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ABSTRACT 

Over the past 150 years, pinyon-juniper woodlands have increased in range and density in 

Northern Arizona, effectively encroaching into areas that were previously dominated by grassy 

vegetation.  Woodland encroachment into grasslands is known to alter the soil organic content of 

the underlying soil and therefore carbon fluxes, which has profound implications for atmospheric 

carbon dioxide concentrations and thus climate.  However, the effect of pinyon-juniper 

encroachment on soil carbon dynamics is less well understood for grasslands in semi-arid and 

arid regions, and no studies have undertaken the task of assessing soil organic carbon 

fluctuations resulting from juniper encroachment into grasslands in Northern Arizona.  The 

objective of this study is to evaluate how soil organic carbon stocks and fluxes within soil are 

modified by juniper encroachment by quantifying soil organic matter and carbon content and the 

natural abundance of stable carbon and nitrogen isotopes in a study site characterized by a 

mosaic of juniper cover and grass cover.  The spatial patterns of soil organic carbon driven by 

juniper trees across this study site will be analyzed using spatial interpolation techniques.  The 

findings of this study will reveal the role of woodland encroachment into grasslands in the 

enhancement or reduction of carbon sequestration in the soil of a semi-arid region.  In addition, 

this study will explore the spatial variability in soil organic carbon fluxes across a gradient of 

declining juniper influence and the accuracy of spatial interpolation techniques in illustrating this 

variability.   

Key words:  soil science; soil organic carbon; stable carbon isotopes; stable nitrogen isotopes; 

vegetation change; spatial interpolation; carbon sequestration; plant-soil feedbacks  
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Chapter One:  Introduction 

 

In the past century, woodland encroachment into grasslands has been occurring in regions 

across the globe, including the South African savannahs and parts of western North America 

(McCulley et.al., 2004; Parker et.al., 2009; Yusuf et.al., 2015).  This current encroachment is 

unmatched in intensity and extent compared to any other time within the Holocene epoch 

(Johnson and Miller, 2006).  Woodland encroachment, defined as an increase in range, canopy 

cover, and biomass of woody plant species, is especially prevalent in arid and semi-arid areas 

(Yusuf et.al., 2015).  This encroachment consists of three phases (Johnson and Miller, 2006).  In 

the first phase, shrubs and herbaceous plants are the prevailing vegetation, however woody 

plants have taken root.  The second phase is characterized by the presence of both vegetation 

types, however neither one dominates over the other.  In the third and final phase, woody plants 

have gained dominion over shrubs and herbaceous plants.  When this final phase is reached, the 

reversal of woody encroachment becomes difficult.  This transition from phase two to phase 

three is marked by a shift in resource availability, ecological interactions, and ecosystem 

processes.   

The majority of woodland encroachment can be attributed to human interference and 

disturbances, including grazing, alterations in fire regimes, elevated atmospheric carbon dioxide 

concentrations, shifts in the deposition of nitrogen, human settlement, and climate change 

(Bragazza et.al., 2014; McCulley et.al., 2004; Parker et.al., 2009; Yusuf et.al., 2015).  Woodland 

encroachment into grasslands has important implications involving net primary productivity of 

ecosystems, physical and chemical properties of soil, nutrient fluxes into and from the soil, 

climate change, and biodiversity and biomass, both above-ground and below-ground (Chen, 
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2015; Hess and Austin, 2014; Manning et.al., 2015; McCulley et.al., 2004; Norton et.al., 2012; 

Overby et.al., 2015, Yusuf et.al., 2015).  In particular, woodland encroachment into grasslands is 

associated with alterations in the amount of organic carbon stored in soil (Fang et.al., 2015; 

McCulley et.al., 2004; Overby et.al., 2015; Throop et.al., 2013; Yusuf et.al., 2015).  The purpose 

of this study will be to characterize the impact of juniper encroachment into the semi-arid 

grasslands of Northern Arizona on spatial patterns of soil organic carbon and on soil organic 

carbon sequestration.    

Pinyon-juniper woodlands have increased in range in density during the past 150 years as 

a result of climate change and anthropogenic activities (Brockway et.al., 2002).  These 

woodlands have moved into grassland areas, resulting in shifts in vegetation ecotones (Brockway 

et.al., 2002).  Vegetation plays a powerful role in steering pedogenesis and soil transformations 

(Jobbagy and Jackson, 2003).  Plant species composition is controlled largely by the local 

climate, specifically temperature and precipitation gradients, and changes in the dominant 

vegetation type in an area affect carbon and nitrogen content and dynamics in soil (Hess and 

Austin, 2014).  Considering plant species composition changes can result in increases and 

decreases in soil carbon stocks and considering plant community composition controls the ability 

of soil to store carbon (Manning et.al., 2015), juniper encroachment has likely changed the 

carbon content of the underlying soil.  The dynamics of carbon exchanges between soil and the 

atmosphere, the role of climate change in influencing carbon fluxes in soil, and the 

environmental conditions that control soil carbon stock gains or losses are still uncertain 

(Kucuker et.al., 2015; Winowiecki, 2015), however interest in soil carbon stocks and the climate 

change mitigation potential of soil has increased since the year 2000 (Xiang et.al., 2015).  The 

effect of vegetation change on biogeochemical cycling in semi-arid and arid regions has yet to be 
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fully understood (McCulley et.al., 2004; Throop et.al., 2013), but researchers expect the woody 

plant encroachment has re-shaped the carbon cycle in North America through alterations in 

ecosystem structure, function, and climate (Scott et.al., 2006).  Limited research has been 

conducted on the effect of climate change on carbon budgets in grasslands in the United States 

(Wagle et.al., 2015).  Previous studies of woodland encroachment into grasslands and within 

semi-arid and arid regions indicate a high level of uncertainty regarding the effect of this 

vegetation change on carbon and nitrogen fluxes (McCulley et.al., 2004; Parker et.al., 2009; 

Yusuf et.al., 2015), which is why the information presented in this study of woodland 

encroachment in semi-arid areas may be beneficial to land managers and to fellow researchers.   

 

1.1  Problem Statement 

 

Climate, vegetation, and soil are all key determinants of carbon dioxide fluxes and the 

spatial variability of those fluxes (Chen et.al., 2015).  Researchers have yet to fully understand 

the effect of climate change and alterations in temperature and precipitation on soil processes in 

arid ecosystems and in grasslands (Zelikova et.al., 2012).  Quantifying the changes in soil carbon 

stock resulting from shifts in vegetation patterns will allow researchers to improve our 

understanding of the role of soils in storing or releasing carbon and of how woody encroachment 

will contribute to or hamper the ability of soils to mitigate climate change through carbon 

sequestration (Throop et.al., 2013).  The high variability in environmental conditions and soil 

properties across very small spatial and temporal scales increases the difficulty in gauging soil 

carbon stocks (Kucuker et.al., 2015).  Significant levels of uncertainty regarding variations in 

soil carbon stock are a result of this variability and the paucity of soil carbon data that is 
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available (Kucuker et.al., 2015).   

1.2 Research Objectives 

 

The objective of this study is to understand how juniper encroachment into grasslands has 

altered soil organic carbon fluxes.  A site characterized by mixed vegetation cover of juniper 

trees and grasses within the Colorado Plateau was selected to capture the nature in which 

junipers modulate soil organic carbon fluxes in comparison to nearby grasses exposed to the 

same soil-forming factors.  Soil was sampled along radial transects extending outward from 

juniper trees to encapsulate soil responses to juniper encroachment along a gradient of 

decreasing juniper influence.  Collected soil was tested for soil organic matter and soil carbon to 

quantify existing soil organic carbon stocks and analyzed for the natural abundance of stable 

carbon isotopes and stable nitrogen isotopes to quantify rates of soil organic carbon turnover.  

The second objective of this study is to utilize interpolation techniques in Geographic 

Information Science to produce a map of soil organic carbon for the three study sites, which will 

visualize how soil organic carbon content varies spatially among different relative abundances of 

grassy and woody species.  The interpolation techniques used in this study will be analyzed to 

determine the accuracy of these methods in capturing spatial variability of soil organic content 

across a continuous area.   The four questions that will be interrogated in this study are: 

1. Has juniper encroachment into grasslands in Northern Arizona enlarged or reduced soil 

organic carbon stocks? 

2. Has juniper encroachment hastened or decelerated rates of soil organic carbon turnover? 

3. Has juniper encroachment modified the soil carbon sink strength of soil in Northern 

Arizona? 
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4. How accurate are interpolation techniques in accurately capturing the spatial variability 

of soil carbon in a juniper-grassland area on the landscape scale?   

Chapter Two:  Literature Review 

 

Woodland encroachment into grasslands has been occurring over the last 150 years in 

regions across the globe and is particularly prominent in arid and semi-arid regions, in high 

latitude regions, and in areas with high elevation (Bragazza et.al., 2014; Brockway et.al., 2002; 

McCulley et.al., 2004; Parker, 2009; Throop et.al., 2013; Yusuf et.al., 2015).  The majority of 

alterations of vegetation patterns today involve shifts in the abundances and spatial distributions 

of woody plant species and herbaceous plant species (McCulley et.al., 2004).  Grasslands, which 

conduct about a third of the net primary production of terrestrial regions and hold about a third of 

the Earth’s soil organic carbon store, are losing ground to woody species across the globe 

(McCulley et.al., 2004).  Depending on the area, woodland encroachment can be due to elevated 

concentrations of carbon dioxide in the atmosphere, changes in nitrogen deposition, climate 

change, the introduction of non-native species, and human interference (Brockway et.al., 2002; 

McCulley et.al., 2004; Parker, 2009; Throop et.al., 2013; Yusuf et.al., 2015).  Woody 

encroachment in semi-arid and arid regions is of particular concern because these dryland 

regions comprise about 40% of the global land surface area (Throop et.al., 2013).  Therefore, a 

change in the characteristics and properties of these regions can have significant global 

repercussions in terms of carbon flows between terrestrial ecosystems and the atmosphere 

(Throop et.al., 2013).  

Over the last 150 years in the Flagstaff, Arizona, area, junipers have been spreading into 

lands previously dominated by grassy vegetation as a result of increased human activity and 
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changes in climatic conditions (Koepke et.al., 2010; Parker, 2009).  The Colorado pinyon pine 

(Pinus edulis), the Utah juniper (Juniperus osteosperma), and the one-seed seed juniper 

(Juniperus monosperma) typically comprise pinyon-juniper woodlands in Northern Arizona 

(Parker, 2009).   Pinyon-juniper woodlands, which are classified as a mid-elevation, semi-arid 

vegetation type, are usually found in an elevational range below ponderosa pine forests and 

above grasslands on the Colorado Plateau (Parker, 2009).  However, a combination of climatic 

and anthropogenic factors has caused pinyon-juniper woodlands to move to lower slopes, into 

valleys, and into other areas originally characterized as grasslands (Parker, 2009).  In the 

Flagstaff area, the spread of these species into grasslands, a phenomenon termed pinyon-juniper 

encroachment, is due to increased grazing following European settlement, fire suppression, and 

climate change (Parker, 2009).  Grazing resulted in a depletion of grassland populations, thereby 

decreasing the competitive pressure on woody species which previously maintained the 

boundary between grasslands and woodlands (Parker, 2009).  Prior to human interference, fires 

held the Flagstaff area in a transition zone, which was beneficial to the growth of grassy species 

(Parker, 2009).  Lastly, the alteration of precipitation and temperature patterns due to climate 

change has created an environment conducive to the growth of woody species (Parker, 2009).  

These anthropogenic and environmental factors have resulted in this documented shift in 

vegetation patterns in the Flagstaff area (Parker, 2009).  As a result of these influences, 

understory grassland vegetation population and biodiversity has decreased (Parker, 2009).  Loss 

of grasslands and increase in canopy cover in the area has resulted in a decrease in grassland bird 

populations and pronghorn antelope populations (Parker, 2009).  However, the effect of this 

vegetation shift in Northern Arizona on the carbon content of the underlying soil has yet to be 

determined. 
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The terrestrial biosphere is a key regulator of global carbon cycling and the concentration 

of carbon dioxide present in the atmosphere (Wiβkirchen et.al., 2013).  Soil carbon plays a key 

role in the regulation of the global carbon budget, as soil can serve as a source or as a sink of 

carbon (Kucuker et.al., 2015), thereby producing positive or negative feedbacks to climate 

change (He et.al., 2016).  Soil carbon fluxes must be measured to determine the prevailing 

direction of the flow of carbon between the terrestrial ecosystem and the atmosphere (Johnson 

and Curtis, 2001).  The concentration of atmospheric carbon dioxide is reduced when carbon 

dioxide is removed from the atmosphere and stored in the soil as soil organic carbon or soil 

inorganic carbon (Lal, 2004; Olson and Al-Kaisi, 2015; Xiang et.al., 2015).  Soil inorganic 

carbon is carbon that is not of organic origin and includes primary and secondary carbonates 

(Chatterjee et.al., 2009).  Soil organic carbon is carbon that is derived from organic material such 

as plant residues and animal residues (Stockmann et.al., 2013).  When these residues are partially 

decomposed by microbes in soil, they become soil organic matter, which includes sugars, 

proteins, lignin, tannins, lipids, and organomineral complexes (Chatterjee et.al., 2009; 

Stockmann et.al., 2013).   Approximately 58% of soil organic matter is soil organic carbon 

(Stockmann et.al., 2013; Zhang et.al., 2015).  Soil organic carbon plays a key role in the 

productivity of the terrestrial biosphere (de Paul Obade and Lal, 2013) and its storage in soil has 

profound implications for the climate (Croft et.al., 2012; Stockmann et.al., 2013; Throop et.al., 

2013).     

The quantity of soil organic carbon stored in soil is a function of the amounts and 

chemical characteristics of organic matter inputs to soil and the rate of decomposition of these 

inputs (Tiwari and Iqbal, 2015).  The type and density of aboveground foliage as well as 

environmental conditions influence the chemical composition of the plant residues and how 
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much organic material and therefore nutrients are incorporated into the soil profile (Fontaine 

et.al., 2007; Hess and Austin, 2014; Manning et.al., 2015; McCulley et.al., 2004; Norton et.al., 

2012; Overby et.al., 2015; Stockmann et.al., 2013; Tiwari and Iqbal, 2015; Zhang et.al., 2015).  

As the carbon to nitrogen ratio (C:N), lignin content, and the lignin to nitrogen ratio of plant 

litter increase, decomposition slows and the accumulation of organic material and therefore soil 

carbon increases (Stockmann et.al., 2013).  The litter of woody plants often has a lower C:N ratio 

than grasses, which can hasten microbial decomposition (McCulley et.al., 2004).  In addition, the 

biomass of roots of woody species is higher than the biomass of roots of grassy species and is 

distributed farther down in the soil profile (McCulley et.al., 2004; Throop et.al., 2013), which 

can induce microbial activity in deeper soil layers (Stockmann et.al., 2013).  Alternatively, 

woody encroachment may not alter total carbon stocks in the encroached region at all, but rather 

adjust its spatial patterns of abundance (McCulley et.al., 2004).   

Vegetation change is associated with changes in microbial community composition and 

activity (Manning et.al., 2015; Stockmann et.al., 2013).  Microbes in soil, through their 

community structures, anatomy and physiology, and activity levels, define nutrient fluxes in the 

terrestrial biosphere and the fate of carbon in soil (Bragazza et.al., 2014).  About two-thirds of 

soil carbon loss in terrestrial ecosystems is due to microbial decomposition, the rate of which is 

being impacted by climate change (Nie et.al., 2013). Root respiration and microbial 

decomposition are responsible for the majority of carbon dioxide release from the soil surface 

(Davidson and Janssens, 2006).  The amount of soil organic carbon in the soil, in addition to soil 

temperature and moisture, leaf area and chlorophyll content, plant biomass, and the total amount 

of nitrogen in soil, influences the rate of soil respiration (Huang et.al., 2014).  Soil respiration, 

which is performed by soil microbes and in the roots of plants, is the process by which organisms 
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consume organic matter, resulting in a release carbon dioxide (Huang, et.al., 2014) and the 

incorporation of organic material into their biomass (Accoe et.al., 2002).  The more active the 

microbes, the greater the rate of carbon emissions from soil, except when microbial processing 

converts the carbon into a stable form that is chemically inaccessible to microbes (Manning 

et.al., 2015).  Microbial processing of soil organic matter transforms residues into humus, which 

is partially decomposed organic material with slow turnover rates (Stockmann et.al., 2013).   

A change in vegetation cover will resonate through the entire belowground world of 

microorganisms through its effect on species types and abundances and the cycling of energy and 

matter (Bragazza et.al., 2014;  Chen, 2015; Overby et.al., 2015).  Many plants form symbiotic 

associations with soil microorganisms in order to enhance their ability to extract nutrients from 

soil, and each plant species forms its own types of associations (Johnson et.al., 2010; Overby 

et.al., 2015; Stockmann et.al., 2013).  For example, mycorrhizal fungi form attachments to the 

roots of some plant species and supply the plants with the mineral nutrients they have gathered 

with their hyphae (Johnson et.al., 2010).   In return, the mycorrhizae receive photosynthates from 

the plants (Johnson et.al., 2010).  Plant species composition alters microorganism species 

composition, and increased plant species diversity spurs microbial growth and respiration and 

increases the prevalence of fungi and therefore nutrient uptake (Chen, 2015; Johnson et.al., 2010; 

Overby et.al., 2015).  In addition, microbial biomass will shift to accommodate different litter 

qualities (Fontaine et.al., 2007).  Nutrient abundances, which are influenced by vegetation type 

and plant litter chemical composition, affect what symbioses are formed (Fontaine et.al., 2007; 

Johnson et.al., 2010).   

Furthermore, the physical structure of plants impacts microbial activity, enzyme activity, 

and the abundance of substrate available to microbes, and thus soil carbon content and turnover 
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through its effect on soil moisture and temperature (Erhagen et.al., 2013; Nie et.al., 2013; Hess 

and Austin, 2014; Koepke et.al., 2010; Norton et.al., 2012; Zhang et.al., 2015).  Vegetation 

regulates the reception of precipitation at the ground interface (Hess and Austin, 2014).  Soil 

moisture is a key control of microbial activity and the rate of carbon mineralization (Norton 

et.al., 2012).  The arrangement of branches and the shape of leaves influences the quantity of and 

rate at which precipitation reaches the soil (Norton et.al., 2012).  Vegetation further alters soil 

water content through evapotranspiration and its effects on surface runoff and the amount of 

water the soil can physically hold (Norton et.al., 2012).  Woody encroachment can elevate soil 

moisture through stem flow and by inhibiting the transmission of solar radiation to the soil 

surface (McCulley et.al., 2004).  The effect of precipitation on microbial activity and carbon 

turnover is moderated by vegetation influences (Hess and Austin, 2014; Norton et.al., 2012).  

The structure of the vegetation canopy regulates the flow of energy to and from the soil surface 

(Koepke et.al., 2010).  Increased temperatures result in increased microbial activity, therefore 

increased rates of decomposition of plant litter and soil organic matter (Erhagen et.al., 2013; Nie 

et.al., 2013), however the rate is also a function of the structure of the organic compounds being 

decomposed (Erhagen et.al., 2013).  In summary, vegetation plays a significant role in the 

regulation of matter and energy fluxes to and from the soil surface (Erhagen et.al., 2013; Nie 

et.al., 2013; Hess and Austin, 2014; Koepke et.al., 2010; Norton et.al., 2012).  

The distribution of soil organic carbon varies vertically throughout the soil profile as a 

result of the depth of plant root penetration, plant productivity, and microbial activity 

(Stockmann et.al., 2013).  Globally, the top three meters of soil contains 2344 Gigatons (Gt) of 

organic carbon, the top one meter of soil contains 1500 Gt of organic carbon, and the top 20 

centimeters of soil contains 615 Gt of organic carbon (Stockmann et.al., 2013).  Similarly, the 
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mean residence time of carbon changes with depth (Fontaine et.al., 2007; Stockmann et.al., 

2013).  In deep soil layers, carbon is bound to soil minerals, making it inaccessible to 

decomposers and therefore incorporating it into the passive fraction of the soil carbon pool 

(Fontaine et.al., 2007).  Microbial activity is minimized deeper in the soil profile due to reduced 

oxygen levels and decreased root biomass (Fontaine et.al., 2007; Stockmann et.al., 2013) and is 

maximized at the surface where the incorporation of new carbon into the soil profile is most 

rapid, thereby stimulating microbial activity (Garten and Cooper, 2000).  Typically, the deeper 

the carbon in the soil profile, the the stronger the stability of soil organic matter (Accoe et.al., 

2002) and the longer the carbon will remain in the soil (Fontaine et.al., 2007; Stockmann et.al., 

2013).    

Effective carbon sequestration relies on the storage of atmospheric carbon dioxide in 

stable pools and within stable microaggregates (Lal, 2004).  Soil carbon turnover rates depend on 

the fraction to which the soil carbon belongs (Manning et.al., 2015).  Three carbon pools exist, 

each with their own turnover rate:  active, intermediate, and passive (Stockmann et.al., 2013).  

