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ABSTRACT 

A SPECIES DISTRIBUTION MODEL FOR LINARIA DALMATICA IN THE 

KENDRICK MOUNTAIN WILDERNESS, ARIZONA 

Sharalyn K. Peterson 

 Geographical position such as slope and elevation coupled with wildfire facilitate 

the distribution of the aggressive invasive plant, Linaria dalmatica, across rangelands of 

the Kaibab National Forest (KNF). I used presence-only data to develop a species 

distribution model (SDM) for Linaria dalmatica in the Kendrick Mountain Wilderness 

area of the KNF. I used geographic information systems (GIS) data layers coupled with 

Maximum Entropy modeling (MaxEnt) to create a species distribution model for Linaria 

dalmatica. 

 According to the MaxEnt model, highly suitable habitats for Linaria dalmatica 

are predicted to occur at high elevations, steep slopes and burned areas of the Kendrick 

Mountain Wilderness. The jackknife of regularized training gain from MaxEnt showed 

elevation as the best variable for the model with a gain or goodness of fit to the model at 

0.18. The elevation variable had a strong contribution to the presence on its own without 

adding other variables.   Slope and burn severity variables were also good fits for the 

model. Slope had a gain of 0.14 and burn severity a gain of 0.13.  
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Species distribution modeling with MaxEnt may be another tool that allows land 

managers to focus their efforts on areas of potential invasive plant species risk. 

Keywords Dalmatian toadflax, invasive plant species, MaxEnt, GIS 
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PREFACE 

This professional paper is written in journal format and the target journal is Biological 

Invasions. 
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Introduction and Background 

Many forest and range ecosystems of the Southwest are threatened by the increase 

of invasive non-native plant species.  Some invasive plants become dominant in their new 

environments, rapidly reproducing, spreading aggressively outside their native ranges 

(Richardson et al. 2000; Dodge et al. 2008).  These aggressive invasive species often 

have negative effects on the native ecosystems, including replacing and often hybridizing 

with native vegetation, displacing wildlife, altering ecosystem functions including 

nutrient cycling and hydrology as well as natural disturbance regimes (Vitousek 1990; 

D’Antonio and Vitousek 1992; Daehler and Strong 1994; Williamson 1996; Vitousek et 

al. 1997; Wilcove et al. 1998; Ross and Lembe 1999; Richardson et al. 2000; Ehrenfeld 

2003; Levine et al. 2003; McGranahan et al. 2012).  

Invasive plants can also negatively affect ecosystem continuity (uninterrupted 

presence of native ecosystems), which is often associated with high biodiversity and 

habitat specialist species (Norden et al. 2014).  Some invasive plants not only impact 

natural ecology but can impact human health, recreation and ranching activities (Di 

Tomaso 2000), which warrants noxious weed status where laws require control.  Land 

managers must understand both current and future problems posed by invasive plant 

species to prioritize management actions.  

Some studies report an increase in invasive non-native plant species after 

prescribed and wildland fires (D’Antonio 2000). The combined effects of large wildfires 

due to historical fire management practices coupled with the threat of changing climates 
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makes understanding the dynamics between invasive species spread and fire critical to a 

successful management plan.  Stand replacing wildfires have become more frequent in 

forests and rangeland areas of the Southwest, which have likely facilitated the 

establishment of opportunistic invasive plant populations (Dodge et al. 2008).  In 

addition, dense stand conditions, increased fuel loads and global warming effects are 

often attributed to increases in crown fire numbers and sizes (Covington and Moore 

1994; Walker and Smith 1997; Swetnam et al.1999; D’ Antonio and Meyerson 2002; 

Korb and Springer 2003; Schoennagel et al. 2005; Westerling et al. 2006).   

The ability to predict invasive plant spread with wildfire depends on many factors 

including invasive species traits, the ability to colonize burned areas, pre-fire population 

levels and propagule pressure, plant-plant competitive traits, and time since fire (Grace et 

al. 2001). In coniferous forests of the southwestern US, some studies show an increase in 

invasive species with burn severity (Keeley et al. 2003; Hunter et al. 2006; Kerns et al. 

2006; Dodge et al. 2008), while other studies report low levels of invasive exotic species 

cover on severely burned sites (Huisinga et al. 2005; Kuenzi et al. 2008).   

