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CHAPTER 1.  INTRODUCTION



2 

 

BACKGROUND 

Seven western states of the United States depend upon the Colorado River for domestic uses, irrigation, 

and the production of electricity through dams. As the river flows south, less and less water is seen as 

drought and water entitlements in the United States are filled, until the river eventually runs dry in 

Mexico (Cohn 2004). As water levels decrease, habitats that were dependent on seasonal flooding and 

continual groundwater are replaced by upland or invasive populations of plants, altering the landscape 

(Rood & Mahoney 1990; Poff et al. 1997; Stromberg 2001). Historically between the Hoover Dam and 

the Sea of Cortez, approximately 400,000 hectares of wetlands, forests, and intertidal habitat consisting of 

cottonwood and willow gallery forests, mesquite bosques, wetlands, intertidal salt flats, lakes, and 

channels occurred, stretching up to 24 km wide during flood stages (Phillips et al. 2009). Today these 

habitats are limited to approximately 109,000 hectares (Phillips et al. 2009). 

The Yuma East Wetlands is a 570-hectare restoration site that, as recently as 2004, was an ecologically 

compromised area (Figure 1). Approximately half of the area is owned by the Quechan Indian Tribe with 

the remainder owned by the City of Yuma, the State of Arizona, private landowners, and the Bureau of 

Land Management (Figure 2). Prior to restoration, the area was composed of non-native species, filled 

with garbage from illegal dumping, was home to a large homeless population, and showed signs of 

channelization of the nearby Colorado River. This environment led to a reduction and loss of native 

habitat for wildlife species and was unsightly for the local riverfront. Fred Phillips Consulting, LLC 

(FPC) was hired by the Yuma Crossing National Heritage Area to design, construct, and monitor the 

restoration activities, which included removing non-native species, recontouring side channels of the 

river, and planting a variety of native plants including wetland and upland species (Figure 3). Vegetation 

monitoring occurred at 12 sites within the restoration area to identify quantitative and qualitative 

measures of success, with surveys conducted multiple times a year for 8 years (2005-2012). 
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Figure 1. Location of Yuma East Wetlands, Yuma, Arizona 

 

Figure 2. Project extent and approximate land ownership in the Yuma East Wetlands 
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Figure 3. Project Timeline Using Available NAIP Imagery 

INTRODUCTION 

Tools available for use in landscape studies have varied over time as a function of increased accessibility 

and overall technological advancement. In the 1930s, aerial photography offered a series of photos 

available for comparison over an extended time period, but these photo series, collected over variable 

flight lines, were limited in spatial coverage and contained subjective results due to manual interpretation 

(Morgan et al. 2010). As a result, standardized imagery was developed, with data collected by airplanes, 

drones, and satellites that can be postprocessed to ensure horizontal and vertical accuracy. Current 

available imagery can provide high spatial resolution data (sub-meter or greater); be specific to times, 

dates, and locations; be multi- or hyperspectral and allow for bands that are outside of the visible 

spectrum; and be highly repeatable and accessible to a wide audience, often for free (Morgan et al. 2010). 

Satellite data can deliver large scale coverage, with recent satellites, such as Landsat 8, providing image 

swath widths of 185 km. However, a detriment to this wide coverage is that spatial resolution often 
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declines as image swath width increases; for example, Landsat 8 only has a spatial resolution of 30 m. 

Although free satellite data is an appropriate tool for monitoring large areas undergoing restoration 

through prescribed burns and reseeding, it is not appropriate for small scale projects (Malmstrom et al. 

2009).  

Imagery is used to classify vegetation, soils, geology, etc. by type using a combination of multiple 

spectral bands. The information embedded in the spectral band data can be manipulated through 

algorithms and other data analysis techniques to further identify tree density, canopy size, size of stands, 

composition of stands, stem density, or canopy cover, otherwise  unidentifiable to the casual viewer 

