to image registration errors.  Such 

image registration errors were not present in this study because of the use of dual band 

imagery, therefore a 110m x 110m buffer was deemed sufficient.  Thoma et al. argued 

that best results could be achieved with the driest soils at broadest scale (Thoma et al. 

2008).  The authors found that a ground resolution of 162 m was the smallest effective 

resolution for their Walnut Gulch Experimental Watershed study site (same as used by 

Rahman et al.).  For this study, a second buffer with an increase in buffer radius of 

approximately 80 percent (= 200m) was chosen to verify or contrast results of the initial 

110 m buffer radius (Figure 9).  Figure 9 also depicts the variety of pixel values possible 

in side the buffers which may have negatively influenced the final results.
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Figure 9. Sample Site XY-data point with two buffer rings (110 m, 200 m) on HH-band, showing individual 
pixels.

Several GIS layers obtained by Pinnacle Mapping Technologies were also 

employed, mainly as cartographic references. These layers included an outline of the 

Hopi reservation, major streams, and roads.  All GIS layers were previously reprojected 

to UTM Zone 12 WGS-84.
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Figure 10. Flowchart Field Data Collection and Preparation.

ASAR HEADER ANALYSIS

The ASAR Handbook gives a detailed description of the image header file 

(Appendix G) (ESA 2009).  The ASAR image used for this project is a level B1 

product, meaning it had already been processed by ESA (Appendix G)).  Level 1 (N1) 

products are only one processing step above raw data (higher level products are also 

available from ESA).  According to the ASAR handbook,
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“Level 1B products are geolocated products in which data has been 
converted into engineering units, auxiliary data has been separated from 
measurements, and selected calibrations have been applied to the data.  These 
products are the foundation from which higher-level products are derived. Level 0 
products are transformed into Level 1B products by application of algorithms and 
calibration data to form a baseline engineering product.” (ESA 2004, Chapter 2).

The ASAR operating mode product for this research is named ASA_APG_1P, 

which translates to alternating polarization, ellipsoid geolocated ASAR imagery (ESA 

2004).  The image consists of two co-registered bands acquired simultaneously (time 

ordered).  The first band, or Image Data Set (MDS), has cross-polarization HV 

(Appendix H).  The second MDS has co-polarization HH (Appendix H).  The incidence 

angle and worst-case backscatter σ0 depend on the Image Swath (IS), which in this case 

is IS6.  This translates to an incidence angle of 39.1 to 42.8 degrees and a worst-case σ0

of –22.0 dB; further a swath width of 70 km and a ground position from nadir of 550 to 

620 km.  The projection is WGS 84 Lat Long (UTM, by resampling); the pixel size is 

12.5 m by 12.5 m.  The imagery has a radar frequency of 5.33 GHz (Appendix G)).

ASAR PREPROCESSING BY ESA

As mentioned in the literature review, every raw ASAR image has been 

preprocessed by ESA before application of any other parameters or formatting steps.  

The included processes were: validation of raw ASAR data; block adaptive quantization 

(BAQ) decoding; raw data analysis; raw data correction; replica construction and power 

estimation; and noise power estimation (ESA 2004: 2.6.1.2.1).  For backscatter 

calibration of ground range detected products (of which ASA_APG-1P is one of them), 

the calibration formula is
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for i=1…L and j=1…M,

where K is the absolute calibration constant; DN2
i,j is the pixel intensity value at image 

line and column “i,j”; σi,j is sigma naught at image line and column “i,j”; αi,j is the 

incidence angle at image line and column “i,j”; γi,j is gamma at image line and column 

“i,j”; and L,M  are number of image lines and columns (Rosich and Meadows 2004).  

Sigma naught is converted to decibel by the following formula:

   0
10

0 log*10  dB .

Because ASAR images arrive already calibrated by ESA, further calibration may not be 

necessary.  However, adding more processing steps, such as speckle filters (median or 

Lee), to the level 1B product after acquisition from ESA will increase the error.
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Figure 11. Flowchart ESA Pre-Processing
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ASAR PROCESSING

The processing and analysis steps of this study tracked the example given by 

Rahman et al. (Rahman et al. 2008).  The authors documented their project of 

employing the IEM to predict soil surface roughness parameters and soil surface 

moisture in a series of journal articles, using the like-polarized bands of four different 

ASAR APG images (Thoma et al. 2004; Rahman et al. 2007; Rahman et al. 2008).  The 

equations developed by Rahman et al. were also utilized in this study.  This was 

possible, because the conditions present and images employed for their research were 

similar to the conditions and image in this study.