History and Morphology 

Linaria dalmatica (L.) Mill (Dalmatian toadflax) is an aggressive invasive plant 

that spreads quickly in disturbed or post-fire systems.  L. dalmatica is a Mediterranean 

species that was introduced to North America in the late 1800s as a nursery plant (Alex 

1962).  In 12 western states it has been legally designated as “noxious” due to its ability 

to grow outside of its native range (NRCS 2007).  Linaria dalmatica populations increase 
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quickly in response to disturbances (e.g., fire, disease, drought, flooding and erosion) as 

well as non-disturbance (anthropogenic introduction such as plant nurseries and natural 

seed dispersion). Fire was found to promote Linaria dalmatica invasion where severity of 

invasion was correlated with fire severity (D’Antonio 2000; Griffis et al. 2001; Keeley et 

al. 2003; Keeley 2004; Dodge et al. 2008; Garcia-Dominguez and Palacios 2009).  New 

invasive populations can be initiated and pre-existing populations may increase by soil 

disturbance (Phillips and Crisp 2001).   

Linaria dalmatica morphology is not unique in comparison to other plants as it 

reproduces using the same methods of seed and root sprouting (Vujnovic and Wein 

1996). It is adaptive to a wide range of growing conditions.  Researchers refer to it as an 

“opportunistic invader” as it will propagate in dry, open grasslands and forest sites as 

well as in disturbed areas with coarse, well-drained soils (Crawford et al. 2001; Griffis et 

al. 2001; Sieg et al. 2003; Wolfson et al. 2005; NRCS 2006).   

Managing for Linaria dalmatica has become a challenge across rangelands in the 

western United States. Land managers could benefit from the use of geographic 

information systems (GIS) and species distribution modeling to create an effective early 

detection monitoring tool. Remote sensing has been widely used in research due to its 

ability to: 1) detect invasive plants without having to physically sample an area (Young et 

al. 2007), 2) detect invasive plants with spatial resolutions under 30 m (Lass et al 2005), 

3) increase accuracy of predictive spatial modeling by improving capacities of data 

collection (Cohen and Goward 2004), and 4) accurately identify invasive species using 
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time series (Peterson 2005).  GIS datasets are also often created through the use of 

remotely sensed data making it easier for researchers to visually improve their data and 

place it within a GIS environment such as ArcGIS.  

Species distribution models (SDM), also known as niche models or habitat 

suitability models, are used to predict a species probability of occurrence across a 

landscape, and relate a species location to environmental data for prediction of the 

species in unsampled locations (Guisan and Zimmerman 2003; Araujo and Luoto 2007; 

Elith and Leathwick 2009).  There are many statistical approaches to SDMs, but one of 

the best performing SDM techniques for analysis of presence-only data is maximum 

entropy or MaxEnt (Elith et al. 2006; Williams et al. 2009).   

MaxEnt is a general purpose modeling approach, which is suitable for many 

applications, especially for data sets involving presence-only data (Phillips et al. 2006).  

The general idea of this approach is to estimate a target probability distribution by finding 

“the probability of maximum entropy (i.e., that is most spread out, or closest to uniform), 

subject to a set of constraints that represent our incomplete information about the target 

distribution (Phillips et al. 2006).”  Phillips et al. (2006) describe the advantages of 

maximum entropy modeling (MaxEnt) over other modeling methods used in species 

distribution models, which include: 

“(1) It requires only presence data, together with environmental information for 

the whole study area. (2) It can utilize both continuous and categorical data, and 

can incorporate interactions between different variables. (3) Efficient 

deterministic algorithms have been developed that are guaranteed to converge to 

the optimal (maximum entropy) probability distribution. (4) The MaxEnt 
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probability distribution has a concise mathematical definition, and is therefore 

amenable to analysis. For example, as with generalized linear and generalized 

additive models (GLM and GAM), in the absence of interactions between 

variables, additivity of the model makes it possible to interpret how each 

environmental variable relates to suitability. (5) Over-fitting can be avoided by 

using regularization. (6) The output is continuous, allowing fine distinctions to be 

made between the modeled suitability of different areas. If binary predictions are 

desired, this allows great flexibility in the choice of threshold. (7) MaxEnt could 

also be applied to species presence/absence data by using a conditional model. (8) 

MaxEnt is a generative approach, rather than discriminative, which can be an 

inherent advantage when the amount of training data is limited.”  