(Pouliot et al. 2002; Leckie et al. 2003; Wang et al. 2004; Davies et al. 2010).  Remote imagery, such as 

digital aerial photography, can provide imagery at varied spatial resolutions and time scales of locations 

around the world, with many sets of imagery available free to the general public. As such, the cost of 

conducting vegetation monitoring or inventories in a wide range of systems is significantly reduced using 

digital aerial photographs; in several cases, time spent assessing a system was reduced by almost 90% 

through the use of aerial imagery over on the ground methods (Paine & Kiser 2003; Booth et al. 2006). In 

addition, unlike the use of 3- and 4- band imagery which can provide high spatial resolution but low 

spectral resolution, leading to confusion among vegetation classes during the classification, digital aerial 

photographs can be used to map smaller project areas and show levels of details as small as individual 

trees or riparian features (Fensham & Fairfax 2002; Tuominen & Pekkarinen 2005; Cleve et al. 2007; 

Morgan et al. 2010).  

The use of digital aerial photography as well as imagery such as that produced through the National 

Agriculture Imagery Program (NAIP), has been used to analyze landscape changes at both national and 

smaller scales, with NAIP imagery, in particular, being applied for its wide availability and coverage of 

the United States, free cost, rigorous orthorectification procedures, and high spatial resolution (1 x 1 m 

pixels) (Taylor et al. 2000; Rogan & Chen 2004; Davies et al. 2010). Analyzing a combination of 

classified imagery and vegetation indices can produce an output that can be compared with ground data to 
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determine how effective the aerial imagery model corresponds to that found through line intercept ground 

monitoring.  

When landscape restoration projects occur, most grant funding agencies, as well as the people who 

conduct the restoration, want some indicator other than visual cues to identify the success of the project 

(Hobbs & Norton 1996; Tischew et al 2010; Hagan & Evju 2013). This generally involves field biologists 

visiting the field site numerous times over a specified time period to collect data on vegetative growth, 

canopy cover, wildlife sightings, soil conditions, or other information. This process can be expensive, 

both in cost and person hours, which begs the question: is there a more efficient option that provides 

comparable data? 

Aerial photography and remote sensing can provide imagery at varied spatial resolutions and time scales 

at locations around the world, with many sets of imagery available free to the general public. Aerial 

photographs can be used to map smaller project areas and show levels of detail as minor as individual 

trees or riparian features (Fensham & Fairfax 2002; Tuominen & Pekkarinen 2005, Morgan et al. 2010). 

Researchers have shown that aerial photographs can reduce the cost of conducting vegetation monitoring 

and inventories in a wide range of systems (Paine & Kiser 2003). As a result, I am interested in remote 

sensing methods that can be employed to reduce the number of visits required for landscape restoration 

monitoring, while producing similar results to on the ground efforts. 

PRACTICUM PURPOSE 

The purpose of this applied research is to identify whether classified aerial imagery can be a tool to 

replace or supplement on the ground vegetation monitoring. Successful environmental consulting firms 

rely on identifying methods that will improve their output, reduce their costs, and still produce quality 

results that are within their contract parameters. Field monitoring can be expensive in terms of employee 

time, with survey time and travel costs included, and generally requires the surveyors to collect a subset 

of data and extrapolate it across the project site. If aerial imagery can replace part of the required 
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monitoring, while producing similar or better results, it will provide consultants another tool to satisfy the 

client and reduce costs. 

RESEARCH GOALS 

1. Identify methods for classifying riparian vegetation from National Agricultural Imagery Program 

(NAIP) imagery within the project area using ArcGIS software 

2. Validate this classification using data collected from on the ground surveys conducted by FPC 

during the 2006-2011 field seasons 

3. Correlate the GIS model to field-collected data to identify how effective the model is at 

replicating field collected results.  

DELIVERABLE 

For this project, I propose to fully satisfy the above-mentioned Research Goals for eventual submission to 

the peer-reviewed journal Ecological Restoration. Fred Phillips Consulting, LLC has published articles 

about the Yuma East Wetlands within this journal, making it an appropriate avenue for continued 

dissemination of this this work (Phillips et al. 2009; Kleoppel Thathnigg & Phillips 2015). Additionally, 

as this target journal is directed towards landscape restoration practitioners, identifying methods that 

could save projects money could be useful to many readers. 