Carbon stocks in the active fraction, which consist of large particles of carbon, root exudates, and 

quickly decaying plant litter, turn over in months to a few years and are therefore responsible for 

the majority of soil carbon fluxes (Manning et.al., 2015; Stockmann et.al., 2013).  Moderate-size 

carbon particles, which consist of humified organic matter, turn over in tens of years and belong 

to the intermediate fraction of carbon.  Small soil particles and stabilized organic matter 

constitute the stable or passive fraction of carbon, and turn over in centuries to millennia, making 

this fraction essential in soil carbon sequestration.  The length of time in which carbon remains 

stabilized in soil depends on soil aggregate size and soil depth (Fang et.al., 2015).  Organic 

matter that is encased in soil aggregates has a slower rate of decomposition compared to organic 
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matter that exists outside of aggregates, because soil aggregates form a protective layer around 

organic matter that physically separates the organic matter from decomposers and from 

environmental factors that would accelerate its decomposition (Fang et.al., 2015).   

Stable carbon isotopes can be used to trace the journey of carbon through the soil (Busari 

et.al., 2016; Yonekura et.al., 2012; Zhang et.al., 2015).  When carbon transforms from one phase 

to another, the ratios of carbon and nitrogen isotopes in soil shift, which is called isotope 

fractionation (Busari et.al., 2016).  The natural abundance of 13C (δ) in soil indicates the stage of 

soil organic matter in the decomposition and humification process (Zhang et.al., 2015) and the 

turnover rate of soil organic carbon (Yonekura et.al., 2012).  As microbial processing of soil 

organic matter intensifies, the natural abundance of 13C increases (Busari et.al., 2016).  The 

natural abundance of 13C diminishes as fresh carbon is incorporated into the soil and is 

negatively correlated with soil organic carbon content (Busari et.al., 2016).  Temperature, 

nitrogen availability, litter C:N, and microorganisms all drive the rate of 13C fractionation 

(Garten, 2006).  Enrichment in δ13C can also be reflective of the residence time of organic matter 

and the inherent δ13C of incoming plant litter (Accoe et.al., 2002; Garten, 2006).  Stable carbon 

isotopes are a useful metric for measuring soil carbon turnover and distinguishing fresh carbon 

inputs from old carbon inputs following woodland encroachment (Busari et.al., 2016; Yonekura 

et.al., 2012; Zhang et.al., 2015).   

Similar to the natural abundance of 13C, the natural abundance of 15N indicates the degree 

of microbial processing of organic matter (Craine et.al., 2015).  Microbes preferentially consume 

14N and discriminate against 15N, resulting in an enrichment in 15N as decomposition progresses 

(Craine et.al., 2015).  Increased denitrification, nitrification, and ammonia volatilization are 

evidenced by increased nitrogen isotope fractionation (Craine et.al., 2015).  The natural 
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abundance of 15N also provides an image of nitrogen cycling over large time spans within 

ecosystems, making it a useful index for analyzing the flow of nitrogen into, out of, and within 

ecosystems, as well as the health of ecosystems (Craine et.al., 2015; Bekele and Hudnall, 2005; 

Garten, 2006).   

The encroachment of woody species into grasslands in arid and semi-arid areas in the 

United States is suspected to alter soil carbon pools (Throop et.al., 2013).  Woodland 

encroachment typically results in an increase in aboveground carbon storage, however the effect 

of woodland encroachment on belowground carbon stores and soil carbon dynamics is less well 

understood (Throop et.al., 2013).  In previous studies, researchers observed that changes in plant 

species composition and in spatial patterns of vegetation have resulted in alterations of carbon 

and nitrogen content of soils and of carbon and nitrogen fluxes between the soil and the 

atmosphere (Fang et.al., 2015; McCulley et.al., 2004; Overby et.al., 2015; Throop et.al., 2013; 

Yusuf et.al., 2015).  According to a study by Throop et al. (2013), the encroachment of the 

creosote bush, a C3 plant, onto grasslands of C4 species resulted in increased soil organic carbon 

storage.  One prevailing theory regarding the effect of woody encroachment on soil organic 

carbon content is that “islands of fertility” develop around woody species due to the structure 

and chemical composition of woody plant tissues, which differs from that of the surrounding 

grassland species (Throop et.al., 2013).  Soil organic content and soil nutrients are more 

abundant in the soil underneath the woody species due to increased biomass input and due to 

differing decomposition rates of woody plant material (McCulley et.al., 2004; Throop et.al., 

2013).  Soil organic carbon responses to woodland encroachment are prolonged and can result in 

continuing enrichment of soil organic carbon over long periods of time (Throop et.al., 2013).   

Woody plants and grasses steer the pathways of nutrient cycling in different ways 
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because they have different nutrient requirements and methods of obtaining nutrients, channel 

the flow of nutrients into their aboveground components and belowground components with 

different intensities and proportions, and return nutrients to the soil at different rates depending 

on the structure of their leaves and roots and the ambitions of the microbes residing below 

(Bekele and Hudnall, 2005).  Woody plants instigate enhanced nutrient cycling, including the 

movement of calcium, magnesium, and potassium, in the surface layers of soil (Bekele and 

Hudnall, 2005).  Nitrogen, a limiting resource, drives ecosystem function and plays a critical role 

in modifying organic matter fluxes (Craine et.al., 2015; Garten, 2006).  An increase in nitrogen 

can stimulate rapid organic matter turnover on short timescales, however elevated nitrogen levels 

over time can increase the sink strength of soil organic carbon pools through the stabilization of 

organic matter, reduction in soil respiration, inhibition of lignolytic enzymes, changes in 

microbial communities, and the deceleration of microbial processing of organic matter in the 

stable fraction (Craine et.al., 2015; Garten, 2006).   

Woody encroachment modifies the pH of soil, usually resulting in an elevation in the 

concentration of hydrogen ions and an associated depression in pH values (Bekele and Hudnall, 

2005; Bekele and Hudnall, 2006; Jobbagy and Jackson, 2003).  Soil pH regulates microbial 

activity, decomposition rates, and the ability of soil to retain key nutrients, for example calcium, 

magnesium, and iron (Bekele and Hudnall, 2006; Manning et.al., 2015).  Soil pH readily 

responds to a change in vegetation and can become highly variable following woody 

encroachment (Bekele and Hudnall, 2006).  Bekele and Hudnall (2006) observed soil 

acidification and an intensification of pH variability following the encroachment of red cedar 

into grasslands in Louisiana.  Considering woody encroachment strongly influences soil pH and 

pH drives nutrient availability and cycling, the spatial patterns of pH within encroached sites can 
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serve as an indication of how woody encroachment impacts nutrient dynamics.   

McCulley et. al. (2004) reported an enhancement in soil organic carbon and total nitrogen 

following woodland encroachment in subtropical grasslands.  This effect was especially 

pronounced in the top 20 centimeters of soil.  Despite the growth of microbial biomass following 

the increased plant inputs to the soil, which resulted in accelerated carbon and nitrogen 

mineralization rates, soil organic carbon and total nitrogen still accumulated.  This led to the 

deduction that with woodland encroachment, additions of carbon exceed losses of carbon 

through decomposition.  In this study area, woodland encroachment has heightened the strength 

of the carbon sink over the last two centuries as a result of this positive net balance of carbon as 

well as the magnification of the stable soil carbon pool  (McCulley et.al., 2004), which has very 

slow turnover rates (Stockmann et.al., 2013).  The increased residence time of much of the added 

carbon indicates that in this instance, woody plant litter was of poor quality and therefore took 

longer for microbes to consume (McCulley et.al., 2004). However, if the carbon to nitrogen ratio 

(C:N) of the tissue of the encroaching woody species is lower than the C:N of the tissue of the 

original grassy species, then woodland encroachment may excite microbial activity and 

microbial biomass growth (McCulley et.al.,2004).   

In another study, reforestation expanded the soil carbon pool through inputs of biomass 

(Fang et.al., 2015).  In addition, according to Overby et al. (2015), the reduction of tree stand 

density can hasten decomposition, therefore the opposite may be true in the case of tree stand 

densification.  However, according to Fontaine et.al. (2007), the addition of new organic carbon 

to the soil can spur microbial activity, thereby increasing the decomposition rate of organic 

matter and instigating the release of carbon from soil.  This amendment to the soil can initiate the 

decomposition of stable carbon in deep soil layers, which has long mean residence times and 
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slow turnover rates (Fontaine et.al., 2007).  Furthermore, woody encroachment increases the 

biomass of roots, and the roots of woody plant species generally reach deeper into the soil profile 

(Stockmann et.al., 2013).  This increased biomass and depth of root penetration instigates the 

priming effect, in which the addition of carbon in deep soil layers paves the way for 

microorganisms to survive and thrive at depth and consume carbon that was previously 

untouched by soil microorganisms (Stockmann et.al., 2013).  This heightened microbial activity 

and the decomposition of carbon that previously belonged to the stable carbon pool can alter the 

net carbon balance in soil (Stockmann et.al., 2013).  Although the growth of pinyon-juniper trees 

may benefit carbon storage through the incorporation of carbon into their tissues, plant mortality 

in grasslands could result in the release of stored carbon and increased carbon emissions through 

decomposition (Kucuker et.al., 2015), as the decomposition of dead vegetation can put carbon 

back into the atmosphere (Hurteau et.al., 2011).  

Soil is the second strongest sink of carbon dioxide after the ocean (Stockmann et.al., 

2013).  Researchers estimate that soil stores twice as much carbon as the atmosphere and 

biosphere (de Paul Obade and Lal, 2013).  At this moment in time, when carbon emissions from 

anthropogenic sources are rising at steadily increasing rates and when carbon dioxide has been 

identified by the United Nations Framework Convention on Climate Change as the most 

impactful greenhouse gas in terms of climate change, the preservation of the soil carbon pool is 

becoming increasingly important (de Paul Obade and Lal, 2013; Stockmann et.al., 2013).   A 

small decrease in the soil carbon pool and the subsequent release of carbon from the soil can 

result in a spike in atmospheric carbon dioxide levels (Croft et.al., 2012; Stockmann et.al., 2013).  

Likewise, the increased storage and maintenance of carbon in soil is a form of climate mitigation 

(Lal, 2004; Stockmann et.al., 2013).  The flux of carbon dioxide from the soil rivals the flux of 
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carbon dioxide to the atmosphere from fossil fuel emissions (Throop et.al., 2013).   

Interpolation is a tool in spatial analysis that has been implemented in previous studies to 

visualize soil organic carbon variations over space and to estimate soil organic carbon content in 

unsampled areas (de Paul Obade and Lal, 2013; Miller et.al., 2016; Wang et.al., 2015).  Spatial 

interpolation involves converting discrete points of known attributes into continuous areal 

surfaces by predicting the values in the spaces between the points (de Paul Obade and Lal, 2013; 

Miller et.al., 2016).  The small-scale variability in soil properties means that the sample pool 

used to construct interpolations must be comprehensive in terms of the number of sampling 

points and the density of its areal coverage (Bekele and Hudnall, 2006). Interpolation is a method 

in geostatistics that allows for the maximization of data obtained through expensive and time-

consuming field sampling and laboratory analysis (Lark, 2012) and allows for the visualization 

of spatial trends and patterns (Wang et.al., 2015).  The spatial patterns of soil properties captured 

in interpolated surfaces are essential to uncover what mechanisms are driving soil characteristics 

and how those mechanisms vary over space (Bekele and Hudnall, 2006), however the internal 

variability of soil and the simplification of spatial phenomena into equations can introduce 

uncertainties in predictions generated through interpolation (Kumar et.al, 2012; Malone et.al., 

2009).  Spatial interpolation techniques include inverse distance weighting, regression, proximity 

polygons, trend surface modeling, and kriging (de Paul Obade and Lal, 2013).  Spatial 

interpolation relies on the assumption that the data under analysis is spatially autocorrelated 

(Miller et.al., 2016).  This study will employ inverse distance weighting and kriging to produce 

maps of soil organic carbon content for the study sites.  Inverse distance weighting assigns 

values to unsampled points by following the rule that as spatial proximity increases, values come 

closer together numerically (de Paul Obade and Lal, 2013).  Kriging uses a variogram of distance 
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and variability to estimate values of unsampled points (de Paul Obade and Lal, 2013).  Soil 

organic carbon varies on small spatial scales and in response to vegetation species composition 

and spatial patterns (Miller et.al., 2016; Manning et.al., 2015).  A spatial analysis of soil organic 

carbon content will improve our understanding of soil organic carbon dynamics in response to 

woodland encroachment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Three:  Methods 
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3.1 Study Area 

 

The intention of this research was to explore the effects of juniper encroachment on soil 

carbon fluxes in a semi-arid ecosystem within Arizona.  A study area was sought within the 

semi-arid Colorado Plateau to realize this goal as well as to ensure the accessibility of the 

site.  Specifically, a site characterized by the presence of juniper trees as well as large grassy 

areas with minimal topographic variability was sought with the intention of using the 

heterogeneity in vegetation to represent both a juniper woodland and a grassland while keeping 

other variables that can influence soil organic carbon content constant.  A field site that met this 

criteria was found within the Southwest Experimental Garden Array, which is a collection of 

research stations funded through the National Science Foundation and Northern Arizona 

University (Northern Arizona University, 2014).   

 
Figure 1:  Blue Chute field site (Photo credit: Christopher RoDee) 

 

The site, named Blue Chute, is a pinyon-juniper woodland within Babbitt Ranches.  Blue 

Chute is located at 35.58 degrees North and -111.97 degrees West and is about 40 minutes 
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northwest of Flagstaff, Arizona (Northern Arizona University, 2014).  The site was previously a 

part of grazing lands for cattle before it was designated through the Landsward Foundation as an 

ecological research site (Northern Arizona University, 2014).  As a result of this designation, the 

site could be utilized for this study in a timely manner, which was essential given the compressed 

timeline of this study.  Trampled ground and cow manure is visible evidence of its previous 

use.  The entire research area covers about 1.2 hectares, but only the southernmost part of the 

area was selected for use in this study to avoid the disturbance of other ongoing research projects 

and to avoid patches of compacted ground indicative of human activities.  The study area for this 

research covered about 12,260 square meters.  The small extent of the study area ensured small-

scale soil carbon variability could be represented with the sampling scheme, which will be 

discussed in the Field Methods section of this chapter.   

 At 6332 feet in elevation, the site receives about 478 millimeters of precipitation annually 

(Northern Arizona University, 2014).  The annual mean air temperature ranges from 0.889°C to 

18.6°C (Northern Arizona University, 2014), and the average weighted slope for the soil map 

unit is 6.7% (United States Department Agriculture, 2016).  The site experiences a monsoon 

season from June to September.  To determine the percent canopy cover of trees in the study 

area, a supervised image classification analysis was performed on 2015 aerial imagery obtained 

from the U.S. Department of Agriculture’s National Agriculture Imagery Program (United States 

Department of Agriculture, 2016).  This classification was performed using the Image 

Classification toolbar in the ArcGIS Spatial Analyst extension of ArcMap.  Groups of pixels 

visually determined as grasses were manually selected from the 2015 aerial imagery, designated 

as grass cover, and used to inform the software’s automated identification of grassy areas.  The 

same procedure was used to delineate juniper tree cover.  According to the results of this 
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analysis, percent canopy cover of the study area is about 21%.  A map of the results of the 

supervised land cover classification is shown in Figure 2.  The site is characterized by the 

Oneseed Juniper (Juniperus monosperma) and the Two-needle Pinyon Pine (Pinus edulis), as 

well as numerous grass species including grasses belonging to the genuses Bouteloua and 

Aristida (United States Department Agriculture, 2016).  Junipers of various heights and sizes dot 

the landscape, and are often accompanied by pinyon pines.   Tall grasses, prickly pear cacti, and 

some wildflowers lie between trees.  Large junipers appear to serve as nurseries for young 

junipers, young pinyon pines, small leafy vegetation, and wildflowers.  A thick layer of 

undecomposed juniper leaves rests under most juniper trees.      

Bare soil occurs in patches, and is often covered by rocks or large ant hills.  When the 

weather is dry, cracks appear in the bare soil, which is reddish-brown to brown to grayish brown 

in color.  The top layer of soil does not have a cohesive structure and disintegrates easily when 

cored.  The site is underlain by basalt and limestone, and the soil contains carbonates (Northern 

Arizona University, 2014).  According the Web Soil Survey data produced by the Natural 

Resources Conservation Service, a part of the United States Department of Agriculture, the soil 

belongs to the class Aridic Calciustolls, the order Mollisols, and the Suborder Ustolls (United 

States Department of Agriculture, 2016).   
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Figure 2:  Supervised land cover classification of the study area 
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3.2 Field Methods 

 

 The experimental design involves a “space for time” approach, which is explained in 

Bragazza et.al. (2014) and McCulley et.al. (2004) as a way to simulate different periods of time 

using different spaces as representations of each time.  With this approach, two times can be 

brought temporally coincident through spatial variations.  In other words, one area resembling 

the conditions of one time can be used to represent the past, while another area resembling 

projected future conditions can represent the future.  Instead of using a grassland site to represent 

the time before juniper encroachment and a juniper-dominated site as an example of time after 

encroachment, one site was selected to minimize the effect of other controlling factors of soil 

carbon not under scrutiny.  For example, soil thickness and soil organic carbon vary across a 

slope gradient, with the majority of soil organic carbon present at the top and at the base of 

slopes (McCulley et.al., 2004; Olson and Al-Kaisi, 2015).  Soil type and climatic conditions 

must also be held constant, as different soil classes have inherently different carbon content 

(Stevens et.al., 2010) and temperature and precipitation affect soil carbon content and organic 

matter decomposition rates (Hess and Austin, 2014; Stockmann et.al., 2013; Zhang et.al., 

2015).  In addition, season has a profound impact on soil carbon content (Norton et.al., 2012), 

therefore sampling in all areas must be carried out within the same season. All samples were 

taken in the autumn between October 14, 2016, and October 17, 2016.  All four days were 

characterized by minimal cloud cover, no precipitation, and strong winds.    

The presence of juniper trees of various ages and sizes as well as the wide swaths of grass 

between trees made the site an ideal environment to explore how junipers modify the spatial 

distribution and dynamics of soil carbon.   The impact of juniper encroachment on soil properties 

was expected to be most prominent close to junipers trees, with diminishing effects with 
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increasing distances.  The southeast half of the research site was utilized for this study because it 

showed no visible signs of human activity and compaction.  The study area was bound in the 

southwest, southeast, and northwest direction by a metal fence, and the extent of the study area 

in the northeast direction was delineated using flags.  The northeastern edge of the area was set 

with the intention of creating a buffer between my research area and the area in use by other 

researchers.  The length and width of the study area were measured, resulting in a length of 110 

meters and a width of 65 meters.  Five parallel transects perpendicular to the long dimension of 

the area were established at 20-meter intervals.   

These five transects were established to find the five trees serving as the anchor points for 

soil sampling transects and as the post-woodland encroachment representations of 

vegetation.  Along each transect, a juniper tree was selected.  In some transects, only one tree 

was intercepted, but in other transects, more than one tree was present.  In these cases, the tree 

standing in isolation, the tree farthest from other selected trees, and/or the tree with different 

dimensions than other selected trees was chosen.  The goal of juniper selection was to obtain 

maximum coverage of the study area and to select trees across a wide range of ages and sizes. 

Table 1 below shows the coordinates and trunk diameters for the five selected trees.    

Table 1:  Coordinates and trunk diameters of the five juniper trees 

Tree Latitude Longitude Diameter 

1 35 deg. 35.231' 111 deg. 58.187' 14.4 cm 

2 35 deg. 35.210' 111 deg. 58.176' 69.6 cm 

3 35 deg. 35.172' 111 deg. 58.161' 32.9 cm 

4 35 deg. 35.180' 111 deg. 58.151' 118.6 cm 

5 35 deg. 35.19' 111 deg. 58.158' 5.4 cm 
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Figure 3a:  Tree #1 (A.K.A Zhaad) 

 

 

 
Figure 3b:  Tree #2 (A.K.A Elijah) 
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Figure 3c:  Tree #3 (A.K.A Larry) 

 

 

 
Figure 3d:  Tree #4 (A.K.A Athena) 
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Figure 3e:  Tree #5 (A.K.A. Borris) 

For each tree, the radius of the canopy in each compass direction was estimated and 

recorded.  Soil organic carbon content is known to vary within study sites at small spatial scales 

(Miller et.al., 2016), therefore 50 sampling points were used to represent this landscape-scale 

variability (Cihacek et.al., 2015).  A large number of observations is also required to produce an 

accurate map illustrating soil organic carbon content across vegetation gradients (Miller et.al., 

2016).   In each compass direction, a soil sample was taken halfway between the juniper trunk 

and the dripline of the canopy, and another sample was taken five meters from the 

trunk.  Samples under the tree represent the strongest influence of juniper encroachment on soil 

properties, and samples five meters from the tree indicate soil properties in inter-canopy spaces. 