 

MaxEnt modeling coupled with the use of GIS data can be a powerful tool to 

identify species occurrence.  GIS data were used to develop a MaxEnt species 

distribution model (more specifically a habitat suitability model) to identify the 

occurrence of Linaria dalmatica in the Kendrick Mountain Wilderness of the Kaibab 

National Forest. This distribution model was useful in determining what factors were 

associated with its distribution by using on-the-ground presence-only data and slope, 

aspect, elevation, forest type and burn severity predictor variables. I hypothesized that 

Linaria dalmatica populations would occur on south-facing slopes and severely burned 

areas in the Kendrick Mountain Wilderness study area as this had been shown in the 

literature (Dodge et al 2008; Blumenthal et al 2012).     

Methods 

Study Area  

This study was conducted on Kendrick Mountain within the Kaibab National 

Forest, which is approximately 56 km northwest of Flagstaff, AZ (Fig. 1). The study area 
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boundary contains 2,696 ha (6,664 ac.) of national forest lands including the Kendrick 

Mountain Wilderness.  This wilderness is co-managed by both the Kaibab (1,706 ha, 

4,217 ac.) and Coconino (990 ha, 2,447 ac.) National Forests. Importantly, this area was 

the location of a large-scale, lightning induced, forest fire. The fire occurred over a month 

from May 24-June 24, 2000.  The Pumpkin Fire, named for its location along the 

Pumpkin trail, burned 5,968 ha.  

The Kendrick Mountain Wilderness area is a high elevation site where elevations 

range from 2,133 m to 3,175 m and are characterized by steep rock land, talus slopes and 

a variety of tree species.  The most common tree species include Pinus edulis and 

Juniperus monosperma at the lower elevations; Pinus ponderosa and Quercus gambelii, 

at the mid-elevations and Picea engelmannii, Abies lasiocarpa and Populus tremuloides 

at the highest elevations.  There are many small grasslands and montane meadows 

interspersed among the forest canopy throughout the study area. 

The Pumpkin Fire of 2000, discussed above, created burn severities ranging from 

unburned to high-severity crown fires within much of the study boundary and the 

Kendrick Mountain Wilderness (Fig. 2). 

Data Collection/Sampling 

Presence-only Linaria dalmatica location polygon data were collected (Fig. 3) via 

Trimble Juno GPS device (±9 m) and organized sampling occasions across a 39 day 

sampling period from May to August 2012. 
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An invasive plant inventory was compiled over four years: 2009, 2010, 2011 and 

2012. GIS vector datasets corresponding to each of these years of survey have been 

compiled by the Kaibab National Forest. A survey was also conducted before the fire in 

1997 but Linaria dalmatica was not detected.  It was not until 2009 that the forest began 

detecting Linaria dalmatica west and south of Kendrick Peak as well as north on the Bull 

Basin trail. A crew of three to four KNF range staff conducted the invasive plant 

inventory using on-the-ground surveys both on and off trail surveys directed at 

determining the distribution of Linaria dalmatica.  Visual observations included 

binoculars over longer distances allowing the technicians to effectively survey in difficult 

terrain (Rew et al. 2006, Higman et al. 2012).   Fifty-one presence-only Linaria 

dalmatica presence polygons were compiled and used for analyses and modeling.  

Analyses and Modeling  

Five variables were used as potential predictors of Linaria dalmatica presence: 

slope, aspect, elevation, burn severity and forest type. Slope, aspect and elevation 

variables were generated from a 10 m digital elevation model (Joe Crouse, Northern 

Arizona University, Ecological Restoration Institute, GIS and remote sensing research 

specialist, personal communication).  Burn severity and forest type (30 m) pdf and shape 

files were obtained from the Kaibab National Forest (Christopher MacDonald, Kaibab 

National Forest, soils scientist, personal communication).  All variables were assigned the 

same resolution (cell size) of 10 m x 10 m, registered in the same map projection (NAD 
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1983 UTM Zone 12N), and extent, and then each variable was converted to a grid format 

and clipped to the study boundary within ArcMap 10.3 (ESRI 2015).   