  

 



8 

 

CHAPTER 2. ARTICLE FOR SUBMISSION TO ECOLOGICAL RESTORATION 
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Assessment of Using NAIP Imagery Classification to Perform Restoration Monitoring in the Yuma 

East Wetlands, Yuma, Arizona.  

Authors: Kevin Dickinson, Erik Schiefer*, and Fred Phillips* 

Word Count: 3848 

ABSTRACT 

Conducting on the ground vegetation monitoring for restored landscapes can be labor intensive and cost 

prohibitive, yet it is a requirement for many restoration activities conducted on private and government 

owned parcels. Utilizing Geographic Information Systems (GIS), imagery can be classified into 

vegetative classes and change analysis can be conducted to examine temporal patterns in vegetation cover 

from image to image. The free and widely available National Agriculture Imagery Program (NAIP) 

provides one-meter resolution aerial imagery through the agricultural growing season that is acquired on a 

three-year cycle beginning in 2009. This presents an opportunity to determine if GIS and NAIP aerial 

imagery can be an appropriate tool to replace or supplement on the ground monitoring for vegetative 

success in areas that have undergone restoration. Using the 152-hectare Yuma East Wetland restoration 

project in Yuma, Arizona as a case-study, we attempted to develop a method to create additional bands 

from the NAIP imagery as a means of increasing the capability of supervised classification for planted 

vegetation in restored wetlands. Other color models and imagery products were combined with the NAIP 

imagery to produce a 9-band composite which was then classified. While this method did not produce 

accurate classifications, it offered examples of why multi- or hyperspectral imagery might be needed to 

conduct classifications in this complex landscape.  

Key Words: 4-Band Imagery; Geographic Information Systems; Lower Colorado River; Supervised 

Classification; Vegetation Monitoring; Wetland Restoration; Yuma, Arizona  

 

*Anticipated additional authors 
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INTRODUCTION 

Tools available for use in landscape studies have varied over time as a function of increased accessibility 

and overall technological advancement. In the 1930s, aerial photography offered a series of photos with 

limited spatial coverage and produced subjective results due to manual interpretation, while current, 

standardized imagery that is collected by airplanes, drones, and satellites that can be postprocessed to 

ensure horizontal and vertical accuracy (Morgan et al. 2010). Current available imagery can provide high 

spatial resolution data (sub-meter or greater); be specific to times, dates, and locations; be multi- or 

hyperspectral and allow for bands that are outside of the visible spectrum; and be highly repeatable and 

accessible to a wide audience, often for free (Morgan et al. 2010). 

The information embedded in the spectral band data of imagery can be manipulated through algorithms 

and other data analysis techniques to identify tree density, canopy size, size of stands, composition of 

stands, stem density, or canopy cover, otherwise  unidentifiable to the casual viewer (Pouliot et al. 2002; 

Leckie et al. 2003; Wang et al. 2004; Davies et al. 2010).  Utilizing digital aerial photographs has 

significantly cut the cost of conducting vegetation monitoring or inventories in a wide range of systems; 

in several cases, time spent assessing a system was reduced by almost 90% through the use of aerial 

imagery over on the ground methods (Paine & Kiser 2003; Booth et al. 2006). In addition, unlike the use 

of 3- and 4-band imagery which can provide high spatial resolution but low spectral resolution, leading to 

confusion among vegetation classes during the classification, digital aerial photographs can be used to 

map smaller project areas and show levels of details as small as individual trees or riparian features 

(Fensham & Fairfax 2002; Tuominen & Pekkarinen 2005; Cleve et al. 2007; Morgan et al. 2010).  

When landscape restoration projects occur, most grant funding agencies, as well as the people who 

conduct the restoration, want some indicator other than visual cues to identify the success of the project 

(Hobbs and Norton 1996; Tischew et al. 2010; Hagan & Evju 2013). Employing remote sensing 

techniques, a tool shown to provide rapid, inexpensive, and nondestructive techniques to study vegetation 

and soils of rangelands and forests, can enhance the ability of restoration firms to conduct landscape 
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restoration processes, primarily through the reduction in costs of monitoring (Joshi et al. 2004; Mirik & 

Ansley 2012). Free satellite data is an appropriate tool for monitoring large areas undergoing restoration 

through prescribed burns and reseeding, it is not appropriate for small scale projects (Malmstrom et al. 