These samples were used to represent soil carbon characteristics after encroachment.  In a 

randomly selected compass direction, additional samples were taken fifteen meters from the tree 

and thirty meters from the tree.  These samples taken fifteen and thirty meters from the junipers 

were intended to represent soil with minimal to no juniper influence.  The directions of these 

extended transects were selected at random, however if the 30-meter transect extended past the 

study area or terminated close to another juniper, a different direction was randomly 
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selected.  Due to the spatial distribution of juniper trees, 15-m and 30-m sampling points 

occasionally were located less than 15 meters or 30 meters from other unselected juniper 

trees.  To get an accurate distance from sampling points to nearby junipers, the coordinates of all 

nearby junipers were collected.  A map of all of the sampling points is shown in Figure 6.   

 
Figure 4:  Establishment of radial transects within the site (Photo credit:  Christopher RoDee) 

At each sampling point, fallen juniper leaves were brushed aside, and three soil cores 

were taken.  The depth to which soil is sampled must be carefully selected, because soil organic 

carbon varies with depth and generally decreases with depth (Jobbagy and Jackson, 2000; Olson 

and Al-Kaisi, 2015; Stockmann et.al., 2013; Winowiecki, 2015; Zhang et.al., 2015) and 

insufficient sampling depth can produce inaccuracies when quantifying soil organic carbon stock 

alterations (Zhang et.al., 2015).  According to Throop et.al. (2015), only the top 20 cm of soil is 

affected by woody encroachment in terms of soil carbon content in semi-arid and arid areas, and 

the top 10 cm of the soil profile shows the most pronounced change in response to woody 

encroachment.  Zhang et.al. (2015) asserts that 20-cm is the minimum sampling depth for 

representing soil organic carbon stocks, and Fang et.al. (2015) states that the top 20 cm of soil 
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contains the highest carbon concentration and the top 10 cm of soil contains the highest 

concentration of soil organic carbon and the largest mass of litter inputs.  Although deeper soil 

contains the majority of the passive fraction of carbon (Fang et.al., 2015), a 20-cm sampling 

depth was selected to maximize vegetation-dependent alterations in soil carbon.  In order to 

capture some of the variability in soil carbon with depth and to expand the study into the third 

dimension, each core was split into two depth increments:  0-10 cm and 10-20 cm.  Due to the 

loose structure and fine texture of the soil, obtaining a cohesive core was difficult, and much of 

the surface soil could not be captured with the corer.  To ensure enough soil for all laboratory 

analyses was captured in the top ten cm of soil, a shovel was used to scoop some of the surface 

soil.  As a result, the 0-10 cm samples may better represent properties of shallower depths, 

therefore from here onward, these samples will be referred to as “surface samples” and samples 

in the 10-20 cm depth increment will be referred to as “subsurface samples”.  Surface samples 

from each sampling point were incorporated into the same sample and 10-20 cm samples for 

each sampling point were joined together and stored separately.  With fifty sampling points and 

two depth increments, a total of one hundred samples were collected across the study site. 
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Figure 5:  Soil corer 
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Figure 6:  Map of sampling points within the study area 
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3.3 Laboratory Methods 

 

All soil samples were sieved using a 2-mm sieve to remove all coarse particles, most 

roots, and large pieces of leaf litter.  Sieved samples were used for all analyses.  Due to the 

compression of the 10-20 centimeter samples and the inability to obtain a cohesive core of the 

surface soil, the calculation of bulk density was removed from this study.  As a result, all 

analyses are on a per mass basis, as bulk density measurements are required to convert values to 

a per volume concentration (de Paul Obade and Lal, 2013) or to a per area concentration 

(Chatterjee et.al., 2009; IPCC, 2003; Tiwari and Iqbal, 2015).  Subsamples for each analysis 

were collected by shaking the sample bags by hand and taking small portions of soil from 

sections of the bag until the required mass of sample was obtained.  This method was used to 

obtain a fraction of soil that was reasonably representative of the entire sample.   

 To determine how juniper encroachment modifies the carbon and nitrogen content of soil 

and alters carbon and nitrogen microbial processing and dynamics, %C, %N, C:N ratios, and the 

natural abundance of stable carbon and nitrogen were measured at the Colorado Plateau Isotope 

Laboratory.  To prepare the samples for the analyses, small subsamples of 5 g were taken from 

each soil sample and each leaf litter sample and dried in an oven for 24 hours at 55℃.  The spoon 

used to scoop the subsamples was cleaned using alcohol wipes between samples to prevent 

cross-contamination.  Soil subsamples were then ground to a fine powder using a mortar and 

pestle and transported to the Colorado Plateau Stable Isotope Laboratory.  At the Colorado 

Plateau Stable Isotope Laboratory, leaf litter subsamples were ground using a ball mill.  Soil 

subsamples were acid washed to remove carbonates because the presence of carbonates can 

result in inaccurate stable isotope readings, according to the Colorado Plateau Stable Isotope 

Laboratory.  Trials were run prior to analysis to determine the appropriate mass of soil and leaf 
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litter needed to obtain accurate measurements.  A small amount of material from each subsample 

was packaged in foil and analyzed for carbon and nitrogen content and the abundance of stable 

carbon and nitrogen isotopes using an elemental analyzer.   

Water content of soil is one of the factors regulating microbial activity and therefore the 

rate of decomposition of organic material in soil (Manning et.al., 2015).  Therefore, gravimetric 

soil moisture of the samples was determined to explore how the presence of junipers alters soil 

moisture and how strongly soil moisture controls carbon fluxes in soil.  Gravimetric soil 

moisture content was measured by drying approximately 10 g of soil per sample for 24-48 hours 

in an oven set to 105℃.  Samples were weighed before and after drying to attain a value for the 

mass of water in each subsample.  After drying, samples were placed in a desiccator to cool prior 

to weighing to inhibit the acquisition of ambient moisture.  Gravimetric soil moisture was 

calculated using the following equation adapted from Yahaya et.al. (2016): 

 Gravimetric soil moisture = (Wet soil weight - dry soil weight) / dry soil weight 

 To determine how juniper encroachment modifies the spatial distribution of organic 

matter in soil and alters soil organic carbon stocks, the weight loss on ignition (LOI) method was 

implemented (Chatterjee et.al., 2009; de Paul Obade and Lal, 2013; Tiwari and Iqbal, 2015; 

Zhang et.al., 2015).  This method involves predicting the soil organic matter content by 

calculating the weight difference after exposure to high temperature and converting this value to 

a soil organic carbon content (Chatterjee et.al., 2009; de Paul Obade and Lal, 2013; Zhang et.al., 

2015).  For each sample, a subsample of about 1.5 grams of soil (roughly 1 cm³) was weighed on 

a microscale in a small cylinder of tin foil. Tin foil weights were recorded before this step so 

weights could be adjusted to represent only soil.  Subsamples were dried at about 90℃ for 24 

hours to remove water, placed in a desiccator to cool, and weighed to determine the pre-ignition 
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weight of soil.  Subsamples were then placed into glass vials and ignited in a furnace at 550℃ for 

five hours.  Glass vials were burned for one hour at 550℃ prior to ignition to clean them.  After 

the five-hour burn, the glass vials containing the sample packets were cooled in a desiccator to 

prevent the addition of moisture to the samples.  Once the samples were cooled, they were 

weighed using a microscale.  The mass lost with ignition represents the mass of organic matter 

present in the subsample.  The following equation was used to determine the percent of organic 

matter present in each soil sample: 

 

Percent organic matter = (Pre-ignition soil weight - post-ignition soil weight) / pre-ignition soil 

weight *100 

Soil pH affects the activity levels of microbes in soil and the rate at which organic matter 

is decomposed in soil (Manning et.al.,2015).  To determine the pH of each sample, 10 g of each 

sample was mixed by hand with distilled water to create a shiny paste.  A glass electrode pH 

meter was inserted into the paste and the resulting pH value was recorded.   

Texture influences microbial communities and influences how encroachment affects soil 

organic carbon (Yusuf et.al., 2015).  To measure the texture of each sample, an LS 230 Coulter 

particle size analyzer was utilized.  Initially, the hydrometer method was attempted to determine 

the texture of each sample, however, this method proved to be unrealistic given time constraints 

and the number of samples to be processed.  To prepare samples for particle size analysis, about 

0.4 grams (0.35-0.45 grams) of each sample was weighed into 50-mL centrifuge tubes.   Organic 

matter was removed by adding 30% hydrogen peroxide to the tubes, mixing the soil and 

hydrogen peroxide using a shaker table, and allowing the sample and hydrogen peroxide to react 

for 4-6 hours in a 50℃ water bath.  15 mL of reagent grade water was added to the centrifuge 



35 

 

tubes.  Tubes were centrifuged at 3400 revolutions per minute (rpm) for 15 minutes, and then 

liquid at the top of the centrifuge tube was decanted.  30 mL of reagent grade water was added to 

the centrifuge tubes, and samples were centrifuged at 3400 rpm for another 15 minutes.  The 

reagent grade water was removed using a pipette.  5-15 mL of 5% sodium hexametaphosphate 

solution, the particle dispersing agent, was added to each centrifuge tube, and tubes were shaken 

on a shaker table on high for two hours.  Samples were then transferred to tubes for analysis and 

analyzed using the particle size analyzer to determine the relative abundance of soil in each 

particle size category.    

 

3.4 Statistical Analysis 

 

RStudio was used for all data analyses.  Histograms were generated from the organic 

matter, carbon, nitrogen, moisture, pH, and particle size fraction data to depict the range and 

distribution of the data and to characterize the field site in the context of these soil 

properties.  Stratification ratios based on depth increment were calculated for δ13C and δ15N to 

determine the role of juniper encroachment in creating or eliminating differentiation in isotope 

enrichment vertically.  ANOVAs were performed to determine if distance from juniper trees, 

direction from juniper trees, and age of juniper trees can individually manifest significant 

variability in the following soil properties:  organic matter content, carbon content, nitrogen 

content, δ13C, δ15N, δ13C stratification ratios, δ 15N stratification ratios, moisture, pH, clay 

content, silt content, very fine sand content, fine sand content, and medium sand content.   

To determine whether juniper encroachment modifies spatial patterns of organic matter 

fluxes and soil chemistry, the averages of organic matter content, carbon content, δ13C, δ13C 
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stratification ratios, nitrogen content, δ15N, δ15N stratification ratios, soil C:N, and pH were 

calculated for the surface soil and subsurface soil for three areas:  below juniper canopies, 

juniper dripline to five meters distance from the trees, and over five meters from the tree.  These 

classes were built to reflect the actual distances of soil samples from juniper trees, rather than 

estimated distances.  Actual distances were found using the coordinates of the soil sampling 

points and NAIP aerial imagery provided by the United States Department of Agriculture.  The 

soil below juniper canopies represents soil most strongly influenced by juniper encroachment; 

the soil from the dripline to five meters from the juniper trees represents intercanopy soil; and 

soil over five meters from juniper trees represents soil prior to juniper encroachment.  For the 

resulting graph of averages and for all graphs to follow, error bars indicate the standard error.   

To determine how juniper encroachment alters organic matter fluxes and soil chemistry 

over time, the averages of organic matter content, carbon content, δ13C, nitrogen content, δ15N, 

δ15N stratification ratios, soil C:N, and litter C:N were calculated for the surface soil and 

subsurface soil for each tree.  These averages were graphed against increasing tree age.  Tree 

trunk diameter served as a proxy for tree age for this analysis, with larger tree trunks 

representing older trees.   

To explore the strength of all factors excluding soil carbon and organic matter content in 

shaping carbon stocks in soil, the correlations between these potential explanatory variables and 

soil organic matter and carbon were measured.  Correlation coefficients and p-values were 

calculated for each combination and graphed.  A multivariate linear regression, hereafter referred 

to as Model A, was performed to determine the role and strength of distance and direction from 

juniper trees, canopy diameter, and depth in shaping soil organic matter content in the study site.  

Canopy diameter was calculated prior to this regression analysis using the canopy radii 
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measurements collected in the field.  A second multivariate linear regression, hereafter referred 

to as Model B, was performed to create a model that could be integrated with geostatical 

analyses to predict surface soil organic matter at unsampled, randomly selected points in the 

study area, which could then be used to create an interpolated surface map of soil organic carbon 

in the study area.  For this analysis, only surface samples were used to generate the model, since 

this model was used to create a map of organic matter only in surface soil.  Canopy areas were 

used in lieu of canopy diameter because canopy areas can be easily calculated using GIS.  These 

canopy area values were derived for each tree using the GIS layers produced in the supervised 

land cover classification.  The resulting coefficients from Model B were then used to construct 

an equation to predict soil organic matter at randomly selected, unsampled points in the study 

area, which will be discussed in Section 3.5 of this document.  Compass direction was removed 

as a predicting variable for this analysis because this variable weakened the strength of the final 

model and was found to be insignificant (p-value >0.1).  In both multivariate linear regression 

analyses, organic matter content and distance were log-transformed because this dependent 

variable and independent variable both have skewed distributions.  Only the results of these two 

analyses are mentioned in this study, however multiple combinations of factors and 

transformations were tested.  Akaike information criterion values were calculated for each model 

and considered in conjunction with knowledge of soil-plant feedbacks to select these final two 

models.   

A copy of the scripts used is included in Appendix A of this document.  
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3.5 Geostatistical Analysis 

 

 To determine the ability of geostatistical methods in GIS to capture the spatial variability 

of soil carbon content and factors related to soil carbon storage, the table of soil data was joined 

to plotted soil sampling points in ArcMap 10.3.1.  Different methods of spatial interpolation 

were conducted using tools within the Interpolation toolset of the Geostatistical Analyst Tools 

toolbox in ArcMap 10.3.1.  Inverse Distance Weighting, Ordinary Kriging, Simple Kriging, and 

Empirical Bayesian Kriging were tested and the Geostatistical Wizard in ArcMap was used to 

measure the accuracy of predicted soil properties at unsampled points.  Multiple variations of 

Kriging were used because this method has been extensively applied by researchers seeking to 

evaluate the spatial variability of soil properties because this method modifies the strength of 

observed points in influencing predicted values at unsampled points to reflect underlying patterns 

in the data (Simón et.al., 2013).  The interpolation method with low root-mean-squared error that 

captured the variability in soil properties between juniper trees and grassy areas was selected to 

produce final interpolated raster datasets.  Final interpolated surfaces were clipped to the extent 

of the study area.   

 To improve soil organic predictions in unsampled areas far from sampled points, the 

equation for predicting soil organic matter content derived through the multivariate linear 

regression was combined with interpolation methods, resulting in a higher resolution, model-

based map of soil organic matter.  To create a series of points at which soil organic matter would 

be estimated, the Create Fishnet tool in the ArcGIS Data Management toolbox was utilitzed.  

This tool generates a grid over a selected area of interest given specified cell dimensions and 

places points at the centerpoint of each cell.  The grid was set to the extent of the study area and 

the cell size was set to 1 m2 to create a high-density point surface.  To determine the distance 



39 

 

from each of these random points to its closest tree, points were created at the centroid of each 

tree canopy using the Feature to Point tool in the Data Management toolbox.  The Near tool in 

the Analysis toolbox was then applied to find the closest tree from each point and to calculate the 

distance of each point from its closest tree.  The canopy area for each closest tree was joined to 

the point feature class.  The table for this point layer, which included the identifications of each 

point, the distances between each point and its closest tree, and the canopy area of the closest 

tree to each point, was exported from ArcMap and imported into Microsoft Excel.  In Excel, data 

values for each point were applied to the following model equation:  EXP(1.836-

0.095*ln(Distance)+0.003*Canopy Area).  The predicted organic matter values were imported 

back into ArcMap and joined to the point layer, resulting in an array of points across the study 

area with predicted organic matter values.  Empirical Bayesian Kriging to create a continuous 

surface of predicted organic matter values using these predicted values at points to inform 

estimates of organic matter content in spaces with unknown soil organic carbon content.   
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Chapter Four:  Results 

 

Percent carbon, percent nitrogen, the natural abundance of 13C and 15N isotopes, and C:N 

values of plant litter from each of the five trees are shown in Table 2 below.  Tree 2 and Tree 4 

were the largest trees within the site (Table 1).  The litter samples from these two trees have the 

largest δ13C values as well as the largest percent carbon and C:N values (Table 2).   Percent 

nitrogen and the abundance of 15N do not show a clear trend with tree age.   

Table 2:  Chemical characteristics of leaf litter from selected juniper trees 

Sample δ13C (‰) δ15N (‰) %C %N C/N 

Tree 2 -23.93 0.26 49.17 1.03 47.86 

Tree 3 -24.10 0.91 42.11 1.01 41.53 

Tree 4 -23.22 0.68 47.12 0.99 47.52 

Tree 5 -24.71 -0.87 42.23 1.02 41.54 

 

 Organic matter content within the field site ranges between 2% and 12%, with a few 

higher values reported (Figure 7).  Carbon content typically lies in the range of 0% to 4% (Figure 

8), and nitrogen content typically ranges between 0% and 0.3% (Figure 9).  Most soil moisture 

values lie between 5% and 20% (Figure 10).  Most soil within the site is alkaline, with a large 

proportion of pH values between 7.25 and 8.25 (Figure 11).  Clay content ranges from 16-30% 

(Figure 12), silt content ranges from 55%-75% (Figure 13), very fine sand is in the range of 4%-

16% (Figure 14), fine sand is in the range of 0-8% (Figure 15), and medium sand is in the range 

of 0-6% (Figure 16).   
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Figure 7:  Histogram of organic matter content (%) across the field site 

 

 

Figure 8:  Histogram of carbon content (%) across the field site 
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Figure 9:  Histogram of nitrogen content (%) across the field site 

 

 

Figure 10:  Histogram of moisture content (%) across the field site 
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Figure 11:  Histogram of pH across the field site 

 

 

Figure 12:  Histogram of clay content (%) across the field site 
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Figure 13:  Histogram of silt content (%) across the field site 

 

 

Figure 14:  Histogram of very fine sand content (%) across the field site 
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Figure 15:  Histogram of fine sand content (%) across the field site 

 

Figure 16:  Histogram of medium sand content (%) across the field site 

 Distance from juniper trees, and by extension vegetation cover, produces significantly 
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different soil organic matter content, carbon content, nitrogen content, δ13C, δ15N, δ15N 

stratification ratios, and percent very fine sand content (Table 3).  Juniper age, which is 

represented by juniper trunk diameter, causes recognizable variations in soil organic matter 

content, carbon content, nitrogen content, δ13C, δ15N stratification ratios, pH, and very fine sand 

content (Table 4).  

Table 3:  Analysis of variance between samples from different distances from juniper trees 

(Degrees of freedom = 37) 

Dependent Variable F-statistic p-value 

Organic matter 10.62 0.000227 

Carbon 11.6 0.000123 

Nitrogen 10.35 0.000269 

δ 13C 10.04 0.000329 

δ15N 6.001 0.00553 

δ13C stratification ratio 1.291 0.301 

δ15N stratification ratio 10.48 0.00108 

Moisture 1.396 0.261 

pH 0.18 0.836 

Clay 0.308 0.737 

Silt 0.7 0.503 

Very fine sand 3.508 0.0403 

 

Table 4:  Analysis of variance between samples under juniper trees of different trunk diameters 

(Degrees of freedom = 38) 

Dependent Variable F-statistic p-value 

Organic matter 10.78 0.00221 

Carbon 8.708 0.0054 

Nitrogen 7.43 0.00965 

δ13C 5.193 0.0284 

δ15N 1.053 0.311 

δ13C stratification ratio 0.619 0.442 

δ15N stratification ratio 5.234 0.0345 

Moisture 1.632 0.209 

pH 12.08 0.00129 

Clay 1.63 0.21 

Silt 0.627 0.433 

Very fine sand 9.391 0.004 
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Organic matter content declines with increasing distance from juniper trees (Figure 17).  

This decline is more pronounced in the surface soil compared to the subsurface soil.  The highest 

organic matter concentrations are found below juniper canopies, while the lowest organic matter 

concentrations are found over five meters from juniper trees.  Under the juniper canopies, 

organic matter content is slightly higher in the surface soil compared to the subsurface soil 

(Figure 18).  Soil over five meters from juniper trees was lowest in organic matter content.  As 

juniper age increases, soil organic matter content below the tree canopy also increases (Figure 

18).   

 

Figure 17:  Average soil organic matter content with increasing distance from juniper trees for 

two depth increments 

Interestingly, subsurface soil beyond juniper canopies had higher organic matter 

concentrations compared to surface soil (Figure 17).  Although the soil under juniper trees 

exhibited a decline in organic matter content with depth and the soil under grasses exhibited a 

magnificiation in organic matter content with depth, δ13C stratification ratios show little variation 
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over distance (Figure 19).   

 

Figure 18:  Soil organic matter content below juniper canopies with increasing tree age 

 

Figure 19:  Average stratification ratio of δ13C with increasing distance from juniper trees 

Soil carbon content is consistently elevated in surface soil compared to subsurface soil 
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across all distances from juniper trees (Figure 20).  Similar to observed patterns in soil organic 

matter content, soil carbon content declines with increasing distance from juniper trees and 

increases as trees become more established on the study site (Figure 21).    

 
Figure 20:   Average soil carbon content with increasing distance from juniper trees for two 

depth increments 

 
Figure 21:  Soil carbon content with increasing tree age 
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Figure 22:  Average natural abundance of 13C with increasing distance from juniper trees for 

two depth increments 

As distance from juniper trees increases, δ13C values become less negative (Figure 22).  