It can be problematic to use data layers originally created at 30 m x 30 m cell 

resolution (such as the burn severity map from this study) and change the cell resolution 

to 10 m x 10 m. For example, a 30 m x 30 m resolution or cell size has a lower resolution 

or diminished detail in the dimensions represented by each cell or raster pixel.   A 10 m x 

10 m resolution has a higher resolution or detail in the dimensions represented by each 

cell or raster pixel.   

I used maximum entropy modeling to examine the distribution of Linaria 

dalmatica presence as a function of elevation, slope, aspect, burn severity, and forest 

type.  I used MaxEnt modeling because it is one of the most popular tools for species 

distribution (suitable habitat or niche) modeling, it outperforms other methods based on 

predictive accuracy, and the software is user-friendly (Merow et al. 2013). I used MaxEnt 

version 3.3.3k (Phillips et al. 2006) for this project. 

The MaxEnt software allows the user to make a number of decisions about the 

input data and settings as the species distribution (or habitat suitability) model is built 

from the data. For example, one can assign the number of replicate model runs. For my 

Linaria dalmatica model 10 model replicates were run.   I used the MaxEnt model 

predictions as an index of Linaria dalmatica habitat suitability.  MaxEnt has many 

rigorous assumptions about sampling (and sampling bias) and probabilistic interpretation 

of model output.  Even if these sampling assumptions are violated, it is still possible to 



 
 
 

 
 
 
 

9 

interpret MaxEnt’s predictions as indices of habitat suitability, which is useful for 

qualitative and exploratory analyses (Merow et al. 2013).  

Here I list the general steps I used to build a Linaria dalmatica MaxEnt model.  

First I built a Linaria dalmatica presence-only list with locations. Then, I prepared the set 

of predictor variables (elevation, slope, aspect, burn severity, and forest type) as grid cells 

across the Kendrick Mountain Wilderness study area.  Then, I followed the MaxEnt 

modeling steps, making user-defined decisions regarding number of predictor variables, 

background data (random data set), training data and test data. 

Presence Observations for Target Species    

Presence-only polygon data were compiled or “lumped” due to project time 

constraints.  Fifty-one L. dalmatica polygons were collected over the entirety of the study 

area.  The data overlapped due to L. dalmatica being present during multiple sampling 

years. To deal with the overlap between polygons, a definition query for Linaria 

dalmatica was conducted.  Presence-only polygons were then disaggregated to points so 

they could be utilized in MaxEnt modeling (Fig. 4).  There are a few issues that can come 

up when disaggregating polygons to points though: 1) one may recognize that two points 

have fallen into a polygon and overlap ending in duplicated points and 2) converting to 

centroids results in a shapefile format, giving the correct geometry but changing the 

attribute names. Generating points from polygons is necessary in order to run MaxEnt as 

it will only accept point inputs.  A total of 12,111 points were used to determine the 

MaxEnt distribution (background points and presence points).   

 



 
 
 

 
 
 
 

10 

Background Data    

From this study area grid, with all predictor variables, MaxEnt extracts a sample 

of background locations (where presence/absence data is unmeasured) that it contrasted 

against the Linaria dalmatica presence.  The background data were created by sampling 

1000 random sample points through ArcMap 10.3, and placing these points 100 m apart 

across the extent of the study boundary.  

Predictor Variables 

I limited the predictor variables to those listed in Alex (1962) as suitable habitat 

for Linaria dalmatica.  The predictor variables chosen for this study were: slope, aspect, 

elevation, forest type and burn severity.  I did not conduct a correlation analysis to 

remove highly correlated predictors.  Instead, I followed the alternative school of thought 

based in machine learning (where MaxEnt originated), which suggests that the user 

includes all reasonable predictors in the model and allow the MaxEnt algorithm to decide 

which variables are important via the regularization process.  

Regularization   

MaxEnt selects predictor variables that contribute most to model fit using 

regularization, which is conceptually similar to the AIC (and BIC) diagnostics for model 

comparisons and reduces (and penalizes) model over-fitting.  