The software employed for processing and image analysis of the ASAR image is 

called Nest ESA SAR Toolbox (NEST) and available free of charge from ESA 

(ESA/Array Systems Computing Inc. 2009).  ESA has developed a series of software 

tools to aid the conversion and filtering of raw Envisat data (as in Level 1B AP data 

format), previously released as Basic Envisat SAR Toolbox (BEST), which lacked user 

friendliness and tended to crash.  Perhaps due to these disadvantages, ESA developed 

NEST, a user-friendly application with intuitive GUI (graphical user interface), better 

control options, and more processing and analysis tools.  The current version of NEST 

is Nest 3B, released in October 2009, and can be downloaded at 

http://www.array.ca/nest/tiki-index.php.  The steps taken with NEST included header 

analysis, amplitude to power conversion, speckle filtering, statistical analysis, and band 

arithmetic.

The raw image file is in ESA N1 file format and could not be imported into any of 

the standard image processing software available to the author, consequently had to be 
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converted into a standard image file first.  The ASAR May scene available for this study 

was imported into NEST.  By importing an ASAR image, the software automatically 

added all image information grouped by metadata and bands to the project.  Any 

alterations or processing steps on the image completed had to be saved in order to not 

accidentally lose them; NEST uses the BEAM-DIM file format for this.

The first processing step was the conversion of both amplitude bands (HH and 

HV) from “Linear to dB”.  It was necessary to convert to decibel units (dB), because the 

raw image’s digital numbers (DN) were given in units of amplitude which were values 

local to this particular image and cannot be used globally.  The conversion was done 

automatically by NEST; no further user input was needed to calculate the dB values.  

The converted image was then speckle filtered.  The NEST speckle filter tool allows for 

different filtering options.  A median filter with 9 by 9 pixels was used for de-speckling 

the image, cleaning the salt-and-pepper raw image by removing noise (Appendix I).  

After the speckle filtering, the band statistics and histograms were calculated and the 

file was saved (Appendix I).  Further image enhancement was not deemed necessary, 

because there were no extreme data values.  Also, image registration was not needed, 

because the two bands were co-registered, and image-to-ground registration was evened 

out by an increase in pixel size later on.
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CHAPTER 4 –MODELING ROUGHNESS WITH THE IEM

BACKSCATTER DIFFERENCE

In NEST, the image file was saved as BEAM-DIM after de-speckling and dB 

conversion.  Using the NEST utility tool “Band Arithmetic”, a backscatter difference 

map 0 was created (Appendix J).  According to Zribi and Dechambre, the 

backscatter difference 0 is a proportion of the roughness parameters hRMS and Lc (Z-

index), such that

 
c

RMS

L

h
g

2
0 

when two different incidence angles are applied, all else being equal (Zribi and 

Dechambre 2003).  In the case of this study, the incidence angle (range) was virtually 

the same for both bands, however the polarization was different.  It was assumed that 

the function by Zribi and Dechambre was applicable for this study, as long as all else 

was equal.  The formula entered in the Equation Calculator in NEST was

HVHH 000   ,

where HH0 is the backscatter of the HH band and HV0 the backscatter of the 

HV band (Appendix J).

Rahman et al. modified the above Z-index formula and set it equal to another function 

developed by Zribi and Dechambre (Zribi and Dechambre 2003; Rahman et al. 2008):

 
  c

RMS

L

h 5.2

0

0

*138.01

*09.0618.0







.
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The left side of this formula was used to calculate the Z-index.  This was also done with 

the NEST “Band Arithmetic” tool.  The resulting image depicted the proportion of both 

roughness parameters for each pixel value (Appendix J).