2009). The use of digital aerial photography as well as imagery such as that produced through the 

National Agriculture Imagery Program (NAIP), has been used to analyze landscape changes at both 

national and smaller scales, with NAIP imagery, in particular, being applied for its wide availability and 

coverage of the United States, free cost, rigorous orthorectification procedures, and high spatial resolution 

(1 x 1 m pixels) (Taylor et al. 2000; Rogan & Chen 2004; Davies et al. 2010).  

Analyzing a combination of classified imagery and vegetation indices can produce an output that can be 

compared with ground data to determine how effective the aerial imagery model corresponds to that 

found through line intercept ground monitoring. Limited research however has been conducted on 

classification and analysis of remote imagery as a model for riparian areas, due to their inherent 

vegetation class complexity (Vande Kamp et al. 2013). In this study, I aim to supplement the literature by 

modeling a riparian restoration, the Yuma East Wetlands, through a combination of classification 

techniques and the incorporation of vegetation indices and additional methods of viewing visible band 

imagery. 

METHODOLOGY 

STUDY AREA 

Yuma, Arizona is in far southwestern Arizona, situated on the southern shore of the Colorado River from 

California. Yuma has a hot, desert climate, with warm winters and extremely hot summers with an 

average of less than 100mm of rain annually. The Yuma East Wetlands restoration area is located near 

downtown Yuma, Arizona east of the Historic Yuma Crossing, and west of the confluence of the Gila and 

Colorado Rivers between River Miles 29.0 and 34.0. The land is owned by a series of stakeholders, 

including the Fort Yuma Quechan Indian Tribe, the City of Yuma, the State of Arizona, and private 
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landowners. The project area encompasses approximately 152 hectares and is located in Yuma County, 

Arizona (Figure 4). 

 

Figure 4. Location of the Yuma East Wetlands, Yuma, Arizona 

 

As recently as 2004, the Yuma East Wetlands was an ecologically compromised area. Prior to restoration, 

the area was composed of non-native species, primarily tamarisk (Tamarix spp.) and giant cane (Arundo 

donax), filled with garbage from illegal dumping, was home to a large homeless population, and showed 

signs of channelization of the nearby Colorado River (Phillips et al. 2009). This environment led to a 

reduction and loss of native habitat for wildlife species and was unsightly for the local riverfront. The 

Yuma Crossing National Heritage Area began a process to create a Master Plan that detailed the design, 

construction, and monitoring of the restoration activities. The Master Plan included removing non-native 

species, performing intensive soil and site analysis to understand the salinity of the project landscape, 

recontouring side channels of the river, and planting a variety of native plants including wetland and 

upland species, including salt tolerant species in areas of high salinity (Phillips et al. 2009). Clearing, 

grading, and contouring of the area was completed by 2009, and planting was completed by April 2010. 
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METHODS 

Four digital orthophoto quarter quads (DOQQ) of the project area were obtained from the United States 

Geological Survey (USGS) Earth Explorer website (www.earthexplorer.usgs.gov) for dates within our 

study range (Table 1). These images were downloaded in GeoTIFF format and contain four bands: blue, 

green, red, and near infrared (NIR). NAIP imagery has a vertical accuracy of +/- 5m through the use of 

ground control points. The images used in this study were in the center of the DOQQ and did not appear 

to be shifted from one image to the next, so no vertical shifting was needed to ensure accuracy. 

The imagery corresponds to when planting was completed in April 2010, wherein trees are sapling size or 

smaller and bare ground is a primary cover class. By June 2013, a large percentage of the vegetation was 

successfully transplanted, currently covering most of the restored area, and the intensive monitoring had 

ceased. Mesquite (Prosopis sp.) and cottonwood (Populus fremontii) have crowns that are fully leafed 

out, and bare ground is replaced by planted vegetation in all areas other than roads and channels (Figures 

5 and 6).  

Table 1. Dates of NAIP Imagery 

Year Date 

2010 04/26/2010 

2010 07/04/2010 

2012 04/28/2012 

2013 06/09/2013 

 

http://www.earthexplorer.usgs.gov/
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Figure 5. June 2013 NAIP Imagery of northern portion of project location.  