Training and testing data    

I used 2,147 presence records as training data to train the MaxEnt model. I used 

239 presence records as testing data.   
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Evaluating and Validating Models in MaxEnt   

I evaluated and validated my model in MaxEnt three different ways. First, I used 

MaxEnt’s jackknife of regularized training gain (Fig. 5). Second, I evaluated my MaxEnt 

model using the analysis of testing and training omission and predicted area (Fig. 6).  

Third, I validated my MaxEnt model using the area under the receiver operating curve 

ROC or AUC (Fig. 7).   

 First, in the MaxEnt model evaluation I used the jackknife of regularized training 

gain or the “leave-one-out” approach that shows the training gain of each variable if the 

model was run in isolation and compares it to the training gain with all the variables. This 

is useful in identifying which variables contribute the most to the model individually and 

is analogous to the measure of variance or goodness of fit. 

 Second, for the model evaluation method, the analysis of testing and training 

omission and predicted area was utilized to determine whether presence data fell in 

suitable or unsuitable habitat in relation to the given threshold by MaxEnt.   

Third, for the model evaluation/validation method the receiver operating curve 

(ROC) or the area under the ROC curve (AUC) was utilized. This method shows how 

well the model fits the training and testing data while also explaining the predictive 

power of the model. 
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Response curves (Figs. 8 and 9) were also important in this analysis as they 

showed the probability of species occurrence and 1) averaged values of all other variables 

and 2) excluded all other variables from the model. 

Results 

According to the MaxEnt model, suitable habitats for Linaria dalmatica have 

higher elevations, steeper slopes and occur more often on burned areas.   

The jackknife approach (Fig. 5) showed when all the predictor variables were run 

altogether (red line) that the model explained 38% of the variation in the data. Elevation 

explained 18% of the variation, slope 14% and burn severity 13%.  Aspect only explained 

1-2% of the variation in the data and was not important to the model whether run on its 

own or if it was removed.  

The omission/commission analysis (Fig. 6) results showed the omission on test 

samples (green line) matched the predicted omission rate (black line) from the MaxEnt 

distribution suggesting suitable habitat exists above the threshold. MaxEnt allows the 

researcher to set a cumulative threshold value. The omission on training samples (blue 

line) fell below the threshold or predicted omission (black line). 

For the receiver operating curve (ROC) or area under the ROC curve (AUC) 

results (Fig. 7) the model performed better than a random model as the AUC values are 

larger than the random prediction of 0.5 (training AUC= 0.760 and testing AUC=0.727), 

but risk being unreliable in how well they explained the model’s predictive power.  
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Because the presence data were split into training and testing partitions, the AUC values 

were slightly higher among training values then among testing values.  

Discussion 

The MaxEnt model predicted elevation, slope and burn severity as drivers of L. 

dalmatica invasion. Steep slopes and the burn severity of wildfires have been shown to 

be influential in the facilitation of this species through other research (McKenzie et al 

2004; Schoennagel et al. 2005; Westerling et al. 2006; Dodge et al. 2008; Blumenthal et 

al. 2012).  Linaria dalmatica is an opportunistic invader across the landscape from highly 

disturbed to pristine areas (Crawford et al. 2001; Griffis et al. 2001; Sieg et al. 2003; 

Wolfson et al. 2005; Lemke et al. 2011; Blumenthal et al. 2012) but appears to prefer 

disturbed, south-facing slopes. 

The relationship between elevation and presence of Linaria dalmatica in the 

Kendrick Mountain Wilderness may be a function of several factors.  One explanation is 

that elevation is often correlated with other factors such as temperature or precipitation 

(Liston et al. 2007; Dodge et al. 2008).  Liston et al. (2008) found that temperature 

related factors predicted the presence of L. dalmatica in another system. Liston et al. 

hypothesized that dense toadflax infestations may have been associated with winter 

temperatures and areas of high snow accumulation due to northwest winter winds 

blowing snow onto south-facing slopes. Future SDMs should include precipitation and 

temperature in factors associated with Linaria dalmatica presence in the Southwest.    
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The MaxEnt model used in this study indicated that elevation was a good 

predictor of Linaria dalmatica presence and could be explained by dispersal patterns in 

that L. dalmatica can be found across broad elevations.   Dispersal strategies could 

explain the pattern of invasion found in relation to increasing elevation either via wind or 

animal dispersal. Southwestern aspects were weakly associated with the presence of this 

plant owing to the possibility that predominantly western winds (Blumenthal et al. 2012) 

may have aided in the upslope distribution of this plant.  Another explanation may be 

seed dispersal patterns although Dodge et al. (2008) found that L. dalmatica seeds are 

likely to disperse shorter distances from the mother plant which turns this explanation on 

its head. 