NUMERICAL SOLUTION FOR HRMS AND CALCULATION OF LC

Since the Z-index maps the proportion of the roughness parameters, it was 

plugged into a formula that Rahman et al. fitted with their data as an approximation of 

the IEM (Rahman et al. 2008):

 
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


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
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This exponential formula cannot be solved other than numerically.  An Excel table was 

created for this task, with possible hRMS values on the x-axis and Z-index values (as 

determined from the Z-index map histogram) on the y-axis.  Each possible pair of Z-

index and hRMS values was plugged in the exponential formula so that every cell returns 

a particular solution for a pair of hRMS and Z-index values (Appendix K).  By means of 

this look-up table, an hRMS reclassification scheme was devised that groups common 

0
dry and Z-index pairs with an hRMS value.  Back in NEST, the HHdry

0 band was 

reclassified by a set of virtual bands of which each was assigned a particular hRMS value 

(Figure 12).  All of these virtual bands were then combined in one band by adding them 

with the NEST “Band Arithmetic” tool.  The resulting band depicts the hRMS map 

(Appendix L).
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Table 1. hRMS Classification

With the hRMS map available, one can now solve the Z-index equation for the roughness 

parameter Lc.  The formula

c

RMS

L

h
indexz

5.2



was applied on the hRMS map, again using the NEST “Band Arithmetic” tool.  The 

resulting image illustrates the Lc values for this particular ASAR image.  As a result of 

this study, the two roughness parameters hRMS and Lc have been mapped using the IEM 

and a dual-polarity ASAR image (Figures 15 and 16, Appendix L).
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Figure 12. Flowchart NEST Processing
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Figure 13. Modeled Z-Index map.
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Figure 14. Modeled hRMS map.
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Figure 15. Modeled Lc map.
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CHAPTER 5 – STATISTICAL ANALYSIS AND DISCUSSION

EXTRACTING VARIABLE VALUES

Though NEST is a very good tool for ASAR image processing and band 

arithmetic, it lacks statistical analysis tools.  The NEST file format for ASAR images is 

not applicable in other image processing and GIS software packages, therefore all bands 

of interest have to be converted to GeoTIFF file format for further processing and 

analysis.  Unfortunately, the NEST version of the GeoTIFF format cannot be imported 

into ArcGIS, so it has to be converted to IMG format using ERDAS Imagine first.  All 

relevant bands of the de-speckled image were exported as GeoTIFF and imported in 

ERDAS Imagine.  With the import, the bands were converted to IMG format.  They

were also reprojected to UTM Zone 12 WGS-84 to fit the GIS layers and XY-event 

layer.

The ASAR image bands hRMS, Lc, HH-dB, and Z-index were imported into 

ArcGIS.  First, the XY-data event layer of the field data points and the buffered layers 

were stripped of all points and buffers that were not located on the ASAR image 

(Appendix M).  The buffer layers were then checked to verify that their ID values 

coincide with their corresponding points of the XY-data layer.  This step had to be taken 

to ensure that the field data for each sample location was matched with the correct 

location on the ASAR image.

Using the Zonal Statistics tool in the Spatial Analyst extension, the mean value for 

each buffer zone was calculated on each of the four calculated ASAR bands.  Thus, all 

pixel values within each of the two buffered zones around each sample site were 

statistically evaluated (Figure 9).  The resulting statistical description was stored in 
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look-up tables (LUT) which were related to the appropriate buffer layer: the statistical 

mean and standard deviation for each point in the 110 m buffer zones were stored in a 

LUT and related to the 110 m buffer layer; the statistical mean and standard deviation 

for each point in the 200 m buffer zones are stored in another LUT which is related to 

the 200 m buffer layer.  A set of Vonoroi plots depicted a Thiessen Polygon comparison 

of the hRMS values of the field data and the two buffered mean values for each sample 

point (Appendix N).  The statistical information was then transcribed to the XY-data 

layer of the field data points.  The XY-data event layer was then saved as a shapefile 

(SHP) that stores the XY-data in a DBF format table.

Figure 16. Flowchart Data Preparation for Statistical Analysis
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STATISTICAL ANALYSIS

The DBF format can be opened by Excel, where the tables are rearranged and 

then transcribed into MYSTAT, the free-of-charge student version of the statistical 

software SYSTAT.  In MYSTAT, the table was prepared for the statistical analysis: the 

table itself had to be variable values only, so the column headers were cut and pasted to 

the appropriate table variable name boxes; some variables were imported in string 

format and had to be changed to number format.  The statistical analysis consisted of 

three parts, namely descriptive statistics, correlation and regression (Figures 18, 19 and 

20, respectively).  It focused mainly on the relationships between the in-field value of 

hRMS and the modeled mean values of Z-index and hRMS within the buffered areas.  