 

 

Figure 6. Project Timeline Using Available NAIP Imagery 
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To supplement the information contained with the NAIP images, other color models and image analysis 

tools are used to create more “bands” for the classification to analyze. Transforming the original RGB 

(red, green, blue) image to its corresponding HSV (hue, saturation, value) color model has been shown to 

provide additional information than what is available in the RGB colorspace (Ezequiel et al. 2014; 

Sugiura et al. 2016). 

Vegetation indices, such as Normalized Difference Vegetation Index (NDVI), can be used to separate the 

non-vegetated areas from vegetation, as NDVI is a common remote sensing method that assesses the 

“greenness” of a pixel as it correlates to actively photosynthesizing material (Rouse et al. 1974; Burgan & 

Hartford, 1993; Glenn et al. 2008; Vande Kamp et al. 2013). NDVI is the ratio of near-infrared radiation 

minus visible radiation to near-infrared radiation plus visible radiation ((NIR band – R band)/(NIR band + 

R band)). 

While NDVI separates vegetation from non-vegetation, it does not distinguish between different types of 

vegetation or manage shadows. Further, texture analysis can help highlight the spatial variation in image 

tone that results from the variability between vegetative species in their leaf arrangements and vegetative 

structure (Franklin et al. 2000; Cleve et al. 2007). Texture examines the spatial information of 

neighboring cells to determine how much or little variation there is in their spectral values. If the standard 

deviation of these neighborhood values is low, we identify that as low texture, like a field of corn, but if 

the standard deviation is high, we identify that as high texture, like the crown of a mature tree. 

Additional “bands” were created within ArcGIS 10.6 software (ESRI 2018) to increase the potential for 

more classes to be accurately identified during classification. These additional bands were HSV, NDVI, 

and texture. The NIR band was removed from each NAIP image and using the color model conversion 

function in the Image Analysis toolboox, the RGB image was converted to HSV. Using the NDVI 

function in the Image Analysis toolbox, an NDVI raster was created from the 4-band NAIP image. A 

texture model from the green and NIR bands was developed using the Focal Statistics tool in ArcToolbox 
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(Ziegler 2016). Each band was put through the Focal Statistics tool twice, once using Rectangular 

neighborhood analysis (3 m x 3 m) and once using Circular neighborhood analysis (3 m radius). The 

Raster Calculator tool was then used to average the four resulting rasters to create the final texture band. 

The final nine “bands” (blue, green, red, NIR, hue, saturation, value, NDVI, and texture) were then 

stacked using the Composite Bands tool. 

A grid of 3 m x 3 m blocks was created that covered the northern region of the project area (everything 

north of the river) using the Create Fishnet tool in ArcToolbox. A random sample of 500 points was 

created within this grid using the Create Random Points tool with a tolerance that limited points to no 

closer than 15 m proximity to each other. The grid locations that intersected with the random points were 

exported to a new shapefile to be used to create random training locations for training samples (Figure 7). 

This created a potential of up to 4500 pixels being used in training for the classification of each image. 

 

Figure 7. Training data locations 

 

Chen and Stow (2002) stated that it is reasonable to derive training data for classification directly from an 

image if the user has a priori knowledge of the scene. Access to planting plans and institutional 

knowledge about this site allowed us to directly place the 500 grid locations directly on the NAIP image 
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and determine what class falls within each block for inclusion in the training samples. Training data was 

collected for seven classes: mesquite, cottonwood, willow (Salix gooddingii and S. exigua), upland 

ground cover, wetland ground cover, open water, and bare ground. Only the training locations that were 

wholly one class or another were classified and included in the training data. This process was done for 

each of the four NAIP images. The training data then was saved as a signature file for the composite 

band, and Maximum Likelihood Classification was conducted (Figure 8).   

 

Figure 8. June 2013 Classification results for northern portion of project area. 