The transition from juniper trees to grasses is accompanied by an enrichment in soil δ13C.  At all 

distances, subsurface soil is more enriched in δ13C compared to its corresponding surface soi 

(Figure 22).  The δ13C values of soil below juniper trees is slightly lower than the δ13C values of 

the juniper leaf litter (Figure 23; Table 2), showing a transformation of litter as it is incorporated 

into the soil profile.  A decrease in tree age corresponds with an enrichment in soil δ13C below 

the canopy (Figure 23).   
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Figure 23:  Average natural abundance of 13C with increasing tree age 

The C:N of soil is higher under juniper canopies compared to adjacent intercanopy and 

grassy areas (Figure 24).  Beyond the juniper canopies, soil C:N varies little with increasing 

distance from juniper trees.  At all sampled points within the site, soil C:N is slightly lower in the 

subsurface soil relative to the surface soil.  Juniper litter C:N rises with increasing tree age 

(Figure 25).  This relationship is mirrored in the soil, where soil C:N under juniper canopies rises 

as trees grow and mature (Figure 26).  
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Figure 24:   Average soil C:N with increasing distance from juniper trees for two depth 

increments 

 
Figure 25:  Litter C:N with increasing tree age 
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Figure 26:  Soil C:N under juniper canopies with increasing tree age 

 

 
Figure 25:   Average soil nitrogen content with increasing distance from juniper trees for two 

depth increments 

Soil nitrogen content is highest in the surface soil below juniper canopies (Figure 27).  As 

distance from juniper trees increases, soil nitrogen content decreases.  As tree age increases, soil 
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nitrogen in surface soil increases (Figure 28); however, there is not a significant relationship 

between tree age and subsurface soil nitrogen (r=0.23, p= 0.25).   

 
Figure 26:  Soil nitrogen content with increasing tree age 

 

Figure 27:   Average natural abundance of 15N with increasing distance from juniper trees for 

two depth increments 
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At all distance increments, subsurface soil is more enriched in δ15N compared to surface 

soil (Figure 29).  As the distance from juniper trees increases, an enrichment in soil δ15N occurs.  

Stratification ratios of δ15N across depth are closer to a value of 1 in soil beyond the juniper 

canopy (see Figure 30).  As tree age increases, the C:N of the soil under the tree canopy 

increases (Figure 25), however tree diameter and δ15N of the underlying soil are not significantly 

correlated for surface samples or subsurface samples, as shown in Figure 31 (rsurface = -0.45, 

psurface = 0.075; rsubsurface = -0.025, psubsurface = 0.47).   

 
Figure 28:  Soil δ15N stratification ratios with increasing distance from juniper trees 
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Figure 29:  Soil δ15N under juniper canopies with increasing tree age 

 

 

Figure 30:  Correlations between selected soil properties and soil organic matter content 
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Figure 32 above shows the correlations between potential determinants of soil organic 

matter content and organic matter content.  Among factors tested, percent moisture, percent 

nitrogen, δ13C, δ15N, and pH show the highest correlations with organic matter content with high 

significance (p < 0.01).  Percent nitrogen is most correlated with organic matter content (r=0.95), 

which is expected given nitrogen availability influences organic matter decomposition (Garten, 

2006).  As nitrogen content and moisture content increase and soil becomes more alkaline, 

organic matter content increases.   The percentage of particles in very fine sand fraction, the fine 

sand fraction, and the medium sand fraction are correlated with organic matter content, but not 

significantly so.  The plethora of fine particles in the soil may have obscured the particles above, 

including the fine sand particles, causing these particles to go undetected by the laser in the 

particle size analyzer.  Therefore, the proportion of fine sand and medium sand in the samples is 

underestimated.  No particles above medium sand were detected, however sieving of some of the 

samples indicated that such particles were present, but in very small numbers.  The percentage of 

particles in the clay fraction and the silt fraction had r-values less than 0.1.  These factors were 

excluded from further study of soil organic matter determinants.   
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Figure 31:  Correlations between selected soil properties and soil carbon content 

As shown in Figure 33, nitrogen content, pH, δ13C, δ15N, and the percentage of medium 

sand are positively and significantly correlated with carbon content (p<0.01).  These correlations 

between soil carbon and these variables are similar to those in Figure 33; however, medium sand 

is not significantly correlated with organic matter content but is correlated with carbon content.  

Medium sand particles may contain high concentrations of inorganic carbon, however given the 

underestimation of the medium sand fraction of soil for this study area, this information may not 

be accurate.  Despite the correlation between organic carbon content and pH, pH does not show a 

linear trend with increasing distance from juniper trees, however pH is slightly more alkaline in 

the surface soil below juniper canopies (Figure 34).   
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Figure 32:  pH with increasing distance from juniper trees 

 

 No significant difference in soil properties among compass directions was detected 

through the ANOVAs (Table 5).  However, contradictory to the results of the ANOVA tests, 

surface and subsurface soil moisture is highest on the north side of trees and surface soil 

moisture is lowest on the southern sides of juniper trees (Figure 35).  In this instance, the results 

of ANOVA tests should be discussed in conjunction with other analyses to ensure spatial 

patterns in soil properties are not overlooked.   
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Table 5:  Analysis of variance between samples under juniper canopies from different compass 

directions (Degrees of freedom = 36) 

Dependent Variable F-statistic p-value 

Organic matter 1.031 0.39 

Carbon 0.857 0.472 

Nitrogen 0.58 0.632 

δ13C 0.464 0.709 

δ15N 0.3 0.825 

δ13C stratification ratio 0.942 0.444 

δ15N stratification ratio 0.997 0.419 

Moisture 0.531 0.664 

pH 0.131 0.941 

Clay 0.551 0.651 

Silt 0.433 0.433 

Very fine sand 0.367 0.777 

 

 

Figure 33:  The effect of direction from juniper tree and depth on soil moisture 
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 Maps of interpolated surfaces of organic matter, carbon content, nitrogen content, δ13C, 

δ15N, and moisture for separate depth increments are shown in Figures 36-47.  Interpolations 

were generated using Empirical Bayesian Kriging because this geospatial method predicted soil 

properties with relatively low error, visually captured soil variability around juniper trees, and 

attempted to predict values in unsampled points in grassy areas, where less observations were 

available.  The root-mean-squared-error (RMSE) of predictions produced using Empirical 

Bayesian Kriging for each variable are shown in Table 6.  Inverse distance weighting over-

generalized soil properties and did not capture small-scale variability.  Simple kriging had high 

accuracy but only illustrated variability in soil properties in very proximity to juniper trees.  

Ordinary kriging produced ridged surfaces that matched the lines of the radial sampling 

transects, rather than the spatial variability known to exist within the data. 

 The final interpolation maps visualize islands of fertility within the study where carbon 

content and nitrogen content are elevated through the appearance of circular patterns around 

trees.   Older, larger junipers are accompanied by wider circles of higher carbon, nitrogen, and 

organic matter content, and lower δ13C and δ15N enrichment.  This is expected given that islands 

of fertility are more pronounced as plant aboveground biomass increases (Jackson and Caldwell, 

1993).  Predicted moisture had the highest RMSE of any variable, which can be explained by soil 

water’s low spatial autocorrelation (Jackson and Caldwell, 1993).  The ANOVA tests suggested 

that orientation from juniper trees does not create significant variability in soil moisture. The soil 

moisture maps show that moisture does indeed vary by compass direction from juniper trees, but 

the compass directions of the highest and lowest soil moisture values are not consistent between 

trees.  The maps of δ13C and δ15N support the conclusion that soil is less enriched in δ13C and 

δ15N close to juniper trees.   
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Table 6:  Root-mean-squared-error in predictions of multiple variables generated using 

Empirical Bayesian Kriging 

Variable RMSE 

Surface organic matter 1.7196 

Subsurface organic matter 1.3131 

Surface carbon content 1.0918 

Subsurface carbon content 0.8125 

Surface nitrogen content 0.0605 

Subsurface nitrogen content 0.0433 

Surface δ13C 1.2693 

Subsurface δ13C 1.2964 

Surface δ15N 0.7612 

Subsurface δ15N 0.5655 

Surface moisture content 2.4790 

Subsurface moisture content 2.6698 
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Figure 34: :  Surface soil organic matter map 
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Figure 35:  Subsurface soil organic matter map 
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Figure 36:  Surface soil carbon map 
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Figure 37:  Subsurface soil carbon map 
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Figure 38:  Surface soil δ13C map 
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Figure 39:  Subsurface soil δ13C map 
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Figure 40:  Surface soil nitrogen map 
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Figure 41:  Subsurface soil nitrogen map 
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Figure 42:  Surface soil δ 15N map 
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Figure 43:  Subsurface soil δ15N map 
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Figure 44:  Surface soil moisture map 
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Figure 45:  Subsurface soil moisture map 

 

 According to the results of the first multivariate linear regression analysis (Model A), 

distance from juniper trees, canopy diameter, direction from juniper tree, depth, and the 

interaction between distance and depth all shape soil organic matter content in the study area 
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(Table 7).   Each of these components showed a significant relationship with soil organic matter 

content.  As distance from juniper tree increases and depth decreases, organic matter content 

declines.  This decline with distance is more pronounced in surface samples compared to 

subsurface samples.  A broadening of tree canopies is matched by rising organic matter 

concentrations in the soil.  Organic matter accumulates more on north-facing sides of juniper 

trees compared to south-facing sides.  Model A proved to be fairly strong in translating spatial 

information into soil organic matter content values (Table 8).   

 

Table 7:  Summary of Model A results 

Coefficients Estimate Standard Error p-value 

Intercept 1.719984 0.041287 <0.001 

Log-transformed distance -0.038163 0.015073 <0.05 

Depth 0.083437 0.042009 <0.05 

Canopy diameter 0.037312 0.006653 <0.001 

Sin direction  0.056566 0.030411 <0.1 

Log-transformed distance : depth -0.056778 0.021315 <0.01 

 

 

Table 8:  Accuracy assessment of Model A 

Accuracy measure Result 

Residual standard error 0.2098 on 94 degrees of freedom 

Adjusted R-squared 0.4361 

F-statistic 16.32 on 5 and 94 DF 

AIC -20.6898 

 

 In Model B, distance and canopy area were found to be related to soil organic matter 

content with high significance (Table 9).  As found in Model A, distance from juniper tree and 

organic matter content are negatively correlated, while canopy area and organic matter content 

are positively correlated.  Surprisingly, these two variables alone generated a model with 

reasonably high predictive capacity (Table 10).  This model is not as powerful as Model A, 

Administrator
Comment on Text
A few more decimal places than your data really justify.

Administrator
Comment on Text
Don't need to give AIC value.  Should report overall model p-value (<0.001).

Administrator
Comment on Text
Should mention that it's a non-linear relation with distance.



76 

 

however this model does employ variables that can be measured directly from aerial imagery.   

Table 9:  Summary of Model B results 

Coefficients Estimate Standard Error p-value 

Intercept 1.8360767 0.0449717 <0.001 

Log-transformed distance -0.094804 0.0165542 <0.001 

Canopy area 0.0028278 0.0006831 <0.001 

 

Table 10:  Accuracy assessment of Model B 

Accuracy measure Result 

Residual standard error 0.2304 on 47 degrees of freedom 

Adjusted R-squared 0.4909 

F-statistic 24.63 on 2 and 47 DF 

AIC 0.02589901 

 

 Combined multivariate linear regression and interpolation crafted a map of soil organic 

matter content that takes into account the influence of all trees within the study area (Figure 48).  

Soil organic matter is highest below juniper trees and lowest under grassy vegetation.  Organic 

matter is most highly concentrated below older, larger trees.  The area of influence of juniper 

trees expands as juniper size increases, as evidenced by the circles of high organic matter content 

extending farther past the canopies of larger juniper trees compared to that of smaller juniper 

trees.   However, this model only utilized the distances to and canopy areas of the closest tree 

and does not take into account the combined influence of all neighboring trees.   
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Figure 46:  Map of predicted soil organic matter content using multivariate linear regresssion and Empirical Bayesian 
Kriging 
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Chapter Five:  Discussion 

 

Spatial and temporal patterns in soil properties captured in this study are the 

manifestation of the linkages between vegetation change and the physical, biological, and 

chemical characteristics of the world within the soil. The presence of juniper trees in this study 

site has engendered variations in soil properties across spatial and temporal scales.  The spatial 

patterns of soil properties, namely organic matter content, carbon content, δ13C, δ15N, nitrogen 

content, and soil C:N ratios, shaped by the habitation of physical space by juniper trees illustrate 

that juniper encroachment has modified the accumulation and flow of matter within the site, 

specifically soil organic carbon stocks, rates of soil organic carbon turnover, and the strength of 

the soil organic carbon sink.  Soil properties under juniper canopies, particularly organic matter 

content, carbon content, nitrogen content, and soil C:N vary with juniper age.  The intensity and 

breadth of spatial patterns of carbon fluxes are transmuted through time, which means soil 

carbon responses to juniper encroachment change are not static and are altered in the time 

dimension.   

The high δ13C, high percent carbon, and high C:N of the litter of the two oldest trees 

relative to the younger trees indicate that litter from younger trees is higher in quality and more 

readily decomposed (Stockmann et.al., 2013; Yonekura et.al., 2012).  The increase in litter C:N 

with tree age is evidence that the litter of older juniper trees is more recalcitrant than the litter of 

young juniper trees (Garten and Cooper, 2000; Stockmann et.al., 2013).  Considering the high 

concentration of soil organic matter below juniper canopies and the decline in the soil organic 

matter content with increasing distance from juniper trees, juniper trees likely provide larger 

inputs of organic matter than grasses through fallen leaves and root detritus (Fang et al., 2015; 

McCulley et al., 2004; Throop et al., 2013).  Also, in the study site, leafy undergrowth could 
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often be found clustered below juniper canopies, possibly because the juniper trees provided a 

microclimate conducive for growth (Koepke et al., 2010; Norton et al., 2012) and/or because of 

the higher organic matter and nitrogen content of soil adjacent to juniper trees, which reflects the 

influence of woody encroachment on ecosystem function (Craine et.al., 2015) and nutrient 

cycling (Bekele and Hudnall, 2005).  A portion of the high organic matter content detected 

below juniper trees could be originating from this vegetation as well.  Fallen leaves that are 

subsequently incorporated into the soil profile are probably a significant contributor to the 

organic matter pools under juniper trees because under juniper canopies, the surface soil 

exhibited a higher accumulation of organic matter than the subsurface soil.  Conversely, grass 

roots may contribute more than blades of grass to organic matter pools in soil, given the decrease 

in organic matter content with depth under grasses.  Dead blades of grass may be quickly 

transported by wind elsewhere without the shelter of juniper trees, or perhaps the decomposition 

rate of grass is higher at the surface due to increased microbial activity at shallow depth 

(Fontaine et.al., 2007) or due to the higher decomposability of grass blades relative to their roots.  

The level of stratification of δ13C with depth is a function of the variability of decomposition 

rates and organic matter inputs with depth (Garten, 2006).  High rates of organic matter inputs 

from roots can reduce vertical variation in δ13C through the soil profile, thereby obscuring 

vertical differentiation induced by varying decomposition rates with depth (Garten, 2006).   

Considering this in light of the patterns of organic matter with depth across the field site, the 

similarity in stratification ratios of δ13C between soil under juniper trees and soil under grassy 

areas suggest that differing routes in organic matter input may be driving vertical patterns of 

organic matter, rather than differences in decomposition rates. Alternatively, increased stability 

of organic matter with depth (Accoe et.al., 2002; Fontaine et.al., 2007) could explain the 
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observed pattern in organic matter with depth beyond the juniper canopies.   

The organic matter pool measured between the dripline and five-meters from juniper 

trees likely consists of organic material born from juniper trees as well as grasses, considering 

the influence of juniper trees extends past the canopy (Figure 48).  The lowest organic matter 

contents were found over five meters from juniper trees, indicating that grasses provide lower 

inputs of organic matter into soil than juniper trees.  The magnification of soil organic matter 

with increasing tree age suggests that the disparity between soil organic matter below juniper 

trees and soil organic matter below grasses may be accentuated as time since encroachment 

increases. The lack of new carbon substrates below the surface soil which stimulate microbial 

activity can lower carbon mineralization rates and lower decomposition rates at depth (Accoe 

et.al., 2002), causing an accumulation of carbon.  However, high litter inputs at the surface can 

cause a decline in carbon content with depth (Accoe et.al., 2002; Garten, 2006; Garten and 

Cooper, 2000). The elevated carbon content in surface soil across the field site likely results from 

the delivery of leaf litter into the soil profile (Garten and Cooper, 2000).   

Considering the reduction in soil carbon content with increasing distance from juniper 

trees, juniper trees likely generate more litter or lower quality litter than grasses (Stockmann et 

al., 2013), or create a microclimate unfavorable for microbial activity (Erhagen et al., 2013; Hess 

and Austin, 2014; Nie et al., 2013; Norton et al., 2012).  If juniper trees do indeed generate a 

higher mass of litter, the soil organic matter content and carbon content of this study area is a 

function of the rate of input of litter and residues.  This is a strong possibility given juniper 

canopy radius and the organic matter content of surface soil are positively and significantly 

correlated (r= 0.65, p=0.015) and given soil carbon increases with increasing juniper trunk 

diameter (see Figure 21).  This suggests that an increase in aboveground biomass generates a 
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synonymous increase in litter inputs and a higher flow of organic material from vegetation and 

into the soil organic matter pool.  If juniper trees produce lower quality litter relative to grasses, 

the soil organic matter content and carbon content of this study area is a function of the differing 

chemical components and structure of litter originating from the vegetation (Tiwari and Iqbal, 

2015).  Lower quality litter with higher C:N is more difficult for microbes to decompose and will 

remain in the soil for a longer period of time compared to higher quality of litter that is readily 

decomposed by microbes (Stockmann et al., 2013).    

Soil 13C captures the rate of organic carbon turnover in soil, with higher δ13C values 

stipulating more advanced decomposition as more 13C is left behind as microbes preferentially 

use 12C in respiration (Busari et al., 2016; Garten, 2006; Accoe et.al., 2002).  Although the lower 

δ13C values of soil under juniper canopies could indicate slower turnover rates of soil organic 

carbon, these low values could also suggest a difference in the δ13C of the plant litter inputs 

(Accoe et.al., 2002).  Grass litter and roots may have inherently higher δ13C values than juniper 

litter and roots, however grass litter from this field site would need to be isotopically analyzed 

before this could be concluded with certainty.  Such soil δ13C disparities are pronounced in cases 

of woody encroachment involving the movement of C3 woody vegetation onto C4 grasslands, as 

C3 vegetation discriminates against 13CO2 to a greater extent than C4 vegetation does (Accoe 

et.al., 2002).  C3 vegetation typically has a 13C signature ranging from -32 to -22, while C4 

vegetation typically has a 13C signature ranging from -17 to -9 (Accoe et.al., 2002).  Juniperus 

monosperma is C3 vegetation and Bouteloua, one of the grasses within the site, is C4 vegetation 

(Puttock et.al., 2012). With this in mind, this data likely uncovered the presence of vegetation 

with different photosynthetic pathways and the strong role vegetation plays in shaping soil 

chemistry, in addition to vegetation-driven alteration in soil organic carbon turnover.   
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This pattern in δ13C with distance from juniper trees could also be a result of the rate at 

which plant organic matter enters the soil organic matter pool, the quality of the litter, or the age 

of the litter (Accoe et al., 2002; Busari et al., 2016; Garten, 2006).  Fresh, labile litter can be 

identified through the detection of more negative δ13C values (Accoe et.al., 2002).  The detection 

of the most negative δ13C values below juniper trees could be an indication that fresh juniper 

litter is being amended into the soil at a constant rate or that juniper litter is more labile than 

grass litter (Busari et al., 2016; Garten, 2006).  The former may not be as likely given the 

similarity in δ13C stratification ratios between soil under grasses and soil under junipers 

discussed previously.  In addition, tree age and soil δ13C are weakly related, therefore soil δ13C is 

probably not an accurate proxy for litter age.  Given the difference in the C:N values of leaf litter 

and the C:N values of soil, a constant supply of fresh juniper litter is a less likely hypothesis for 

the observed 13C patterns, since C:N values of organic matter rise with decomposition (Bekele 

and Hudnall, 2005).  Alternatively, this enrichment in soil δ13C close to juniper trees could 

simply be reflective of the younger age of juniper trees relative to grasses (Garten, 2006).   If soil 

δ13C is higher than the δ13C of litter inputs, then litter inputs can drive lower soil 13C values 

(Accoe et.al., 2002).  The higher enrichment in δ13C of the surface soil compared to the 

subsurface soil indicates more progressed decomposition of organic matter with increasing depth 

through the discrimination of fungi and other microbes against 13C (Garten, 2006; Accoe et.al., 

2002; Garten and Cooper, 2000).    