There were 43 valid cases of in-field hRMS mean values, therefore the statistical analysis 

was reduced to those modeled sites which corresponded with these in-field values 

(Figure 18).  Compared to the mean in-field hRMS, the arithmetic mean decreased 

slightly in the modeling of the Z-index, but almost doubled in the modeled hRMS.

Table 2. Descriptive Statistics of in-field hRMS in combination with the buffered means of Z-index 
and hRMS (where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).

The correlation analysis featured the four pairings of the in-field  hRMS and the 

buffered counterparts from the Z-index and hRMS bands (Figure 19).  Of these pairings, 

the combinations in-field hRMS and modeled Z-index had a Pearson’s R of 0.240 for the 
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110m buffer and 0.298 for the 200m buffer, while the corresponding modeled hRMS

mean values of these buffered areas had a Pearson’s R of 0.118 and 0.174, respectively.  

The elliptical shape of the correlation plots illustrated a weak correlation between in-

field hRMS and Z-index values and an almost non-existent correlation between the in-

field hRMS and the modeled counterparts.  It was not surprising that the combination of 

hRMS1 (110 m buffer) and hRMS2 (200 m buffer) revealed a large correlation (0.889); 

after all, the entire 110 m buffer zone was included in the 200 m buffer.  The correlation 

between Z-index1  (110m buffer) and Z-index2 (200m buffer) is even stronger (0.928). 

Figure 17. Pearson Correlation Matrix of hRMS in combination with the buffered means of Z-
index and hRMS (where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).
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Table 3. Pearson Correlation Matrix of hRMS in combination with the buffered means of Z-index 
and hRMS (where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).

The regression analysis paired in-field hRMS with the modeled Z-index and hRMS

values, as well as the two modeled hRMS values with each other and with the backscatter 

band 0
dry in least squares regression, all at a confidence interval of 0.99%.  For the 

combinations of in-field hRMS with modeled hRMS1 (110 m buffer) and hRMS2 (200 m 

buffer), the values of regression coefficient R indicated moderate relation of R = 0.118

at a P-value of 0.452 and R = 0.174 at a P-value of 0.263, respectively (Figure 20).  The 

pairings of in-field hRMS with Z-index1 (110m buffer) and Z-index2 (200m buffer) 

resulted in a regression coefficient of R = 0.240 at a P-value of 0.120 and 0.298 at a P-

value of 0.052, respectively (Figure 20).  The least squares regression of the two 

buffered hRMS values against each other yielded a near perfect regression correlation of 

R = 0.889 with a mean squared error of 0.067 and a P-value of 1.68*10-15.
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Figure 18. Least Squares Regression Plots of in-field hRMS in combination with the buffered means 
of Z-index and hRMS (where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).

Neither the in-field hRMS nor the modeled values of hRMS and Z-index showed 

any relation with the 0
dry band (Figure 21).  The mean values of Lc were not included 

in the statistical analysis, because Lc is proportional to hRMS as defined by the Z-index.
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Figure 19. Least Squares Regression Plots of Z-index and hRMS in combination with the buffered 

mean of 0
,HHdry (where 1 = mean of buffer 110 m, 2 = mean of buffer 200 m).
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DISCUSSION

The mapping of distributed soil surface roughness used to be a tedious 

undertaking.  It encompassed several days of fieldwork that only yielded data restricted 

to the sampled points.  Furthermore, the data were only valid for the point in time of 

their collection, hence the data could not be utilized to cover a larger area or time range.  

These shortcomings have been partially remedied by use of remote sensing tools, such 

as thermal imagery.  During the last decade, radar technology has been employed to 

enhance the modeling and mapping of soil surface properties.  Especially C-band radar 

imagery seemed to be a perfect candidate for modeling soil surface properties because 

of its short penetration rate.  The Integral Equation Model (IEM) has been constructed 

as a tool to predict soil surface properties by use of radar imagery, however it needed 

several in-field variables to work properly.  Recently, a method was developed which 

maps the soil surface roughness parameters solely with radar images instead of in-field 

parameters.  That study by Rahman et al. focused on multi-angled radar data (Rahman 

et al. 2008), which added error to the process due to the incidence angle estimations and 

the time lag between the capture of the images.