 

Accuracy assessments were conducted on each of the classifications to create an error matrix that 

identifies Producer’s Accuracy, User’s Accuracy, and Overall Accuracy (Congalton 1991). The 

Producer’s Accuracy measures how accurately a certain area is classified, the User’s Accuracy measures 

the accuracy of a certain category across the classification, and the Overall Accuracy identifies the 

probability of a single reference pixel being accurately classified. An Overall Accuracy of greater than 

85% is expected for a classification to be considered accurate (Anderson et al. 1976; Foody, 2000; 

Wilkinson, 2005). Transect data from surveys conducted by FPC during the month closest to the imagery 
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data was compared to the classified image to determine accuracy. None of the transect locations 

overlapped areas where signature data was collected. 

RESULTS 

Following the process to create the composite image, classifications were created for each of the four 

NAIP images and accuracy assessments were performed. Table 2 shows the Producer’s, User’s, and 

Overall Accuracies for each of the images. While trends were increasing across the study’s time period, 

the Overall Accuracy for each classification was far below the 85% accuracy standard needed. 

Table 2. Accuracy Assessments for Imagery Classifications 

 Producer's Accuracy User's Accuracy   

 

April 

2010 

July 

2010 

April 

2012 

June 

2013 

April 

2010 

July 

2010 

April 

2012 

June 

2013 
Overall Accuracy 

Bare 30% 53% N/A N/A 67% 73% N/A N/A 
April 

2010 
39% 

Willow 43% 25% 18% 46% 25% 40% 42% 87% 
July 

2010 
46% 

Cottonwood 44% 44% 62% 65% 51% 33% 88% 63% 
April 

2012 
60% 

Mesquite 43% 41% 76% 60% 15% 65% 31% 44% 
June 

2013 
61% 

Upland 36% 69% 79% 78% 41% 40% 81% 90%   

The Producer’s Accuracy values allow us some insight into why this process failed. Inaccuracy or 

confusion in the signature file will produce low production accuracy number. This shows that 

differentiation of the species was not correctly occurring preventing the model from accurately 

identifying the different vegetations (Figure 9). 
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Figure 9. June 2013 Classification with three areas of incorrect classification. Blocks 1 and 3 should be 

entirely classified as cottonwood while Block 2 should be entirely mesquite. 

Reviewing the spectral values for Cottonwood, Mesquite, Willow, and Upland across each of the bands 

details more of the story (Figure 10). It is expected when creating signatures for a class that one will be 

able to obtain values generally independent of other classes so that any value that falls within the range of 

the signature will correctly assign. In this case, the spectral values for cottonwood, mesquite, and willow, 

and upland fall within the standard deviation for each band, preventing clean, accurate classification.  
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Figure 10. Spectral values for each of the vegetation types within each band of the composite image. 
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DISCUSSION 

The results suggest that NAIP imagery is not a viable tool to create classifications that will decrease the 

need for on the ground monitoring of vegetation in riparian restoration sites. Spectral signatures for 

vegetation types were too similar and the inclusion of additional bands did not add the additional 

information needed to the model. The 8-bit data in NAIP imagery limits the values for it or any products 

created from it to values that range from 0-255. This limits the level of spectral information encased in the 

imagery needed to accurately discriminate between vegetation types in wetland areas. The use of 3m x 

3m blocks for identification of signatures was an attempt to incorporate object-based classification, but a 

more intensive object-based classification approach might be more suitable than the pixel-based 

classification I used. Furthermore, the complex nature of riparian systems makes conducting classification 

from imagery difficult.  

An additional difficulty arose from the multiple age classes and intermingling of species throughout the 

planted areas. Planting plans that I referenced showed monotypic stands, but in reality, a more complex 

system was seen that may have muddied the signatures. While this, in effect, resembles what one might 

see within a mature riparian system, for most restoration projects, during the monitoring period, age 

classes will likely be closer to each other, and stands will be possibly more monotypic. Large scale 

restoration locations that are using only one or two tree species throughout the entirety of the project 

might be able to use this technique as there is limited variability in the vegetation and small pockets of 

variability will not have as large of an impact on the overall results. 