As soil organic matter residence time increases and decomposition progresses, soil C:N 

exhibits a decrease (Craine et.al., 2015; Bekele and Hudnall, 2005).  However, soil C:N under 

juniper canopies increases with increasing tree age, which challenges the proposition that 

decreasing soil C:N over distance from juniper trees is a function of litter age.  If litter age is the 
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main controlling factor for observed C:N patterns, then soil C:N should decrease with increasing 

tree age.  In this case, reduced litter quality and slower decomposition of organic matter may 

coincide with increasing tree age (Stockmann et.al., 2013).  As trunk diameter, thus tree age, 

increases, litter C:N increases and litter quality declines in this study site.  Therefore, juniper 

encroachment may decelerate soil organic carbon turnover and lengthen soil organic carbon 

residence times after juniper trees have taken root for a long period of time.   

The soil nitrogen is accumulated below juniper canopies and declines with increasing 

distance from juniper trees.  This pattern resembles the islands of fertility hypothesis, which 

states that trees, through litterfall, root death, and root exudation, increase nutrient levels and 

enhance nutrient recycling under their canopies (Fontaine et.al, 2007; McCulley et.al., 2004; 

Stockmann et.al., 2013; Throop et al., 2013).  Increased soil nitrogen can elevate litter turnover 

rates at first, however over time increased nitrogen can inhibit decomposition (Craine et.al., 

2015) through a reduction in soil respiration, the restraint of lignolytic enzymes, and changes to 

the structure of microbial communities (Garten, 2006).  Considering the decline in δ15N and the 

increase in organic matter and carbon with increasing tree age and with decreasing distances to 

juniper trees, the magnification of nitrogen with increasing tree age may be serving to further 

hinder microbial decomposition of soil organic carbon.   

Litter δ15N is elevated as decomposition progresses because microbes discriminate 

against 15N and preferentially consume 14N when they consume litter and convert organic 

nitrogen to inorganic forms (Craine et.al., 2015).  Specifically, in alkaline arid soils, ammonia 

volatilization often generates a magnification of δ15N (Craine et.al., 2015).  δ15N may decline 

with initial decomposition and then rise as the conversion of organic nitrogen to inorganic 

nitrogen accelerates (Craine et.al., 2015).  In addition, as decomposition progresses, a decrease 
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of soil nitrogen occurs (Craine et.al., 2015). 

Soil organic matter age increases with depth, resulting in an enrichment of δ15N because 

the organic matter has remained in the soil long enough to reach a more advanced stage of 

decomposition (Craine et.al., 2015).  This explains the enrichment in δ15N with increasing depth 

at all distance increments  The higher stratification of δ15N in soil under juniper trees may 

indicate a higher loss of nitrogen from the soil system through nitrate leaching an ammonia 

volatilization (Bekele and Hudnall, 2005), but this increased stratification may also indicate that 

surface δ15N values are capturing the δ15N of litter and roots entering the soil, while subsurface 

δ15N values are capturing decomposition processes (Craine et.al., 2015).   

Considering the enrichment of δ15N and the reduction of soil nitrogen with increasing 

distance from juniper trees, organic matter decomposition is likely proceeding at a faster rate in 

grassy areas compared to soil under juniper trees.  However, higher δ15N values accompanied by 

lower C:N values may indicate that organic matter has remained in soil for longer periods of 

time, thereby giving microbes a larger window of time in which to decompose organic matter 

and assimilate it into their biomass (Craine et.al., 2015).  Considering soil δ15N and soil C:N 

show an inverse relationship over distance, the enrichment of 15N in grassy areas may be 

reflective of the higher age of the grasses compared to more recently settled junipers.  However, 

the disassociation between juniper age and soil δ15N suggests that vegetation age is not the only 

factor driving patterns in soil δ15N.  Therefore, a decrease in the rate of organic matter turnover 

under juniper trees is still a potential hypothesis for observed soil δ15N values. 

If soil C:N ratios are an accurate proxy of organic matter decomposition, then perhaps 

juniper trees must be established in soil for longer periods of time before a change in 

decomposition rates can be realized.  A change in δ15N post-encroachment is not instantaneous 
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and requires time before it manifests into a detectable vegetation-driven pedogenesis (Bekele and 

Hudnall, 2005). However, if litter residence time is indeed the determinant for δ15N enrichment 

in soil, then soil under older trees should be more enriched in δ15N.  Considering the absence of 

this trend, differing rates of decomposition between soil under juniper trees and soil under 

grasses could still be the dominant determinant of soil organic carbon fluxes in the study area.  

Soil δ15N has signficiantly diverged from juniper litter δ15N (see Table 2) and soil δ15N can show 

nitrogen cycling across centuries (Craine et.al., 2015), therefore the soil δ15N data in this study 

may have captured long-term spatial patterns of organic matter turnover external of organic 

matter residence times.  The long-term view of nitrogen dynamics created through soil δ15N 

analysis may also explain the lack of correlation between juniper tree age and soil δ15N if the 

time spans between the establishments of each tree in chronosequence are at a higher resolution 

than the resolution associated with soil δ15N dynamics.  Without an estimate of organic matter 

residence times, the effect of woody plant encroachment on the rate of organic matter 

decomposition cannot be determined with complete certainty.  However, the spatial 

heterogeneity in δ15N driven by the vegetation in the study site does show with certainty that 

woody plant encroachment in this area has shaped nitrogen cycling (Bekele and Hudnall, 2005).   

In this study site, percent moisture, percent nitrogen, δ13C, δ15N, and pH were most 

highly and significantly correlated with organic matter content.  Carbon mineralization is limited 

by soil moisture (Norton et.al., 2012) and temperature (Gartent and Cooper, 2000).  Trees reduce 

rates of evapotranspiration and produce a cooling effect through their interception of incoming 

sunlight (Gea-Izquierdo et.al., 2009).  In addition, trees decrease the intensity of temperature 

fluctuations (Gea-Izquierdo et.al., 2009).   The temperature and moisture regulation provided by 

trees may inhibit microbial activity or perhaps create an environment conducive for the growth 
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of understory vegetation which could provide additional inputs of plant material to the soil 

organic matter pool. The relationship between organic matter and pH is unexpected considering 

the accumulation of organic matter typically results in acidification as the organic matter is 

decomposed (Jobbagy and Jackson, 2003).  However, the highest organic matter content and 

potentially lowest rates of decomposition were found under juniper canopies.  This slow 

decomposition could restrict the release of organic acids and carbonic acids.   

The absence of a trend in pH with increasing distance from juniper trees was unexpected.  

The transition from grassland to forest typically results in acidification of the soil through the 

generation of carbonic acids from microbial respiration, the release of organic acids from litter 

and through decomposition, and the removal of exchangeable base cations as the cations are 

incorporated into biomass, litter, and soil (Jobbagy and Jackson, 2003).  Considering vegetation 

type did not alter pH in this study site, climate and parent material are likely the dominant drivers 

of pH.  In wet and cold environments, pH is lower due to the accrual of organic material which 

readily decomposes and releases organic acids into the soil (Fabian et.al., 2014).  The soil in the 

study site is underlain by basalt and limestone bedrock (Northern Arizona University, 2014), and 

carbonate-derived soil is inherently high (basic) in pH (Fabian et.al., 2014).   

Variations in soil moisture with compass direction from juniper trees were expected 

given trees modify rates of evapotranspiration through differential shading related to orientation 

(Gea-Izquierado et.al., 2009).  These variations in soil moisture would have also driven changes 

in organic matter content, carbon content, δ13C, and δ15N because moisture availability 

influences carbon turnover (Norton et.al., 2012).  Although ANOVA did not detect significant 

variability in soil moisture generated by compass direction, the lowest soil moisture values were 

found in the surface soil on the south sides of juniper trees, which coincides with another study 
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which found that the southwest sides of trees receive the most insolation (Gea-Izquierado et al., 

2009).    

The soil properties maps produced for this study area substantiate the power of maps in 

conveying variations in soil properties across space.  Juniper encroachment modifies the 

characteristics of a space, and soil mapping allows for the visualization of how a space is 

transformed below the surface.  Although the graphs produced for this study did reveal a 

significant change in soil properties between grasslands and juniper woodlands and a decline in 

the influence of juniper trees on soil properties with greater distance from juniper trees, the maps 

allow for the investigation of variations in soil properties at spatial scales determined by the 

viewer, within the bounds of detail established by the resolution of the raster datasets and extent 

of the study area.  In addition, the maps validated the presence of islands of fertility within the 

study site and illustrated how these islands expand in extent and deepen in richness as tree age 

increases.  The map generated through a combination of multivariate linear regression and 

geostatical analysis shows that an understanding how ecosystem processes operate across space 

allows for the enhanced prediction of soil organic carbon fluxes.  Dissassembling the complex, 

interacting factors that drive soil organic carbon content and simplifying the nature of these 

relationships into quantitative terms allows for the possibility of discovery beyond the constraints 

of direct in situ and in vitro measurements.  These maps enable viewers to see what cannot be 

seen with the naked eye and can only be detected through instrumentation and analysis.  The 

goal of the production of these maps was to capture the spatial variability of soil organic carbon 

within the study site.  These maps not only identified the amplification of soil organic carbon 

pools under and adjacent to juniper canopies; the soil δ15N map shows the flow of carbon 

through the microbial community and into the atmosphere.   
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In this study area, juniper trees magnify soil organic carbon stocks through the 

accumulation of organic matter, carbon, and nitrogen below their canopies.  The enlargement of 

the soil organic carbon pool with increasing tree age evidenced by the amplification of soil 

organic matter, carbon, and surface nitrogen and the expansion of islands of fertility captured in 

the soil maps is a strong indication that as time since encroachment increases and juniper trees 

mature, soil organic carbon pools expand.  In other words, juniper encroachment produces a 

positive effect on soil organic carbon pool size, and this effect becomes stronger as juniper 

woodlands become more established on grasslands in this study area.   

 The increased input of organic carbon delivered into the soil by juniper trees is not 

matched by an equivalent loss of organic carbon from the soil to the atmosphere.  On the 

contrary, if a difference in decomposition rates between soil under juniper trees and soil under 

grasses is the dominant mechanism behind observed soil δ15N and C:N values, then juniper trees 

encourage slower rates of organic carbon turnover compared to grasses.  This means that the 

large flux of carbon from juniper trees to soil is likely greater in magnitude than the flux of 

carbon from the soil to the atmosphere, therefore juniper trees introduce a net positive change in 

soil organic carbon storage.  Furthermore, the increase in litter C:N and soil C:N under juniper 

canopies with greater juniper tree maturity suggests that organic carbon turnover rates become 

progressively slower as tree age increases.  Therefore, the net positive balance of soil organic 

carbon becomes more pronounced as juniper trees become long-term residents of areas 

previously dominated by grasslands.  Given the accumulation of soil organic carbon and the 

decreased rate of decomposition or organic carbon produced by juniper trees in this study site, 

juniper encroachment may increase the carbon sink strength of soil in Northern Arizona, thereby 

mitigating climate change.   
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Chapter Five: Conclusions 

Matter flows differently within and around woody vegetation and grasses (Bekele and 

Hudnall, 2005).  Woody plants and grasses capture nutrients differently, have different nutrient 

requirements, and devote acquired nutrients to different parts of their biomasses (Bekele and 

Hudnall, 2005).  In addition, their litter and roots are cycled back into the soil at different rates 

(Bekele and Hudnall, 2005).  The movement of woody plants into grasslands alters landscapes 

and soil in terms of the spatial patterns of matter and energy (Jobbagy and Jackson, 2003; Bekele 

and Hudnall, 2006).  Juniper trees introduced new spatial patterns of soil organic matter, carbon, 
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and nitrogen in this study site through the creation of islands of fertility.  Distance and juniper 

age cause significant variability in multiple soil properties, including carbon, nitrogen, organic 

matter, and δ15N.  Direction from juniper trees did not create significant variability in soil 

properties; the effect of direction on soil properties varied between juniper trees.  Under juniper 

canopies, soil organic matter, carbon, and nitrogen content were heightened, reflecting increased 

litter and root inputs to the soil.  Soil organic carbon pools and nitrogen pools are enlarged under 

juniper canopies.  This increase in pool size can induce positive impacts on ecosystem function 

through the increased availability of the building blocks of life.   Future studies should endeavor 

to sample deeper into the soil profile to fully capture the range of microbial activity acting at 

various depths and to ensure that the majority of the soil carbon pool in the top meter of soil is 

represented.   

As the influence of juniper trees on soil properties weakened with increased distance 

from juniper canopies, increasing enrichment of δ15N occurred.  Although this enrichment could 

point to longer residence times of grass-derived organic matter due to the earlier establishment of 

grasses relative to juniper trees, the absence of an enrichment of δ15N with increasing juniper age 

suggests that δ15N values may indicate rates of organic matter decomposition more than 

vegetation age.  In addition, litter C:N and soil C:N rose with increasing tree age, which shows 

that the organic matter becomes more recalcitrant, therefore more stable, with increasing tree 

age.  Soil under grasses was more enriched in δ13C compared to soil under juniper canopies. This 

site contained a mix of Juniperus monosperma, a C3 vegetation type, and grasses belonging to 

the genus Bouteloua, a C4 vegetation type, therefore soil δ13C values reflected differences in the 

δ13C litter resulting from the utilization of different photosynthetic pathways between these two 

vegetation types, in addition to diminished rates of organic carbon turnover under juniper trees.  
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This divergence in δ13C between soil under juniper trees and soil under grasses suggests that the 

sampling design did successfully capture soil properties within two vegetation types, thereby 

supporting the efficacy of the sampling design.  However, in future work, soil samples should be 

taken at farther distances from juniper trees than allowed within this site to ensure that zones 

completely independent from juniper influence are also studied.  Future studies should also 

analyze δ13C of grasses to trace δ13C changes in the transition of organic matter from vegetation 

to soil organic matter pools. Soil δ15N, soil C:N and litter C:N patterns suggest that rates organic 

carbon turnover are lower under juniper trees.  Considering the accumulation of organic material 

and the slower rates of carbon turnover under juniper canopies, juniper trees likely increase the 

carbon sink strength of soil in Northern Arizona.   

Mapping of soil properties is a powerful tool to capture ecosystem processes occurring at 

multiple spatial scales within a study site.  The maps produced in this study elucidated the 

creation of islands of fertility under juniper canopies.  Furthermore, the maps illustrated the 

profound level of variability in soil properties on very small spatial scales and allowed 

comparisons between soil properties and distance and directions from juniper trees to be revealed 

simultaneously.  Future studies should aim to obtain a higher density of sampling points within 

grassy areas in order to study variability in soil properties within grasslands and to improve the 

accuracy of soil organic carbon stock across entire field sites.   

Juniper encroachment is driven by human interference into the natural world.  Human 

beings have a powerful influence on the course of nature and strongly shape the landscapes they 

inhabit.  This study has shown that anthropogenically-driven vegetation change in Northern 

Arizona has resounded in the world below the surface of those landscapes, altering the chemical, 

physical, and biological structures of that universe.  If juniper encroachment has indeed 



92 

 

magnified soil organic carbon stocks, slowed the delivery of CO2 from the soil to the 

atmosphere, and strengthened the carbon sink strength of the soil in Northern Arizona, then 

juniper encroachment has produced a negative feedback to climate change.  If this theory holds 

true, the rise in atmospheric carbon dioxide concentrations precipitated by human activity may 

be partially diminished by vegetation change instigated by the resulting climate change.  This 

would posit nature as a guardian of human life, serving to lessen the consequences of our 

decisions even as it itself is irreversibly shaped by our choices.   

However, the scope of this study is spatially small, both in the distance encompassed and 

depth reached into the earth, and temporally limited, as space and juniper tree age were the only 

proxies for time.  Widening the scope of this study spatially and temporally may reveal soil 

organic carbon pool responses that disprove this theory. Although this study has elucidated soil 

responses to juniper encroachment on the landscape-scale in Northern Arizona, the findings of 

this study are only small drops in the ocean of literature on this topic that is slowly forming as 

we uncover the linkages between plants, soil, and human life, and should be considered as such 

in any land-use management decisions.  
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Appendix A 

 

R script for statistical analyses:   

 

#install.packages("readr") 

library(readr) 

 

setwd("F:/Thesis") 

SoilCarbon = read.csv("F:/SoilDataFinal.csv") 

LitterData = read.csv("F:/LitterData.csv") 

 

head(SoilCarbon) 

dim(SoilCarbon) #OAR: 100 x 35 

class(SoilCarbon) #data.frame 

 

head(LitterData) 

dim(LitterData) #OAR: 4 x 7 

class(LitterData) #data.frame 

 

#OAR: load the necessary packages 

#install.packages("ggplot2") 

#install.packages("gridExtra") 

library(ggplot2) 

library(gridExtra) 

 

#OAR: load the necessary functions 

load("correlation.R") 

load("pValue.R") 

load("averagesStEr.R") 

load("avgSE.R") 

load("linReg.R") 

load("rmse.R") 

load("averagesDistBins.R") 

load("avgSETenBins.R") 

load("diameterGraphs.R") 

load("predictedValues.R") 

 

#plot litter CN against tree diameter 

litter.CN = ggplot(data=LitterData, aes(x=LitterData$Diameter, y=LitterData$CN)) + 

geom_bar(stat="identity") + labs(x="Trunk Diameter (cm)", y= "Litter C:N") + geom_text(x= 0, 

y = 47,label="n=4") 

litter.CN 

 

#make data frames for only surface and only bottom 

surface.samples.index = which(SoilCarbon$DepthKey == "S") 
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bottom.samples.index = which(SoilCarbon$DepthKey == "B") 

 

surface.samples = SoilCarbon[surface.samples.index,] 

bottom.samples = SoilCarbon[bottom.samples.index,] 

 

#Create histograms for each variable 

 

percentOMHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$PercentOM)) + 

  geom_histogram(binwidth = 1) + labs(x="Organic Matter (%)", 

                                      y="Frequency") + geom_text(x = 16, y = 21, label = "n=100") 

percentOMHist 

 

perrcentMoistureHist = ggplot(data=SoilCarbon, 

                              aes(x=SoilCarbon$PercentMoisture)) + geom_histogram(binwidth = 2.5) + 

  labs(x= "Soil Moisture (%)", y="Frequency") + geom_text(x = 22, y = 23, label = "n=99") 

perrcentMoistureHist 

 

percentCarbonHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$PercentC)) + 

geom_histogram(binwidth = 0.5) + labs(x= "Soil Carbon (%)", y="Frequency") + geom_text(x = 

6.5, y = 21, label = "n=100") 

percentCarbonHist 

 

percentNitrogenHist = ggplot(data=SoilCarbon, 

                             aes(x=SoilCarbon$PercentN)) + geom_histogram(binwidth=0.025) + 

  labs(x="Soil Nitrogen (%", y="Frequency") + geom_text(x = 0.43, y = 13.5, label = "n=100") 

percentNitrogenHist 

 

pHHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$pH)) + geom_histogram(binwidth=0.2) + 

labs(x="Soil pH", y="Frequency") + geom_text(x = 6.8, y = 30.5, label = "n=100") 

pHHist 

 

clayHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$Clay)) + geom_histogram(binwidth=1) + 

labs(x="Percent Clay", y="Frequency") + geom_text(x = 28.5, y = 13, label = "n=100") 

clayHist 

 

siltHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$Silt)) + geom_histogram(binwidth=1.5) + 

labs(x="Percent Silt", y="Frequency") + geom_text(x = 72, y = 17, label = "n=100") 

siltHist 

 

veryFineSandHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$VeryFineSand)) + 

geom_histogram(binwidth=1) + labs(x="Percent Very Fine Sand", y="Frequency") + 

geom_text(x = 15, y = 22, label = "n=100") 

veryFineSandHist 

 

fineSandHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$FineSand)) + 

geom_histogram(binwidth=1) + labs(x="Percent Fine Sand", y="Frequency") + geom_text(x = 
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7.6, y = 33, label = "n=100") 

fineSandHist 

 

mediumSandHist = ggplot(data=SoilCarbon, aes(x=SoilCarbon$MediumSand)) + 

geom_histogram(binwidth=1) + labs(x="Percent Medium Sand", y="Frequency") + geom_text(x 

= 5.5, y = 73, label = "n=100") 

mediumSandHist 

 

#graph organic matter, carbon and nitrogen under the tree for all directions and depth increments 

#surface samples 

underTreeNorthSurface = which(SoilCarbon$Distance=="0" & 

                                SoilCarbon$Direction == "N" & SoilCarbon$DepthKey == "S") 

underTreeSouthSurface = which(SoilCarbon$Distance=="0" & 

                                SoilCarbon$Direction == "S" & SoilCarbon$DepthKey == "S") 

underTreeEastSurface = which(SoilCarbon$Distance=="0" & 

                               SoilCarbon$Direction == "E" & SoilCarbon$DepthKey == "S") 

underTreeWestSurface = which(SoilCarbon$Distance=="0" & 

                               SoilCarbon$Direction == "W" & SoilCarbon$DepthKey == "S") 

#subsurface samples 

underTreeNorthSub = which(SoilCarbon$Distance=="0" & 

                            SoilCarbon$Direction == "N" & SoilCarbon$DepthKey == "B") 

underTreeSouthSub = which(SoilCarbon$Distance=="0" & 

                            SoilCarbon$Direction == "S" & SoilCarbon$DepthKey == "B") 

underTreeEastSub = which(SoilCarbon$Distance=="0" & SoilCarbon$Direction 

                         == "E" & SoilCarbon$DepthKey == "B") 

underTreeWestSub = which(SoilCarbon$Distance=="0" & SoilCarbon$Direction 

                         == "W" & SoilCarbon$DepthKey == "B") 