The use of an ASAR dual polarity image in this study removed the problematic 

time lag, as well as the incidence angle discrepancy, because both like- and cross-

polarized bands were taken with the same sensor at the same time, using the same 

incidence angle.  The dual polarity image used for this study was taken during dry 

conditions, which reduced the number of unknown IEM variables to just the roughness 

variables hRMS and Lc.  The Z-index illustrates the relationship between these two 

variables.  Both roughness variables hRMS and Lc were modeled with IEM.  First, a 
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difference map of the two polarized bands was calculated and employed to retrieve the 

Z-index.  With the help of an Excel table the possible values of hRMS for each Z-index 

value was calculated, which in turn were used to prescribe a hRMS classification look-up 

table.  The resulting hRMS map was then utilized to find the corresponding Lc values.

The statistical analysis showed a relationship between the in-field and the 

modeled mean values of the roughness parameter hRMS, though the correlation is weak.  

There seemed to be a trend whereby the modeled values of this research were distorted 

which can be detected by comparison of the arithmetic mean.  The arithmetic mean of 

the in-field hRMS was calculated at 1.398 cm, while it was nearly twice as high for the 

modeled values (2.018 cm for the 110 m buffer and 2.019 cm for the 200 m buffer).  

Contrary to the modeled hRMS statistical values in correlation and regression, the Z-

index performed at a much better rate (Figures 16 and 17).  The decrease in Pearson’s R 

values and regression coefficients between the Z-index map and the modeled hRMS map 

most likely can be attributed to the classification scheme which determined hRMS.  The 

numerical solution was calculated using a coarse sequence of Z-index / hRMS pairings; a 

finer interval may have yielded a different classification scheme and therefore could 

have resulted in a more accurate hRMS map. An increase in classes could also have 

resulted in a better fitting correlation of in-field and modeled mean values.  In addition, 

the IEM equations applied in this study were derived for a similar study by Rahman et 

al. that utilized like-polarized 0
,VVdry radar images with multi-angle images on a 

comparable study site (Rahman et al. 2008, 393).  An adjustment in these equations may 

have been helpful, though the outcome of this study resembled that of the study by 

Rahman et al..
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  The same decrease in relation was also seen in the regression analysis of Z-index 

map and hRMS map paired with 0
dry .  It became evident that by employing the IEM, that 

is calibrating hRMS by use of the polynomial equation, the results were distorted.  

However, this did not necessarily mean that the calculation was wrong, as the in-field 

hRMS values performed almost at the same rate as the modeled hRMS map. 

Another observation of the statistical analysis was that there was only a slight 

increase in correlation between the 110 m buffered values and the 200 m buffered 

values.  In their study, Rahman et al. had to increase the scale of the buffered area to 

150 m by 150 m because of unfavorable sub-surface phenomena (Rahman et al. 2008, 

394).  In hindsight, the increased buffer size (from 110 m to 200 m) did not seem to be 

necessary in my study, mainly because of the homogeneity of the soil-surface and sub-

surface, though a larger buffer size generally results in a better fit.

This research compared similarly to the study by Rahman et al. in 2008.  The 

image-derived hRMS and Lc values behaved in the same way in both studies.  Though 

Rahman et al. attributed most of their error to sub-surface rock fragments, these were 

not present at the Hopi Reservation sample sites.  It could be that the model itself is in 

need of an adjustment.  For example, the error could have been due to the size of the 

speckle filter, as Rahman et al. reasoned in their study.  However, concluding their 

study with the modeling of soil surface moisture 0 , the prediction of the study by 

Rahman et al. met the in-field measurements with minimal error.  This outcome was 

validated by a study by Thoma et al. (Thoma et al. 2006) which compared different 

methods of retrieving soil surface roughness and consequently soil surface moisture 0 .
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It can be said that the method of modeling soil surface roughness applied herein is 

valid on similar surfaces (semi-arid rangeland) with a resolution slightly lower than that 

of the ASAR image.  This method can be helpful in determining soil surface properties 

for various applications without the use of ancillary data.  As Rahman et al. did in their 

study (Rahman et al. 2008), once the soil surface roughness variables hRMS and Lc have 

been calculated and adjusted, the IEM can be utilize to calculate of the soil surface 

moisture 0 .  It is then possible to model soil surface roughness and soil surface 

moisture 0 for entire regions exclusively without or with minimal fieldwork.  This 

could be of benefit to regional planning as much as agriculture.  It could assist by 

selection of rangelands suitable for agriculture, or determination of the state of the soil 

before planting or shortly thereafter.  It could also be employed to detect overgrazing of 

rangelands.