Imagery that contains higher spatial and spectral imagery could cost hundreds to thousands of dollars with 

requirements for minimum orders that cover at least 25-100 km2. While this imagery may have centimeter 

scale resolution and contain multispectral bands, this imagery will increase the cost of the process, have a 

large amount of extraneous data, and require the purchase of multiple data sets to correspond to the dates 

that you want to survey.   
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The use of drones and digital photogrammetry to create higher resolution images that can be processed to 

create structure-from-motion photogrammetric images for smaller sites such as the Yuma East Wetlands 

might be a more appropriate approach to take. Studies have used small, commercial grade, RGB digital 

cameras on lightweight drones to create centimeter resolution orthophotos and near-centimeter digital 

elevation models of riparian systems that were able to be classified for vegetation and geomorphological 

type (Puttock et al. 2015; Woodget et al. 2017). This system is limited by flying ability of the user and the 

large amount of imagery data that you collect, but purchasing the system to conduct this is similar in costs 

to one session of monitoring a project of the Yuma East Wetlands. For projects that require multi-year 

monitoring plans, investing in a system such as this, may ultimately reduce costs in the long run. 

This model was unsuccessful in identifying classified NAIP imagery as a tool to supplement or replace on 

the ground vegetation monitoring in restoration setting. Confusion within spectral signatures of vegetation 

types led to classifications that were no greater than 61% accurate, precluding the use of these 

classifications. Increases in the availability of quality, low-cost or free imagery and the tools to collect 

this imagery appear to be quickly advancing, offering future avenues to explore that may aid companies 

in limiting costs and the labor necessary to conduct monitoring surveys. 
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CHAPTER 3. CONCLUSION AND RECOMMENDATIONS
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The results of this project suggest that NAIP imagery is not a viable tool to create classifications that will 

decrease the need for on the ground monitoring of vegetation in riparian restoration sites. Spectral 

signatures for vegetation types were too similar and the inclusion of additional bands did not add the 

additional information needed to the model. The 8-bit data in NAIP imagery limits the values for it or any 

products created from it to values that range from 0-255. This limits the level of spectral information 

encased in the imagery needed to accurately discriminate between vegetation types in wetland areas. 

Furthermore, the complex nature of riparian systems makes conducting classification from imagery 

difficult.  

An alternate approach to conducting vegetation monitoring would save restoration firms money and time 

in their efforts to restore landscapes. It has been estimated that for a project of the scale of the Yuma East 

Wetlands, it would require two biologists to conduct vegetation monitoring, a mid-to-senior level 

biologist and a biological technician, with a combined hourly wage of approximately $125-$150/hr 

(assuming $85/hr for mid-level and $50/hr for technician). Assuming the surveys take a day and a half, 

plus analysis and report writing, it would cost approximately $3,000 for each monitoring session. This 

cost is without any necessary equipment costs, gas, travel time or hotel/per diem costs, which could raise 

the costs another $500. If a GIS analyst could perform this work remotely with free imagery, these costs 

could be lowered by approximately 75%. 

The approach I took to creating signature files for each vegetation class was more stringent than what 

would be assumed for restoration firms. It is assumed firms would create signature files from large swaths 

of the study area as planting plans that identify the composition and density of vegetation across each area 

of the landscape would be readily available. I wanted to remove any bias in the training samples to ensure 

that the methodology we used would stand up to critique and statistics. By creating a random sampling of 

training areas and setting the training locations in only the northern third of the project area removed this 

bias from our signature files. Any classification created would rely heavily on the signature files instead 
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of a priori knowledge of what was on the ground ensuring our accuracy assessments would provide 

details about the accuracy of the classification and whether this approach was successful. 

There were inherent limitations with the use of NAIP imagery: there is limited availability of imagery 

which is only collected during the growing season, and each area only has imagery collected once every 

2-3 years. While 1 m spatial resolution is excellent for free imagery, spectral resolution is poor, as only 

four bands are collected in an 8-bit format, limiting the data potential. We attempted to improve the 

information available by creating “bands” to uncover additional hidden information. In addition, the use 

of texture and conversion to other color models have proven successful in other studies and deserve more 

analysis for their potential in uncovering hidden data. Ultimately, we were unable to get the separation in 

values needed to delineate one vegetation type from another accurately. 