 

 

#OM by direction under tree (distance = 0) 

c.labels = c("North Surface", "North Subsurface", "East Surface", "East Subsurface", "West 

Surface", 

             "West Subsurface","South Surface", 

             "South Subsurface") 

om.direction.graph = avgSE(SoilCarbon$PercentOM, c.labels, 

                           underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                           underTreeSouthSub, "Direction and Depth", "Average Organic Matter Content 

(%)") + geom_text(x = 7.5, y = 11, label = "n=40") 

om.direction.graph 

 

#C by direction under tree (distance = 0) 

c.direction.graph = avgSE(SoilCarbon$PercentC, c.labels, 

                          underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                          underTreeSouthSub, "Direction and Depth", "Average Carbon Content (%") + 
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geom_text(x = 7.5, y = 4.6, label = "n=40") 

c.direction.graph 

 

#N by direction under tree (distance = 0) 

n.direction.graph = avgSE(SoilCarbon$PercentN, c.labels, 

                          underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                          underTreeSouthSub, "Direction and Depth", "Average Nitrogen Content (%") + 

geom_text(x = 7.5, y = 0.31, label = "n=40") 

n.direction.graph 

 

#C isotope abundance by direction under tree (distance =0) 

Ciso.direction.graph = avgSE(SoilCarbon$d13C, c.labels, 

                             underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                             underTreeSouthSub, "Direction and Depth", "Average Natural Abundance of 

13C") + geom_text(x = 7.75, y = -20.5, label = "n=40") 

Ciso.direction.graph 

 

#N isotope abundance by direction under tree (distance = 0) 

 

Niso.direction.graph = avgSE(SoilCarbon$d15N, c.labels, 

                             underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                             underTreeSouthSub, "Direction and Depth", "Average Natural Abundance of 

15N") + geom_text(x = 1, y = 6.2, label = "n=40") 

Niso.direction.graph 

 

#CN ratio by direction under tree (distance =0) 

CN.direction.graph = avgSE(SoilCarbon$CNRatio, c.labels, 

                           underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                           underTreeSouthSub, "Direction and Depth", "Average C:N Ratio") + 

geom_text(x = 7.75, y = 14, label = "n=40") 

CN.direction.graph 

 

#soil moisture by direction under tree (distance = 0) 

moisture.direction.graph = avgSE(SoilCarbon$PercentMoisture, 

                               c.labels,  underTreeNorthSurface, underTreeNorthSub, 

underTreeEastSurface, underTreeEastSub, underTreeWestSurface, 

underTreeWestSub,underTreeSouthSurface, 

                               underTreeSouthSub, "Direction and Depth", "Average Soil Moisture Content 

(%") + geom_text(x = 7, y = 16.5, label = "n=39") 

moisture.direction.graph 

 

#pH by direction under tree (distance = 0) 
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pH.direction.graph = avgSE(SoilCarbon$pH, c.labels, 

                           underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                           underTreeSouthSub, "Direction and Depth", "pH") + geom_text(x = 7.75, y = 

8.25, label = "n=40") 

pH.direction.graph 

 

#clay by direction under tree (distance =0) 

clay.direction.graph = avgSE(SoilCarbon$Clay, c.labels, 

                           underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                           underTreeSouthSub, "Direction and Depth", "Percent Clay") + geom_text(x = 7, 

y = 24.5, label = "n=40") 

clay.direction.graph 

 

silt.direction.graph = avgSE(SoilCarbon$Silt, c.labels, 

                             underTreeNorthSurface, underTreeNorthSub, underTreeEastSurface, 

underTreeEastSub, underTreeWestSurface, underTreeWestSub,underTreeSouthSurface, 

                             underTreeSouthSub, "Direction and Depth", "Percent Silt") + geom_text(x = 

7.5, y = 70, label = "n=40") 

silt.direction.graph 

 

 

#find indices for each direction/depth for distance = 5m 

fiveMetersNorthSurface = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                                 SoilCarbon$Direction == "N" & SoilCarbon$DepthKey == "S") 

fiveMetersNorthSub = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                             SoilCarbon$Direction == "N" & SoilCarbon$DepthKey == "B") 

fiveMetersSouthSurface = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                                 SoilCarbon$Direction == "S" & SoilCarbon$DepthKey == "S") 

fiveMetersSouthSub = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                             SoilCarbon$Direction == "S" & SoilCarbon$DepthKey == "B") 

fiveMetersEastSurface = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                                SoilCarbon$Direction == "E" & SoilCarbon$DepthKey == "S") 

fiveMetersEastSub = which(SoilCarbon$AdjustedDistance <=5 & SoilCarbon$AdjustedDistance 

>0 & 

                            SoilCarbon$Direction == "E" & SoilCarbon$DepthKey == "B") 

fiveMetersWestSurface = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                                SoilCarbon$Direction == "W" & SoilCarbon$DepthKey == "S") 

fiveMetersWestSub = which(SoilCarbon$AdjustedDistance <=5 & 
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SoilCarbon$AdjustedDistance >0 & 

                            SoilCarbon$Direction == "W" & SoilCarbon$DepthKey == "B") 

#OM by direction/depth for 5m 

om.5m.graph = avgSE(SoilCarbon$PercentOM, c.labels, 

                  fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                  fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                  fiveMetersSouthSub, "Direction and Depth", 

                  "Average Organic Matter Content (%)") + geom_text(x = 7.5, y = 7.5, label = 

"n=40") 

om.5m.graph 

 

#C for direction/depth for 5m 

c.5m.graph = avgSE(SoilCarbon$PercentC, c.labels, 

                   fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                   fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                   fiveMetersSouthSub, "Direction and Depth", 

                 "Average Soil Carbon Content (%)") + geom_text(x = 7.5, y = 2.6, label = "n=40") 

c.5m.graph 

 

#N for direction/depth for 5m 

n.5m.graph = avgSE(SoilCarbon$PercentN, c.labels, 

                   fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                   fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                   fiveMetersSouthSub, "Direction and Depth", 

                 "Average Soil Nitrogen Content (%)") + geom_text(x = 7.5, y = 0.21, label = "n=40") 

n.5m.graph 

 

#moisture for direction/depth for 5m 

moisture.fiveM.west.ss = which(SoilCarbon$AdjustedDistance <=5 & 

SoilCarbon$AdjustedDistance >0 & 

                                 SoilCarbon$Direction == "W" & SoilCarbon$DepthKey == "S" & 

!is.na(SoilCarbon$PercentMoisture)) 

moisture.5m.graph = avgSE(SoilCarbon$PercentMoisture, c.labels, 

                          fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                          fiveMetersWestSurface, moisture.fiveM.west.ss, fiveMetersSouthSurface, 

                          fiveMetersSouthSub, "Direction and Depth", 

                        "Average Soil Moisture Content (%)") + geom_text(x = 7, y = 17.5, label = 

"n=39") 

moisture.5m.graph 

 

#C isotopes for direction/depth for 5m 

cIso.5m.graph = avgSE(SoilCarbon$d13C, c.labels, 
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                      fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                      fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                      fiveMetersSouthSub, "Direction and Depth", 

                    "Average Natural Abundance of 13C") + geom_text(x = 7.75, y = -19, label = 

"n=40") 

cIso.5m.graph 

 

#N isotopes for direction/depth for 5m 

nIso.5m.graph = avgSE(SoilCarbon$d15N, c.labels, 

                      fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                      fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                      fiveMetersSouthSub, "Direction and Depth", 

                    "Average Natural Abundance of 15N") + geom_text(x = 7, y = 6.8, label = "n=40") 

nIso.5m.graph 

 

#CN for direction/depth for 5m 

CN.5m.graph = avgSE(SoilCarbon$CNRatio, c.labels, 

                    fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                    fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                    fiveMetersSouthSub, "Direction and Depth", 

                  "Average C:N Ratio") + geom_text(x = 7.75, y = 12.3, label = "n=40") 

CN.5m.graph 

 

#pH for direction/depth for 5m 

pH.5m.graph = avgSE(SoilCarbon$pH, c.labels, 

                    fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                    fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                    fiveMetersSouthSub, "Direction and Depth", 

                        "pH") + geom_text(x = 7.75, y = 8.1, label = "n=40") 

pH.5m.graph 

 

#clay by direction in intercanopy 

clay.5m.graph = avgSE(SoilCarbon$Clay, c.labels, 

                             fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 

fiveMetersEastSub, 

                             fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                             fiveMetersSouthSub, "Direction and Depth", "Percent Clay") + geom_text(x = 

7.5, y = 25, label = "n=40") 

clay.5m.graph 

 

silt.5m.graph = avgSE(SoilCarbon$Silt, c.labels, 

                             fiveMetersNorthSurface, fiveMetersNorthSub, fiveMetersEastSurface, 
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fiveMetersEastSub, 

                             fiveMetersWestSurface, fiveMetersWestSub, fiveMetersSouthSurface, 

                             fiveMetersSouthSub, "Direction and Depth", "Percent Silt") + geom_text(x = 

7.75, y = 70, label = "n=40") 

silt.5m.graph 

 

#find indices for each distance/depth 

zeroMetersSurface = which(soilCarbon.30m.transects.all$AdjustedDistance == 0 & 

                            soilCarbon.30m.transects.all$DepthKey == "S") 

zeroMetersSub = which(soilCarbon.30m.transects.all$AdjustedDistance == 0 & 

soilCarbon.30m.transects.all$DepthKey 

                      == "B") 

fiveMetersSurface = which(soilCarbon.30m.transects.all$AdjustedDistance > 0 & 

soilCarbon.30m.transects.all$AdjustedDistance <= 5 & 

                            soilCarbon.30m.transects.all$DepthKey == "S") 

fiveMetersSub = which(soilCarbon.30m.transects.all$AdjustedDistance > 0 & 

soilCarbon.30m.transects.all$AdjustedDistance <= 5 & soilCarbon.30m.transects.all$DepthKey 

                      == "B") 

fifteenMetersSurface = which(soilCarbon.30m.transects.all$Distance > 5 & 

                               soilCarbon.30m.transects.all$DepthKey == "S") 

fifteenMetersSub = which(soilCarbon.30m.transects.all$Distance >5 & 

                           soilCarbon.30m.transects.all$DepthKey == "B") 

 

distance.labels = c("Surface Under Canopy", "Subsurface\nUnder Canopy", "Surface 

Dripline\nto 5 Meters", 

                    "Subsurface Dripline\nto 5 Meters", "Surface Beyond\n5 Meters", "Subsurface 

Beyond\n5 Meters") 

#OM for distances and depths 

om.distance.graph = avgSEBins(soilCarbon.30m.transects.all$PercentOM, distance.labels, 

                              zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                              fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average 

Organic Matter Content 

                              (%)") + geom_text(x = 5.75, y = 9, label = "n=40") 

om.distance.graph 

 

#c for distances and depths 

 

c.distance.graph = avgSEBins(soilCarbon.30m.transects.all$PercentC, distance.labels, 

                             zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                             fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average Soil 

C Content (%)") + geom_text(x = 5.75, y = 3.4, label = "n=40") 

c.distance.graph 

 

#n for distances and depths 

n.distance.graph = avgSEBins(soilCarbon.30m.transects.all$PercentN, distance.labels, 

                             zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 
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                             fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average Soil 

N Content (%)") + geom_text(x = 5.75, y = 0.26, label = "n=40") 

n.distance.graph 

 

 

#C isotopes for distances and depths 

cIso.distance.graph = avgSEBins(soilCarbon.30m.transects.all$d13C, distance.labels, 

                            zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                            fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average 

Natural Abundance of 13C") + geom_text(x = 6, y = -19, label = "n=40") 

cIso.distance.graph 

 

#N isotopes for distances and depths 

nIso.distance.graph = avgSEBins(soilCarbon.30m.transects.all$d15N, distance.labels, 

                            zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                            fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average 

Natural Abundance of 15N") + geom_text(x = 0.75, y = 7, label = "n=40") 

nIso.distance.graph 

 

 

 

 

#CN for distances and depths 

CN.distance.graph = avgSEBins(soilCarbon.30m.transects.all$CN, distance.labels, 

                              zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                              fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average C:N 

of Soil") + geom_text(x = 5.75, y = 13, label = "n=40") 

CN.distance.graph 

 

pH.distance.graph = avgSEBins(soilCarbon.30m.transects.all$pH, distance.labels, 

                             zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                             fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average pH") 

+ geom_text(x = 5.9, y = 8.1, label = "n=40") 

pH.distance.graph 

 

clay.distance.graph = avgSEBins(soilCarbon.30m.transects.all$Clay, distance.labels, 

                              zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                              fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average 

Clay Content (%)") + geom_text(x = 5.9, y = 25.5, label = "n=40") 

clay.distance.graph 

 

silt.distance.graph = avgSEBins(soilCarbon.30m.transects.all$Silt, distance.labels, 

                                zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                                fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average 

Silt Content (%)") + geom_text(x = 5.9, y = 67, label = "n=40") 

silt.distance.graph 
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veryFinesand.distance.graph = avgSEBins(soilCarbon.30m.transects.all$VeryFineSand, 

distance.labels, 

                                zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                                fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", "Average 

Very Fine Sand Content (%)") + geom_text(x = 5.9, y = 67, label = "n=40") 

veryFinesand.distance.graph 

 

noFineSand = which(soilCarbon.30m.transects.all$FineSand==0) 

Finesand.distance.graph = avgSEBins(soilCarbon.30m.transects.all$FineSand, distance.labels, 

                                        zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                                        fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", 

"Average Fine Sand Content (%)") + geom_text(x = 5.9, y = 67, label = "n=40") 

Finesand.distance.graph 

 

 

Mediumsand.distance.graph = avgSEBins(soilCarbon.30m.transects.all$MediumSand, 

distance.labels, 

                                        zeroMetersSurface, zeroMetersSub, fiveMetersSurface, fiveMetersSub, 

                                        fifteenMetersSurface, fifteenMetersSub, "Distance and Depth", 

"Average Medium Sand Content (%)") + geom_text(x = 5.9, y = 67, label = "n=40") 

Mediumsand.distance.graph 

 

 

 

 

#do distance for strat ratios 

stratRatio.15n.dist.graph = avgSEStrat(soilCarbon.30m.transects.all$StratificationRatio15N, 

c("Under Canopy", "Dripline to Five Mters", "Beyond Five Meters"), zeroMetersSurface, 

fiveMetersSurface, fifteenMetersSurface, "Distance from Juniper Tree", "Average Stratification 

Ratio of 15N") + geom_text(x = 3.3, y = 0.96, label = "n=40") 

stratRatio.15n.dist.graph 

 

stratRatio.13c.dist.graph = avgSEStrat(soilCarbon.30m.transects.all$StratificationRatio13C, 

c("Under Canopy", "Dripline to Five Mters", "Beyond Five Meters"), zeroMetersSurface, 

fiveMetersSurface, fifteenMetersSurface, "Distance from Juniper Tree", "Average Stratification 

Ratio of 13C") + geom_text(x = 3.3, y = 1.18, label = "n=40") 

stratRatio.13c.dist.graph 

length(soilCarbon.30m.transects.all$StratificationRatio13C)#pretty much the same 

 

#see which variables best explain soil OM 

#moisture 

noMoisureData = which(is.na(SoilCarbon$PercentMoisture)) 

moisture.soil.om.r = correlation(SoilCarbon$PercentMoisture[-noMoisureData], 

                                 SoilCarbon$PercentOM[-noMoisureData]) 

moisture.soil.om.r#0.2911719 
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moisture.soil.om.p = pValue(SoilCarbon$PercentMoisture[-noMoisureData], 

                            SoilCarbon$PercentOM[-noMoisureData]) 

#nitrogen 

nitrogen.soil.om.r = correlation(SoilCarbon$PercentN, 

                                 SoilCarbon$PercentOM) 

nitrogen.soil.om.r #0.9464142 

nitrogen.soil.om.p = pValue(SoilCarbon$PercentN, SoilCarbon$PercentOM) 

 

#clay (will not be testing this further- value is very small) 

tinyFrac.soil.om.r = correlation(SoilCarbon$Clay, 

                                 SoilCarbon$PercentOM) 

tinyFrac.soil.om.r #0.08001233 

 

#silt fraction (will not be testing this further- value is very small) 

silt.soil.om.r = correlation(SoilCarbon$Silt, 

                                  SoilCarbon$PercentOM) 

silt.soil.om.r #-0.05972373 

 

#very fine sand fraction 

veryFineSand.soil.om.r = correlation(SoilCarbon$VeryFineSand, 

                                    SoilCarbon$PercentOM) 

veryFineSand.soil.om.r #-0.2244806 

veryFineSand.soil.om.p = pValue(SoilCarbon$VeryFineSand, 

                               SoilCarbon$PercentOM) 

#fine sand fraction  

FineSand.Soil.om.r = correlation(SoilCarbon$FineSand, 

                                      SoilCarbon$PercentOM) 

FineSand.Soil.om.r #0.1279845 

FineSand.Soil.om.p = pValue(SoilCarbon$FineSand, 

                                SoilCarbon$PercentOM) 

#Medium sand fraction 

MediumSand.om.r = 

  correlation(SoilCarbon$MediumSand, 

              SoilCarbon$PercentOM) 

MediumSand.om.r #0.2072566 

MediumSand.om.p = pValue(SoilCarbon$MediumSand, 

                                SoilCarbon$PercentOM) 

#pH 

pH.om.r = correlation(SoilCarbon$pH, SoilCarbon$PercentOM) 

pH.om.r #0.3918284 

pH.om.p = pValue(SoilCarbon$pH, SoilCarbon$PercentOM) 

 

#carbon isotope 

d13C.om.r =correlation(SoilCarbon$d13C, SoilCarbon$PercentOM) 

d13C.om.r  

d13C.om.p = pValue(SoilCarbon$d13C, SoilCarbon$PercentOM) 
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#nitrogen isotope 

d15N.om.r = correlation(SoilCarbon$d15N, SoilCarbon$PercentOM) 

d15N.om.r 

d15N.om.p = pValue(SoilCarbon$d15N, SoilCarbon$PercentOM) 

 

#graph of predictors for soil OM 

factors.corrs.om.df = data.frame(Factor = c("Percent Moisture", "Percent Nitrogen", "d13C", 

"d15N", "Very Fine Sand", "Fine  Sand", 

                                            "Medium Sand", "pH"), Correlation.Coefficient 

                                 = rbind(Percent.Moisture = moisture.soil.om.r, Percent.Nitrogen = 

                                           nitrogen.soil.om.r, d13C = d13C.om.r, d15N = d15N.om.r, 

Very.Fine.Sand = veryFineSand.soil.om.r, Fine.Sand 

                                         = FineSand.Soil.om.r, Medium.Sand = 

                                           MediumSand.om.r, soil.pH = pH.om.r), p.Value = 

                                   rbind(Percent.Moisture = moisture.soil.om.p, Percent.Nitrogen = 

                                           nitrogen.soil.om.p, d13C = d13C.om.p, d15N = 

d15N.om.p,Very.Fine.Sand = veryFineSand.soil.om.p, Fine.Sand 

                                         = FineSand.Soil.om.p, Medium.Sand = 

                                           MediumSand.om.p, soil.pH = pH.om.p)) 

factors.corrs.om.df 

 

#levels(factors.corrs.om.df$Factor) = c("Fifty\nMicron\nFraction" 

 

factors.corrs.om.plot = ggplot(data=factors.corrs.om.df, aes(x=Factor, y = 

Correlation.Coefficient, fill = p.Value<0.01)) + geom_bar(stat ="identity") + 

labs(title="Correlation and Signficiance Between Multiple Factors and Soil Organic Matter 

Content", x="Factor", y="Correlation Coefficient (r)") + scale_x_discrete(limits = 

factors.corrs.om.df[,1]) 

factors.corrs.om.plot 

 

#see which variables best explain soil C 

#moisture 

moisture.soil.c.r = correlation(SoilCarbon$PercentMoisture[-noMoisureData], 

                                SoilCarbon$PercentC[-noMoisureData]) 

moisture.soil.c.r #0.1552082 

moisture.soil.c.p = pValue(SoilCarbon$PercentMoisture[-noMoisureData], 

                           SoilCarbon$PercentC[-noMoisureData]) 

#nitrogen 

nitrogen.soil.c.r = correlation(SoilCarbon$PercentN, 

                                SoilCarbon$PercentC) 

nitrogen.soil.c.r #0.9865819 

nitrogen.soil.c.p = pValue(SoilCarbon$PercentN, SoilCarbon$PercentC) 

 

#tinyfraction (will not be testing this further- value is very small) 

#tinyFrac.soil.c.r = correlation(SoilCarbon$TinyFraction, SoilCarbon$PercentC) 
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#tinyFrac.soil.c.r #0.0005906371 

#2 micron fractdion (will not be testing this further- value is very small) 

#twoMicron.soil.c.r = correlation(SoilCarbon$TwoMicronFraction,SoilCarbon$PercentC) 

#twoMicron.soil.c.r #-0.07327602 

 