Further research could explore the modeling of soil surface roughness and 

subsequently the modeling of soil surface moisture with dual-polarization ASAR 

imagery by means of adjusted IEM equations and a revised hRMS reclassification.  The 

IEM derived equations applied in this study were taken from a similar study.  Though 

the study sites were similar, an adjustment in the equations may foster more accurate 

results.  Fine tuning the hRMS classification could be done several ways.  For one, in the 

numerical solution for 0
,HHdry that was used to define the hRMS classification, 0

,HHdry

was calculated by means of a coarse interval of possible values of hRMS and the Z-index.  

A more refined interval may result in a different pattern and therefore a refined hRMS

classification.  Also, the hRMS classification’s range of classes could be expanded which 

may improve the results as well.
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APPENDICES

APPENDIX A.   RALEIGH CRITERION AND PEAK & OLIVER MODIFIED 

CRITERION EVALUATION



68

APPENDIX B.   VEGETATION AT THE SAMPLE SITES
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APPENDIX C.   SOIL MOISTURE RATE AT THE SAMPLE SITES
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APPENDIX D.   SOIL TEXTURE AT THE SAMPLE SITES
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APPENDIX E.   IN-FIELD HRMS VALUES
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APPENDIX F.   FIELD WORK RESULTS TABLE
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APPENDIX G.   ASAR METADATA STRUCTURE, METADATA FILE HEADER 

AND MAP PROJECTION 
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APPENDIX H.   RAW IMAGE DATA

Band 1 
HV
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Band 2 
HH
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APPENDIX I.   IMAGE DATA AFTER SPECKLE FILTERING AND DB CONVERSION

Band 1 HV
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Band 2 HH
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Band:  Amplitude_HV_dB
Only ROI pixels considered:  No
Number of pixels total:      66789360
Number of considered pixels: 66789360
Ratio of considered pixels:  100.0 %

Minimum:  0.0 amplitude_dB
Maximum:  25.563024520874023 amplitude_dB

Mean:     14.628729211880351 amplitude_dB
Std-Dev:  9.066932969802487 amplitude_dB
Coefficient of Variation: 0.6268496521098054 amplitude_dB

Band:  Amplitude_HH_dB
Only ROI pixels considered:  No
Number of pixels total:      66789360
Number of considered pixels: 66789360
Ratio of considered pixels:  100.0 %

Minimum:  0.0 amplitude_dB
Maximum:  30.718820571899414 amplitude_dB

Mean:     16.185127945503847 amplitude_dB
Std-Dev:  10.053462488495423 amplitude_dB
Coefficient of Variation: 0.6322963995506239 amplitude_dB
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APPENDIX J.   BACKSCATTER DIFFERENCE IMAGE AND Z-INDEX MAP

Backscatter Image 
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Z-index Map 
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Band:  HH-HV
Only ROI pixels considered:  No
Number of pixels total:      66789360
Number of considered pixels: 66789360
Ratio of considered pixels:  100.0 %

Minimum:  -23.24282455444336 1
Maximum:  22.648178100585938 1

Mean:     1.5563987336234886 1
Std-Dev:  1.1502677346896022 1
Coefficient of Variation: 1.3125757426850428 1

Z-index
(0.618+ (0.09* 'HH-HV'))/ (1- (0.138* 'HH-HV'))

Band:  Z-index
Only ROI pixels considered:  No
Number of pixels total:      66789360
Number of considered pixels: 66789360
Ratio of considered pixels:  100.0 %

Minimum:  -1057.1448974609375 1
Maximum:  1089.78564453125 1

Mean:     1.0345145778675149 1
Std-Dev:  0.46303314749511487 1
Coefficient of Variation: 182.41845276214084 1
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APPENDIX K.   NUMERICAL SOLUTIONS TO THE IEM DERIVATIVE EQUATION
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APPENDIX L.   THE HRMS AND LC MAPS

hRMS
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APPENDIX N.   MAPS OF IMPORTED ASAR BANDS AND XY-DATA POINTS.
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APPENDIX N.   COMPARISON OF HRMS VALUES IN VONOROI PLOTS.
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APPENDIX M.   STATISTICS.
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