The use of multi- or hyperspectral imagery from companies such as DigitalGlobe (the owner of 

WorldView satellites [www.digitalglobe.com]), provide greater spectral (8 band), temporal, and spatial 

(30 cm) resolution, but they are outside of what would be economically feasible for most firms. Imagery 

companies require a minimum order area of 25-100 km2, and with prices ranging from $14 to $60/km2, 

this is an expense outside the range of providing cost savings, particularly for project areas that are as 

small as the Yuma East Wetlands (1.52 km2). For projects that are in the 25-100 km2 range, this type of 

imagery may be appropriate, as vegetation monitoring on the scale of that conducted in the Yuma East 

Wetlands would cost approximately $60,000 to $240,000, equal to or more than the cost of multi- or 

hyperspectral imagery.  

With the decrease in cost of user-friendly drones, small, commercial grade, RGB digital cameras on 

lightweight drones have been used to create centimeter resolution orthophotos and near centimeter digital 

elevation models of riparian systems that were classified for vegetation and geomorphological type 

(Puttock et al. 2015; Woodget et al. 2017). A large array of photos is collected over the project area and 

stitched together using structure-from-motion software that produces a type of point cloud, enabling 
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elevation modeling and increased ability to better classify vegetation. This system is better suited and 

more cost efficient for projects on the scale of the Yuma East Wetlands, necessitating additional work to 

determine the efficiency and accuracy of such a system. 

Ultimately, we were unable to meet our stated goals of using NAIP imagery to conduct or supplement 

vegetation monitoring in restoration projects. Our method of trying to improve the available information 

within the 4-band image was unsuccessful, and for projects that are small scale in nature, continuing to 

conduct vegetation surveys in person may continue to be the best approach to take in terms of accuracy 

and value. Values in the Overall Accuracy in the Accuracy Assessment showed an increase in accuracy 

from April 2010 to June 2013. Further study on NAIP imagery that shows more mature restoration areas 

is suggested and may show that while this method is not capable of use on early restoration projects, but 

more suited to monitoring later in the process.  

More research and experimentation are also needed on the use of drones to acquire data for similar scale 

projects, as this approach is likely to offer improved results and decreased costs. For large-scale 

restoration, depending upon the scale, classification of multi- or hyperspectral imagery should prove to be 

cost-effective, as increases in on the ground survey costs will ultimately allow imagery expenses to 

decrease.
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APPENDIX: OTHER APPROACHES EXPLORED
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Multiple variations of the methodology identified in Chapter 2 were explored, but not included in the final 

product. The table below highlights these other methods and identifies why these methods were not 

included. 

Approach Outcome 

Focal statistics with different pixel radius or block 

size (2m, 4m) 

There was no change in results when using these 

distances compared with 3m, and I felt that they 

underestimated or overestimated the crown and 

neighborhood if individual trees, limiting the 

accuracy of this approach for more mature trees. It 

might have been worthwhile to explore using 

smaller neighborhood sizes with less mature 

stands (i.e. April and July 2010 imagery) as the 

vegetation was much smaller, but this study was 

looking at limiting the variables in the 

methodology for widespread use. 

Only attempt to classify the NAIP image, and not 

incorporate the additional bands from other color 

models and imagery analysis 

This was done initially to see whether I needed to 

explore the creation of other bands in the model. 

Classifications were even less accurate and 

muddied that the classifications created from the 

composite band. Just visually looking at the 

classification created from only the NAIP image 

showed that the classification did not work. 

Principal Component Analysis (PCA) instead of 

Composite Band 

PCA allows the user to take a large set of data and 

distill it down to only data the is relevant and 

removes the redundant data. I attempted to 

combine the 9-bands this way, reducing it to 5 

bands that contained 95% of the data. While it 

sped up analysis, there was no discernable 

difference in the results when compared with the 

Composite Band classifications, and ultimately, I 

felt that the additional data found in the 

Composite Band was more likely to work. 

Additionally, this additional data also showed us 

why this methodology did NOT work. 

Unsupervised Classification Using the Maximum Likelihood Classification 

required the use of signature files that were 

created from planting plans and aerial 

photographs and images, so work was conducted 

prior to classification. Unsupervised classification 

requires post processing to clean up the 

classification and combine classes. This was 

attempted and no clear approach to combining of 

classes was found that produced a clean result. 

  