#very fine sand fraction 

very.fine.sand.soil.c.r = correlation(SoilCarbon$VeryFineSand, 

                                   SoilCarbon$PercentC) 

very.fine.sand.soil.c.r #-0.1854455 

very.fine.sand.soil.c.p = pValue(SoilCarbon$VeryFineSand, 

                              SoilCarbon$PercentC) 

#fine sand fraction 

fineSand.c.r = correlation(SoilCarbon$FineSand, 

                                     SoilCarbon$PercentC) 

fineSand.c.r #0.168455 

fineSand.c.p = pValue(SoilCarbon$FineSand, 

                               SoilCarbon$PercentC) 

#medium sand fraction 

medium.sand.c.r = 

  correlation(SoilCarbon$MediumSand, 

              SoilCarbon$PercentC) 

medium.sand.c.r #0.306582 

medium.sand.c.p = 

  pValue(SoilCarbon$MediumSand, SoilCarbon$PercentC) 

 

#pH 

pH.c.r = correlation(SoilCarbon$pH, SoilCarbon$PercentC) 

pH.c.r #0.3776242 

pH.c.p = pValue(SoilCarbon$pH, SoilCarbon$PercentC) 

 

#carbon isotope 

d13C.c.r =correlation(SoilCarbon$d13C, SoilCarbon$PercentC) 

d13C.c.r #-0.7387485 

d13C.c.p = pValue(SoilCarbon$d13C, SoilCarbon$PercentC) 

 

#nitrogen isotope 

d15N.c.r = correlation(SoilCarbon$d15N, SoilCarbon$PercentC) 

d15N.c.r #-0.8070099 

d15N.c.p = pValue(SoilCarbon$d15N, SoilCarbon$PercentC) 

 

#graph of predictors for carbon 

#graph of predictors for soil OM 

factors.corrs.c.df = data.frame(Factor = c("Percent Moisture", "Percent Nitrogen", "d13C", 

"d15N", "Very Fine Sand", "Fine Sand", 

                                           "Medium Sand", "pH"), Correlation.Coefficient 

                                = rbind(Percent.Moisture = moisture.soil.c.r, Percent.Nitrogen = 
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                                          nitrogen.soil.c.r, d13C = d13C.c.r, d15N = d15N.c.r, Very.Fine.Sand = 

very.fine.sand.soil.c.r, Fine.Sand 

                                        = fineSand.c.r, Medium.Sand = 

                                          medium.sand.c.r, 

                                        soil.pH = pH.c.r), p.Value = rbind(Percent.Moisture = moisture.soil.c.p, 

                                                                           Percent.Nitrogen = nitrogen.soil.c.p, d13C = 

d13C.c.p, d15N = d15N.c.p,Very.Fine.Sand = very.fine.sand.soil.c.p, Fine.Sand 

                                                                           = fineSand.c.p, Medium.Sand = 

                                                                             medium.sand.c.p, soil.pH = pH.c.p)) 

factors.corrs.c.df 

#levels(factors.corrs.c.df$Factor) = c("Fifty\nMicron\nFraction","Hundred\nMicron\nFraction", 

"Percent\nMoisture", "Percent\nNitrogen","pH", "Two Hundred\nMicron\nFraction") 

factors.corrs.c.plot = ggplot(data=factors.corrs.c.df, aes(x=Factor, y = 

                                                             Correlation.Coefficient, fill = p.Value<0.01)) + 

geom_bar(stat = 

                                                                                                                         "identity") + 

labs(title="Correlation and Signficiance Between Multiple Factors and Soil Carbon Content", 

x="Factor", y="Correlation Coefficient (r)") + scale_x_discrete(limits = factors.corrs.c.df[,1]) 

factors.corrs.c.plot 

 

#distance as a predictive variable 

#pull out samples along long (30-m) transects 

zhaad.transect.bottom = which(SoilCarbon$Tree=="T1" & SoilCarbon$Direction=="W"& 

SoilCarbon$DepthKey == "B") 

zhaad.transect.surface = which(SoilCarbon$Tree=="T1" & SoilCarbon$Direction=="W"& 

SoilCarbon$DepthKey == "S") 

zhaad.transect.all = which(SoilCarbon$Tree=="T1" & SoilCarbon$Direction=="W") 

 

elijah.transect.bottom = which(SoilCarbon$Tree=="T2" & SoilCarbon$Direction=="S"& 

SoilCarbon$DepthKey == "B") 

elijah.transect.surface = which(SoilCarbon$Tree=="T2" & SoilCarbon$Direction=="S"& 

SoilCarbon$DepthKey == "S") 

elijah.transect.all = which(SoilCarbon$Tree=="T2" & SoilCarbon$Direction=="S") 

 

larry.transect.bottom = which(SoilCarbon$Tree=="T3" & SoilCarbon$Direction=="N"& 

SoilCarbon$DepthKey == "B") 

larry.transect.surface = which(SoilCarbon$Tree=="T3" & SoilCarbon$Direction=="N"& 

SoilCarbon$DepthKey == "S") 

larry.transect.all = which(SoilCarbon$Tree=="T3" & SoilCarbon$Direction=="N") 

 

athena.transect.bottom = which(SoilCarbon$Tree=="T4" & SoilCarbon$Direction=="E"& 

SoilCarbon$DepthKey == "B") 

athena.transect.surface = which(SoilCarbon$Tree=="T4" & SoilCarbon$Direction=="E"& 

SoilCarbon$DepthKey == "S") 

athena.transect.all = which(SoilCarbon$Tree=="T4" & SoilCarbon$Direction=="E") 
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borris.transect.bottom = which(SoilCarbon$Tree=="T5" & SoilCarbon$Direction=="W"& 

SoilCarbon$DepthKey == "B") 

borris.transect.surface = which(SoilCarbon$Tree=="T5" & SoilCarbon$Direction=="W"& 

SoilCarbon$DepthKey == "S") 

borris.transect.all = which(SoilCarbon$Tree=="T5" & SoilCarbon$Direction=="W") 

 

soilCarbon.30m.transects.all = SoilCarbon[c(zhaad.transect.all, elijah.transect.all, 

larry.transect.all, athena.transect.all, borris.transect.all),] 

 

soilCarbon.30m.transects.surface = SoilCarbon[c(zhaad.transect.surface, elijah.transect.surface, 

larry.transect.surface, athena.transect.surface, borris.transect.surface),] 

soilCarbon.30m.transects.surface 

 

#distance predicting d15N 

d15N.distance.surface.plot = ggplot(data=SoilCarbon[c(zhaad.transect.surface, 

elijah.transect.surface, larry.transect.surface, athena.transect.surface, borris.transect.surface),], 

aes(x=SoilCarbon$AdjustedDistance[c(zhaad.transect.surface, elijah.transect.surface, 

larry.transect.surface, athena.transect.surface, borris.transect.surface)], 

y=SoilCarbon$d15N[c(zhaad.transect.surface, elijah.transect.surface, larry.transect.surface, 

athena.transect.surface, borris.transect.surface)])) + geom_point() 

d15N.distance.surface.plot 

 

#distance predicting percent carbon 

distance.c.r = correlation(SoilCarbon$AdjustedDistance, SoilCarbon$PercentC) 

distance.c.r #-0.5038028 

distance.c.p = pValue(SoilCarbon$AdjustedDistance, SoilCarbon$PercentC) 

 

#distance predicting d13C 

distance.d13c.r = correlation(SoilCarbon$AdjustedDistance, SoilCarbon$d13C) 

distance.d13c.r #0.5659629 

distance.d13c.p = pValue(SoilCarbon$AdjustedDistance, SoilCarbon$d13C) 

distance.d13c.p #3.791003e-10 

 

#distance predicting d15N 

distance.d15n.r = correlation(SoilCarbon$AdjustedDistance, SoilCarbon$d15N) 

distance.d15n.r #0.4406547 

distance.d15n.p = pValue(SoilCarbon$AdjustedDistance, SoilCarbon$d15N) 

distance.d15n.p #6.74116e-07 

 

head(SoilCarbon) 

 

#ggplot(data=SoilCarbon, aes(x=SoilCarbon$AdjustedDistance, y=SoilCarbon$d15N)) + 

geom_point() 

underTree.samples = SoilCarbon[which(SoilCarbon$Distance=="0"),] 

underTree.samples.surface = 

SoilCarbon[which(SoilCarbon$Distance=="0"&SoilCarbon$DepthKey=="S"),] 
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underTree.samples.subsurface = 

SoilCarbon[which(SoilCarbon$Distance=="0"&SoilCarbon$DepthKey=="B"),] 

 

anovaTest.direction.depth.om = aov(underTree.samples$PercentOM ~ 

underTree.samples$Direction*underTree.samples$DepthKey, data=underTree.samples) 

summary(anovaTest.direction.depth.om) 

 

#ANOVA for distance and depth for 13C 

anovaTest.distance.depth.d13C = aov(soilCarbon.30m.transects.all$d13C ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.distance.depth.d13C) 

 

#ANOVA for distance and depth for 15N 

anovaTest.distance.depth.d15N = aov(soilCarbon.30m.transects.all$d15N ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.distance.depth.d15N) 

 

#ANOVA for tree and depth for 15N (for only under tree) 

anovaTest.tree.depth.d15N = aov(underTree.samples$d15N ~ 

underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.depth.d15N) 

 

#ANOVA for tree and depth for 13C (for only under tree) 

anovaTest.tree.depth.d13C = aov(underTree.samples$d13C ~ 

underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.depth.d13C) 

 

anovaTest.tree.C = aov(underTree.samples$PercentC ~ underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.C) 

 

anovaTest.tree.N = aov(underTree.samples$PercentN ~ underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.N) 

 

anovaTest.tree.om = aov(underTree.samples$PercentOM ~ underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.om) 

 

anovaTest.tree.moisture = aov(underTree.samples$PercentMoisture ~ 

underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.moisture) 

 

anovaTest.tree.pH = aov(underTree.samples$pH ~ underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.pH) 

 

anovaTest.tree.clay = aov(underTree.samples$Clay ~ underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.clay) 
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anovaTest.tree.silt = aov(underTree.samples$Silt ~ underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.silt) 

 

anovaTest.tree.VeryFineSand = aov(underTree.samples$VeryFineSand ~ 

underTree.samples$TrunkDiameter) 

summary(anovaTest.tree.VeryFineSand) 

 

#ANOVA for distances 

anovaTest.dist.d15N = aov(soilCarbon.30m.transects.all$d15N ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.d15N) 

 

anovaTest.dist.d13C = aov(soilCarbon.30m.transects.all$d13C ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.d13C) 

 

anovaTest.dist.C = aov(soilCarbon.30m.transects.all$PercentC ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.C) 

 

anovaTest.dist.N = aov(soilCarbon.30m.transects.all$PercentN ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.N) 

 

anovaTest.dist.om = aov(soilCarbon.30m.transects.all$PercentOM ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.om) 

 

anovaTest.dist.moisture = aov(soilCarbon.30m.transects.all$PercentMoisture ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.moisture) 

 

anovaTest.dist.pH = aov(soilCarbon.30m.transects.all$pH ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.pH) 

 

anovaTest.dist.clay = aov(soilCarbon.30m.transects.all$Clay ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.clay) 

 

anovaTest.dist.silt = aov(soilCarbon.30m.transects.all$Silt ~ 

soilCarbon.30m.transects.all$DistanceBins) 

summary(anovaTest.dist.silt) 

 

anovaTest.dist.VeryFineSand = aov(soilCarbon.30m.transects.all$VeryFineSand ~ 

soilCarbon.30m.transects.all$DistanceBins) 
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summary(anovaTest.dist.VeryFineSand) 

 

anovaTest.dist.stratRatio.surface.d13C = 

aov(soilCarbon.30m.transects.surface$StratificationRatio13C ~ 

soilCarbon.30m.transects.surface$DistanceBins) 

summary(anovaTest.dist.stratRatio.surface.d13C) 

 

anovaTest.dist.stratRatio.surface.d15N = 

aov(soilCarbon.30m.transects.surface$StratificationRatio15N ~ 

soilCarbon.30m.transects.surface$DistanceBins) 

summary(anovaTest.dist.stratRatio.surface.d15N) 

 

#ANOVA for directions 

anovaTest.dir.d15N = aov(underTree.samples$d15N ~ underTree.samples$Direction) 

summary(anovaTest.dir.d15N) 

 

 

anovaTest.dir.d13C = aov(underTree.samples$d13C ~ underTree.samples$Direction) 

summary(anovaTest.dir.d13C) 

 

anovaTest.dir.C = aov(underTree.samples$PercentC ~ underTree.samples$Direction) 

summary(anovaTest.dir.C) 

 

anovaTest.dir.N = aov(underTree.samples$PercentN ~ underTree.samples$Direction) 

summary(anovaTest.dir.N) 

 

anovaTest.dir.om = aov(underTree.samples$PercentOM ~ underTree.samples$Direction) 

summary(anovaTest.dir.om) 

 

anovaTest.dir.moisture = aov(underTree.samples$PercentMoisture ~ 

underTree.samples$Direction) 

summary(anovaTest.dir.moisture) 

 

anovaTest.dir.pH = aov(underTree.samples$pH ~ underTree.samples$Direction) 

summary(anovaTest.dir.pH) 

 

anovaTest.dir.clay = aov(underTree.samples$Clay ~ underTree.samples$Direction) 

summary(anovaTest.dir.clay) 

 

anovaTest.dir.silt = aov(underTree.samples$Silt ~ underTree.samples$Direction) 

summary(anovaTest.dir.silt) 

 

anovaTest.dir.VeryFineSand = aov(underTree.samples$VeryFineSand ~ 

underTree.samples$Direction) 

summary(anovaTest.dir.VeryFineSand) 
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anovaTest.direction.stratRatio.surface.d13C = 

aov(underTree.samples.surface$StratificationRatio13C ~ underTree.samples.surface$Direction) 

summary(anovaTest.direction.stratRatio.surface.d13C) 

 

anovaTest.direction.stratRatio.surface.d15N = 

aov(underTree.samples.surface$StratificationRatio15N ~ underTree.samples.surface$Direction) 

summary(anovaTest.direction.stratRatio.surface.d15N) 

 

#ANOVA for tree for stratification ratio of 13C (for only surface under tree) 

anovaTest.tree.direction.stratRatio.surface.d13C = 

aov(underTree.samples.surface$StratificationRatio13C ~ 

underTree.samples.surface$TrunkDiameter) 

summary(anovaTest.tree.direction.stratRatio.surface.d13C) 

 

#ANOVA for tree for stratification ratio of 15N (for only surface under tree) 

anovaTest.tree.direction.stratRatio.surface.d15N = 

aov(underTree.samples.surface$StratificationRatio15N ~ 

underTree.samples.surface$TrunkDiameter) 

summary(anovaTest.tree.direction.stratRatio.surface.d15N) 

 

#ANOVA for stratification ratio for 13C for distance 

anovaTest.distance.stratRatio.13c = 

aov(soilCarbon.30m.transects.surface$StratificationRatio13C ~ 

soilCarbon.30m.transects.surface$DistanceBins) 

summary(anovaTest.distance.stratRatio.13c)  #F 1.291  #p 0.301 

 

#ANOVA for stratification ratio for 15N for distance 

anovaTest.distance.stratRatio.15N = 

aov(soilCarbon.30m.transects.surface$StratificationRatio15N ~ 

soilCarbon.30m.transects.surface$DistanceBins) 

summary(anovaTest.distance.stratRatio.15N) #F:10.48  p: 0.00108  

 

#ANOVA between pH and distance + depth 

anovaTest.distance.pH = 

aov(soilCarbon.30m.transects.all$pH~soilCarbon.30m.transects.all$DistanceBins, data = 

soilCarbon.30m.transects.all) 

summary(anovaTest.distance.pH) #not significant 

 

#ANOVA between pH and distance only for surface 

anovaTest.distance.pH.surface = 

aov(soilCarbon.30m.transects.surface$pH~soilCarbon.30m.transects.surface$DistanceBins, 

data=soilCarbon.30m.transects.surface) 

summary(anovaTest.distance.pH.surface) #not significant F:0.366, P: 0.699 

 

#test out canopy radius on soil properties of surface samples below tree 

noCanopy.radius.surface = which(is.na(underTree.samples.surface$CanopyRadius)) 
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noCanopy.radius.surface 

#as canopy radius increases, OM increases 

canopyRadius.OM.r = correlation(underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], underTree.samples.surface$PercentOM[-noCanopy.radius.surface]) 

canopyRadius.OM.r #0.6510502 

canopyRadius.OM.p = pValue(underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], underTree.samples.surface$PercentOM[-noCanopy.radius.surface]) 

canopyRadius.OM.p #0.01504178 

 

boxplot(underTree.samples.surface$PercentOM[-

noCanopy.radius.surface]~underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], main="Canopy Radius vs. Surface Soil Properties Under Juniper 

Trees", xlab="Canopy Radius(cm)", ylab="Percent Organic Matter") 

 

 

canopyRadius.moisture.r = correlation(underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], underTree.samples.surface$PercentMoisture[-

noCanopy.radius.surface]) 

canopyRadius.moisture.r #0.3661681 

canopyRadius.moisture.p = pValue(underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], underTree.samples.surface$PercentMoisture[-

noCanopy.radius.surface]) 

canopyRadius.moisture.p #0.09123132 no bueno 

 

canopyRadius.15N.r = correlation(underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], underTree.samples.surface$d15N[-noCanopy.radius.surface]) 

canopyRadius.15N.r #-0.5751552 

canopyRadius.15N.p = pValue(underTree.samples.surface$CanopyRadius[-

noCanopy.radius.surface], underTree.samples.surface$d15N[-noCanopy.radius.surface]) 

canopyRadius.15N.p #0.0228193 

 

ggplot(data=underTree.samples.surface[-noCanopy.radius.surface], aes(x=CanopyRadius, y = 

PercentOM)) + geom_point() 

 

#if 15N decreases with tree age, then it's not litter residence time, but the litter itself that is 

causing a slower turnover 

diameter.underTree.15N.plot = ggplot(data=underTree.samples.surface, 

aes(x=underTree.samples.surface$TrunkDiameter, y=underTree.samples.surface$d15N)) + 

geom_point() 

diameter.underTree.15N.r = correlation(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$d15N) 

diameter.underTree.15N.r #-0.4541911 

diameter.underTree.15N.p = pValue(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$d15N) 

diameter.underTree.15N.p #0.07500771 
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diameter.underTree.15Nb.r = correlation(underTree.samples.subsurface$TrunkDiameter, 

underTree.samples.subsurface$d15N) 

diameter.underTree.15Nb.r #-0.0248327 

diameter.underTree.15Nb.p = pValue(underTree.samples.subsurface$TrunkDiameter, 

underTree.samples.subsurface$d15N) 

diameter.underTree.15Nb.p #0.4708769 

 

#diameter.underTree.13c.plot = ggplot(data=underTree.samples.surface, 

aes(x=underTree.samples.surface$TrunkDiameter, y=underTree.samples.surface$d15N)) + 

geom_point() 

diameter.underTree.13c.r = correlation(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$d15N) 

diameter.underTree.13c.r #-0.4541911 

diameter.underTree.13c.p = pValue(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$d15N) 

diameter.underTree.13c.p #0.07500771 

 

boxplot(underTree.samples.surface$d15N~underTree.samples.surface$TrunkDiameter, 

main="Juniper Trunk Diameter vs. Natural Abundance of 15N", xlab="Trunk Diameter (m)", 

ylab="15N") 

 

 

borris.surface = which(underTree.samples.surface$Tree == "T5") 

zhaad.surface = which(underTree.samples.surface$Tree == "T1") 

larry.surface = which(underTree.samples.surface$Tree == "T3") 

elijah.surface = which(underTree.samples.surface$Tree == "T2") 

athena.surface = which(underTree.samples.surface$Tree == "T4") 

 

borris.sub = which(underTree.samples.subsurface$Tree == "T5") 

zhaad.sub = which(underTree.samples.subsurface$Tree == "T1") 

larry.sub = which(underTree.samples.subsurface$Tree == "T3") 

elijah.sub = which(underTree.samples.subsurface$Tree == "T2") 

athena.sub = which(underTree.samples.subsurface$Tree == "T4") 

 

diameter.CN.plot = diameters(underTree.samples$CNRatio, "Increasing Tree Age", "Average 

C:N of Soil", "Average C:N of Soil as a Function of Juniper Age") 

diameter.CN.plot 

 

diameter.15N.plot = diameters(underTree.samples$d15N, "Increasing Tree Age", "Average 

Natural Abudance of 15N of Soil", "Average Natural Abudance of 15N of Soil as a Function of 

Juniper Age") + geom_text(x=9.75, y = 7.2, label= "n=40") 

diameter.15N.plot 

 

diameter.13C.plot = diameters(underTree.samples$d13C, "Increasing Tree Age", "Average 

Natural Abudance of 13C of Soil", "Average Natural Abudance of 13C of Soil as a Function of 

Juniper Age") 
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diameter.13C.plot 

 

diameter.c.plot = diameters(underTree.samples$PercentC, "Increasing Tree Age", "Average 

Carbon Content of Soil (%)", "Average Natural Abudance of 13C of Soil as a Function of 

Juniper Age") 

diameter.c.plot 

 

diameter.n.plot = diameters(underTree.samples$PercentN, "Increasing Tree Age", "Average 

Nitrogen Content of Soil (%)", "Average Natural Abudance of 13C of Soil as a Function of 

Juniper Age") 

diameter.n.plot 

 

diameter.om.plot = diameters(underTree.samples$PercentOM, "Increasing Tree Age", "Average 

Organic Matter Content of Soil (%)", "Average Natural Abudance of 13C of Soil as a Function 

of Juniper Age") + geom_text(x=9.75, y = 14, label= "n=40") 

diameter.om.plot 

 

diameter.15n.stratRatio.plot = stratRatioDiam(underTree.samples$StratificationRatio15N, 

"Increasing Tree Age", "Average Stratification Ratio of 15N in Soil (%)", "Average Natural 

Abudance of 13C of Soil as a Function of Juniper Age") + geom_text(x=5, y = 1, label= "n=40") 

diameter.15n.stratRatio.plot 

 

#diameter.13c.stratRatio.plot = stratRatioDiam(underTree.samples$StratificationRatio13C, 

"Increasing Tree Age", "Average Stratification Ratio of 13C in Soil (%)", "Average Natural 

Abudance of 13C of Soil as a Function of Juniper Age") 

#diameter.13c.stratRatio.plot 

 

 

 

diameter.underTree.CN.plot = ggplot(data=underTree.samples.surface, 

aes(x=underTree.samples.surface$TrunkDiameter, y=underTree.samples.surface$CN)) + 

geom_point() 

diameter.underTree.CN.plot 

diameter.underTree.CN.r = correlation(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$CN) 

diameter.underTree.CN.r #0.7142968 

diameter.underTree.CN.p = pValue(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$CN) 

diameter.underTree.CN.p #0.005078203 

 

diameter.underTree.Ns.r = correlation(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$PercentN) 

diameter.underTree.Ns.r #0.6143001 

diameter.underTree.Ns.p = pValue(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$PercentN) 

diameter.underTree.Ns.p #0.03767225 
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diameter.underTree.Nb.r = correlation(underTree.samples.subsurface$TrunkDiameter, 

underTree.samples.subsurface$PercentN) 

diameter.underTree.Nb.r #0.2165229 

diameter.underTree.Nb.p = pValue(underTree.samples.subsurface$TrunkDiameter, 

underTree.samples.subsurface$PercentN) 

diameter.underTree.Nb.p #0.2479814 

 

diameter.underTree.15N.plot = ggplot(data=underTree.samples.surface, 

aes(x=underTree.samples.surface$TrunkDiameter, 

y=underTree.samples.surface$StratificationRatio15N)) + geom_point() 

diameter.underTree.15N.plot 

diameter.underTree.stratRatio.15N.r = correlation(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$StratificationRatio15N) 

diameter.underTree.stratRatio.15N.r #-0.47462 

diameter.underTree.stratRatio.15N.p = pValue(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$StratificationRatio15N) 

diameter.underTree.stratRatio.15N.p #0.03469739 

 

diameter.underTree.c13.r = correlation(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$d13C) 

diameter.underTree.c13.r #0.7142968 

diameter.underTree.c13.p = pValue(underTree.samples.surface$TrunkDiameter, 

underTree.samples.surface$d13C) 

diameter.underTree.c13.p 

 

dist.15N.linReg = bValue(soilCarbon.30m.transects.surface$AdjustedDistance, 

soilCarbon.30m.transects.surface$d15N) 

dist.15N.linReg 

dist.15N.surface.yHats = predictions(soilCarbon.30m.transects.surface$AdjustedDistance, 

soilCarbon.30m.transects.surface$d15N) 

dist.15N.surface.yHats 

dist.15N.surface.rmse = rmse(soilCarbon.30m.transects.surface$d15N, dist.15N.surface.yHats) 

dist.15N.surface.rmse 

 

SoilCarbonLog = read.csv("F:/SoilDataFinal3.csv") 

 

m1 = lm(PercentOM ~ AdjustedDistance + CanopyArea + Sin + Cos, data = SoilCarbon) 

summary(m1) 

 

m2 = lm(PercentOM ~ AdjustedDistance + CanopyArea + Sin, data = SoilCarbon) 

summary(m2) 

 

m3 = lm(PercentOM ~ AdjustedDistance + CanopyMaxDiameter + Sin, data = SoilCarbon) 

summary(m3) 
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m4 = lm(PercentOM ~ log(AdjustedDistance) + CanopyMaxDiameter + Sin, data = 

SoilCarbonLog) 

summary(m4) 

 

m5 = lm(log(PercentOM) ~ log(AdjustedDistance) + CanopyMaxDiameter + Sin, data = 

SoilCarbonLog) 

summary(m5) 

 

hist(log(SoilCarbonLog$AdjustedDistance)) 

hist(SoilCarbon$PercentOM) 

hist(m3$residuals) 

hist(m4$residuals) 

hist(m5$residuals) 

 

AIC(m3) 

AIC(m4) 

AIC(m5) 

 

m6 = lm(log(PercentOM) ~ log(AdjustedDistance) + CanopyMaxDiameter + Sin + DepthKey, 

data = SoilCarbonLog) 

summary(m6) 

 

mean(SoilCarbon$PercentOM[which(SoilCarbon$DepthKey == "S")]) 

mean(SoilCarbon$PercentOM[which(SoilCarbon$DepthKey == "B")]) 

 

AIC(m6) 

 

m7 = lm(log(PercentOM) ~ log(AdjustedDistance) + CanopyMaxDiameter*DepthKey + Sin, 

data = SoilCarbonLog) 

summary(m7) 

AIC(m7) 

 

m8 = lm(log(PercentOM) ~ log(AdjustedDistance)*DepthKey + 

CanopyMaxDiameter*DepthKey + Sin*DepthKey, data = SoilCarbonLog) 

summary(m8) 

AIC(m8) 

 

m9 = lm(log(PercentOM) ~ log(AdjustedDistance)*DepthKey + 

CanopyMaxDiameter*DepthKey + Sin, data = SoilCarbonLog) 

summary(m9) 

AIC(m9) 

 

m10 = lm(log(PercentOM) ~ log(AdjustedDistance)*DepthKey + CanopyMaxDiameter + Sin, 

data = SoilCarbonLog) 

summary(m10) 

AIC(m10) 
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m11 = lm(log(PercentOM) ~ log(AdjustedDistance) + CanopyArea + Sin, data = 

SoilCarbonLog[which(SoilCarbonLog$DepthKey == "S"),]) 

summary(m11) 

AIC(m11) 

hist(m11$residuals) 

 

m12 = lm(log(PercentOM) ~ log(AdjustedDistance) + CanopyArea, data = 

SoilCarbonLog[which(SoilCarbonLog$DepthKey == "S"),]) 

summary(m12) 

AIC(m12) 

 

correlation = function(X,Y){ 

  rValue = cor(X,Y) 

  return(rValue) 

} 

 

avgStEr = function(data, locs, set1, set2, set3, set4, set5, set6, set7, 

               set8, xlabel, ylabel){ 

  #OM calculations 

  names.df = data.frame(ncol=1, nrow=8) 

  names.df = data.frame(locs) 

  averages.df = data.frame(ncol=1, nrow=8) 

  averages.df = data.frame(rbind((mean(data[set1])/sqrt(length(data[set1]))), 

(mean(data[set2])/sqrt(length(data[set2]))), 

                                 (mean(data[set3])/sqrt(length(data[set3]))), 

(mean(data[set4])/sqrt(length(data[set4]))), (mean(data[set5])/sqrt(length(data[set5]))), 

(mean(data[set6])/sqrt(length(data[set6]))), 

                                 (mean(data[set7])/sqrt(length(data[set7]))), 

(mean(data[set8])/sqrt(length(data[set8]))))) 

  stdev.df = data.frame (ncol=1, nrow=8) 

  stdev.df = data.frame(rbind(sd(data[set1]), sd(data[set2]), 

                              sd(data[set3]), sd(data[set4]), sd(data[set5]), sd(data[set6]), 

                              sd(data[set7]), sd(data[set8]))) 

  averages.final.df = data.frame(ncol=3, nrow=8) 

  averages.final.df = data.frame(cbind(names.df, averages.df, stdev.df)) 

  #OM graph 

  limits= aes(ymax = averages.final.df[,2] + averages.final.df[,3], ymin 

              = averages.final.df[,2] - averages.final.df[,3]) 

  averagegraph = ggplot(data=averages.final.df, 

                        aes(x=averages.final.df[,1], y=averages.final.df[,2])) + 

    geom_bar(stat="identity") + geom_errorbar(limits) + labs(x= xlabel, 

                                                             y=ylabel) 

  return(averagegraph) 

} 

 



127 

 

pValue = function(X,Y){ 

  #OAR: find the correlation between two data sets (assumes Y is already transposed) 

  correlate = cor(X,Y)  

  #OAR: use autocorrelation to find out the effective degrees of freedom for the two given data 

sets 

  source("ar1.R") 

  EffN = length(X) * (1 - ar1(X)*ar1(Y))/(1+ar1(X)*ar1(Y)) 

  EffDf = EffN-2  

  #OAR:  calculate the t-value for X 

  if(EffDf>0){ 

  tVal = correlate * sqrt((EffDf/(1-correlate^2))) 

  #OAR:  calculate the p-value for NegEx detrended data and temperature 

  pVal = pt(-abs(tVal), df=EffDf) 

  } 

  if(EffDf<0){ 

    tVal = correlate * sqrt((EffN/(1-correlate^2))) 

    #OAR:  calculate the p-value for NegEx detrended data and temperature 

    pVal = pt(-abs(tVal), df=EffN) 

  } 

 

  return(pVal) 

} 

 

regression=function(X,Y){ 

  XX=t(X)%*%X 

  XY=t(X)%*%Y 

  B=solve(XX)%*%XY 

  yHat = X %*% B 

  return(yHat) 

} 

 

avgSEBins = function(data, locs, set1, set2, set3, set4, set5, set6, xlabel, ylabel){ 

  #OM calculations 

  names.df = data.frame(ncol=1, nrow=6) 

  names.df = data.frame(locs) 

  averages.df = data.frame(ncol=1, nrow=6) 

  averages.df = data.frame(rbind(mean(data[set1]), mean(data[set2]), 

                                 mean(data[set3]), mean(data[set4]), mean(data[set5]), mean(data[set6]))) 

  stdev.df = data.frame (ncol=1, nrow=6) 

  stdev.df = data.frame(rbind((sd(data[set1])/sqrt(length(data[set1]))), 

(sd(data[set2])/sqrt(length(data[set2]))), 

                              (sd(data[set3])/sqrt(length(data[set3]))), 

(sd(data[set4])/sqrt(length(data[set4]))), (sd(data[set5])/sqrt(length(data[set5]))), 

(sd(data[set6])/sqrt(length(data[set6]))))) 

 

  averages.final.df = data.frame(ncol=3, nrow=6) 
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  averages.final.df = data.frame(cbind(names.df, averages.df, stdev.df)) 

  #OM graph 

  errors= aes(ymax = averages.final.df[,2] + averages.final.df[,3], ymin 

              = averages.final.df[,2] - averages.final.df[,3]) 

  averagegraph = ggplot(data=averages.final.df, 

                        aes(x=averages.final.df[,1], y=averages.final.df[,2])) + 

    geom_bar(stat="identity") + geom_errorbar(errors) + labs(x= xlabel, 

                                                             y=ylabel) + scale_x_discrete(limits = averages.final.df[,1]) 

  return(averagegraph) 

} 

 

avgSE = function(data, locs, set1, set2, set3, set4, set5, set6, set7, 

               set8, xlabel, ylabel){ 

  #OM calculations 

  names.df = data.frame(ncol=1, nrow=8) 

  names.df = data.frame(locs) 

  averages.df = data.frame(ncol=1, nrow=8) 

  averages.df = data.frame(rbind(mean(data[set1]), mean(data[set2]), 

                                 mean(data[set3]), mean(data[set4]), mean(data[set5]), mean(data[set6]), 

                                 mean(data[set7]), mean(data[set8]))) 

  stdev.df = data.frame (ncol=1, nrow=8) 

  stdev.df = data.frame(rbind((sd(data[set1])/sqrt(length(data[set1]))), 

(sd(data[set2])/sqrt(length(data[set2]))), 

                              (sd(data[set3])/sqrt(length(data[set3]))), 

(sd(data[set4])/sqrt(length(data[set4]))), (sd(data[set5])/sqrt(length(data[set5]))), 

(sd(data[set6])/sqrt(length(data[set6]))), 

                              (sd(data[set7])/sqrt(length(data[set7]))), 

(sd(data[set8])/sqrt(length(data[set8]))))) 

  averages.final.df = data.frame(ncol=3, nrow=8) 

  averages.final.df = data.frame(cbind(names.df, averages.df, stdev.df)) 

  #OM graph 

  errors= aes(ymax = averages.final.df[,2] + averages.final.df[,3], ymin 

              = averages.final.df[,2] - averages.final.df[,3]) 

  averagegraph = ggplot(data=averages.final.df, 

                        aes(x=averages.final.df[,1], y=averages.final.df[,2])) + 

    geom_bar(stat="identity") + geom_errorbar(errors) + labs(x= xlabel, 

                                                             y=ylabel) + scale_x_discrete(limits = averages.final.df[,1]) 

  return(averagegraph) 

} 

 

diameters = function(data, xlabel, ylabel, mainTitle){ 

 

borris.surface = which(underTree.samples$Tree == "T5" & underTree.samples$DepthKey == 

"S") 

zhaad.surface = which(underTree.samples$Tree == "T1" & underTree.samples$DepthKey == 

"S") 
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larry.surface = which(underTree.samples$Tree == "T3" & underTree.samples$DepthKey == 

"S") 

elijah.surface = which(underTree.samples$Tree == "T2" & underTree.samples$DepthKey == 

"S") 

athena.surface = which(underTree.samples$Tree == "T4" & underTree.samples$DepthKey == 

"S") 

 

borris.sub = which(underTree.samples$Tree == "T5" & underTree.samples$DepthKey == "B") 

zhaad.sub = which(underTree.samples$Tree == "T1" & underTree.samples$DepthKey == "B") 

larry.sub = which(underTree.samples$Tree == "T3" & underTree.samples$DepthKey == "B") 

elijah.sub = which(underTree.samples$Tree == "T2" & underTree.samples$DepthKey == "B") 

athena.sub = which(underTree.samples$Tree == "T4" & underTree.samples$DepthKey == "B") 

 

myLabels = c("Surface Soil\nTree 5", "Subsurface Soil\nTree 5", "Surface Soil\nTree 1", 

"Subsurface Soil\nTree 1", "Surface Soil\nTree 3", "Subsurface Soil\nTree 3", "Surface 

Soil\nTree 2", "Subsurface Soil\nTree 2", "Surface Soil\nTree 4", "Subsurface Soil\nTree 4") 

names.df = data.frame(ncol=1, nrow=10) 

names.df = data.frame(myLabels) 

averages.df = data.frame(ncol=1, nrow=10) 

averages.df = data.frame(rbind(mean(data[borris.surface]), mean(data[borris.sub]), 

                               mean(data[zhaad.surface]), mean(data[zhaad.sub]), mean(data[larry.surface]), 

mean(data[larry.sub]), 

                               mean(data[elijah.surface]), mean(data[elijah.sub]), 

mean(data[athena.surface]), mean(data[athena.sub]))) 

stdev.df = data.frame (ncol=1, nrow=10) 

stdev.df = data.frame(rbind((sd(data[borris.surface])/sqrt(length(data[borris.surface]))), 

(sd(data[borris.sub])/sqrt(length(data[borris.sub]))), 

                            (sd(data[zhaad.surface])/sqrt(length(data[zhaad.surface]))), 

(sd(data[zhaad.sub])/sqrt(length(data[zhaad.sub]))), 

(sd(data[larry.surface])/sqrt(length(data[larry.surface]))), 

(sd(data[larry.sub])/sqrt(length(data[larry.sub]))), 

                            (sd(data[elijah.surface])/sqrt(length(data[elijah.surface]))), 

(sd(data[elijah.sub])/sqrt(length(data[elijah.sub]))), 

(sd(data[athena.surface])/sqrt(length(data[athena.surface]))), 

(sd(data[athena.sub])/sqrt(length(data[athena.sub]))))) 

 

averages.final.df = data.frame(ncol=3, nrow=10) 

averages.final.df = data.frame(cbind(names.df, averages.df, stdev.df)) 

#OM graph 

errors= aes(ymax = averages.final.df[,2] + averages.final.df[,3], ymin 

            = averages.final.df[,2] - averages.final.df[,3]) 

averagegraph = ggplot(data=averages.final.df, 

                      aes(x=averages.final.df[,1], y=averages.final.df[,2])) + 

  geom_bar(stat="identity") + geom_errorbar(errors) + labs(x= xlabel, 

                                                           y=ylabel) + scale_x_discrete(limits = averages.final.df[,1]) 

return(averagegraph) 
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} 

 

#OAR:  This function calculates the root mean squared given the expected values and the actual 

values.  

#---------------- 

rmse = function(Y,YHat){ 

#OAR: calculate all of the residuals (Y-Yhat) 

E = matrix(,nrow=length(Y)) 

for(i in 1:length(Y)){ 

   E=Y-YHat 

   } 

#OAR:  calculate the sum of squares, divide by the degrees of freedom, and find the square root 

of the result. 

ss = t(E) %*% E 

ssdivDf= ss/(length(Y)-2) 

answer = sqrt(ssdivDf) 

return(answer) 

} 

 

avgSEStrat = function(data, locs, set1, set2, set3, xlabel, ylabel){ 

  names.df = data.frame(ncol=1, nrow=3) 

  names.df = data.frame(locs) 

  averages.df = data.frame(ncol=1, nrow=3) 

  averages.df = data.frame(rbind(mean(data[set1]), mean(data[set2]), 

                                 mean(data[set3]))) 

  stdev.df = data.frame (ncol=1, nrow=3) 

  stdev.df = data.frame(rbind((sd(data[set1])/sqrt(length(data[set1]))), 

(sd(data[set2])/sqrt(length(data[set2]))), 

                              (sd(data[set3])/sqrt(length(data[set3])))))  

                              averages.final.df = data.frame(ncol=3, nrow=3) 

  averages.final.df = data.frame(cbind(names.df, averages.df, stdev.df)) 

  #OM graph 

  errors= aes(ymax = averages.final.df[,2] + averages.final.df[,3], ymin 

              = averages.final.df[,2] - averages.final.df[,3]) 

  averagegraph = ggplot(data=averages.final.df, 

                        aes(x=averages.final.df[,1], y=averages.final.df[,2])) + 

    geom_bar(stat="identity") + geom_errorbar(errors) + labs(x= xlabel, 

                                                             y=ylabel) + scale_x_discrete(limits = averages.final.df[,1]) 

  return(averagegraph) 

} 

 

stratRatioDiam = function(data, xlabel, ylabel, mainTitle){ 

   

  borris.surface = which(underTree.samples$Tree == "T5" & underTree.samples$DepthKey == 

"S") 

  zhaad.surface = which(underTree.samples$Tree == "T1" & underTree.samples$DepthKey == 
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"S") 

  larry.surface = which(underTree.samples$Tree == "T3" & underTree.samples$DepthKey == 

"S") 

  elijah.surface = which(underTree.samples$Tree == "T2" & underTree.samples$DepthKey == 

"S") 

  athena.surface = which(underTree.samples$Tree == "T4" & underTree.samples$DepthKey == 

"S") 

   

  myLabels = c("Tree 5", "Tree 1", "Tree 3", "Tree 2", "Tree 4") 

  names.df = data.frame(ncol=1, nrow=5) 

  names.df = data.frame(myLabels) 

  averages.df = data.frame(ncol=1, nrow=5) 

  averages.df = data.frame(rbind(mean(data[borris.surface]), 

                                 mean(data[zhaad.surface]), mean(data[larry.surface]), 

                                 mean(data[elijah.surface]), mean(data[athena.surface]))) 

  stdev.df = data.frame (ncol=1, nrow=5) 

  stdev.df = data.frame(rbind((sd(data[borris.surface])/sqrt(length(data[borris.surface]))), 

                              (sd(data[zhaad.surface])/sqrt(length(data[zhaad.surface]))), 

(sd(data[larry.surface])/sqrt(length(data[larry.surface]))), 

                              (sd(data[elijah.surface])/sqrt(length(data[elijah.surface]))), 

(sd(data[athena.surface])/sqrt(length(data[athena.surface]))))) 

   

  averages.final.df = data.frame(ncol=3, nrow=5) 

  averages.final.df = data.frame(cbind(names.df, averages.df, stdev.df)) 

  #OM graph 

  errors= aes(ymax = averages.final.df[,2] + averages.final.df[,3], ymin 

              = averages.final.df[,2] - averages.final.df[,3]) 

  averagegraph = ggplot(data=averages.final.df, 

                        aes(x=averages.final.df[,1], y=averages.final.df[,2])) + 

    geom_bar(stat="identity") + geom_errorbar(errors) + labs(x= xlabel, 

                                                             y=ylabel) + scale_x_discrete(limits = averages.final.df[,1]) 

  return(averagegraph) 

 