There is a clear relationship between L. dalmatica and steep slopes and was 

demonstrated in the research of Blumenthal et al. (2012) where they quantified 

relationships between toadflax cover through high-resolution aerial imagery and relative 

snow deposition. Blumenthal et al. (2012) found that toadflax occurred in 742 of 1,861 of 

their images implying that it was very common throughout their 400 ha site. Linaria 

dalmatica presence can be found on flat meadow openings but responds greatly to steep 

slopes. The steeper the slope, the greater the plant will spread. 

 There is also a relationship of L. dalmatica with burn severity, which was 

demonstrated in Dodge et al. (2008).  Areas that had received medium to high severity 

burns had experienced greater numbers of this species. L. dalmatica does not require fire 

to establish, but medium to high severity burns can and often will influence plant spread. 
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Potential issues with Species Distribution Models 

There are some potential issues with the MaxEnt species distribution model I 

created, and most of these issues are common to all modeling approaches.   These issues 

include transferability, the model species’ range is still expanding, sampling distribution 

bias, model evaluation, and model selection.  

Over-estimates of potential impact   

 Distribution models of invasive plants over-estimate potential impact (Bradley 

2013).  This is quite common amongst species distribution models for example MaxEnt 

can over-estimate potential impacts of invasive plants when presence and background 

data come from the same source.  

Transferability    

One potential problem with the MaxEnt model is the ability to transfer findings 

from the sampled area of Kendrick Mountain Wilderness to other unsampled areas.  The 

environmental variables that were important in this study may change when modeling 

Linaria dalmatica in other areas. Therefore, results from this study should be considered 

limited in scope and would not transfer to other areas of the Kaibab National Forest or 

beyond. 
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Species range could still be expanding  

Species distribution model predictions may under predict leading to a reduced 

distribution of the species.  However, the data for this model were collected 10 years or 

more after the Pumpkin Fire occurred in the study area, so it is likely that Linaria 

dalmatica’s range is beginning to stabilize on Kendrick Mountain (Phillips and Crisp 

2001).    

Sampling distribution bias  

The accuracy of any model is influenced by the sampling distribution.  If the 

sampling distribution is biased because of the sampling method (for example, targeted 

sampling near trails, roads, etc.) then the resulting model will not accurately predict the 

species’ distribution across the landscape.   

Model evaluation   

Model evaluations provide information regarding whether a model can predict 

distributions that are different than random. I used the jackknife test to assess the 

importance of predictor variables in my training data, testing data, and AUC.  The 

jackknife approach relies on threshold values to predict presence-pseudo-absence 

locations. Threshold values differ for each model, and are selected at the discretion of the 

modeler.  I was interested in identifying any possible area where Linaria might occur, so 

I wanted to minimize commission error. Once a threshold has been identified, locations 

can be classified as suitable or unsuitable for the species of interest. 
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Model selection  

The best model out of a subset of potential models is model selection.  I chose the 

best model using the jackknife due to its robustness and ability to look at variable 

contributions individually, without and in conjunction with other variables.  

Management Implications 

The establishment of the aggressive, exotic, noxious Linaria dalmatica in 

rangelands is a problem many southwestern land managers face with limited methods to 

control population spread.  The Kaibab National Forest has experienced invasion of this 

species over large areas in rangelands throughout the Forest, and land managers are 

concerned that Linaria populations may keep spreading into the Kendrick Mountain 

Wilderness and Kendrick Peak. This makes for difficulty in monitoring these invasive 

populations through ground survey because of the difficult terrain and the inability to 

reach many areas by foot.  

Since these control efforts can be ineffective, land managers could benefit by 

using MaxEnt coupled with geographic information systems (GIS) to survey these areas. 

This will help guide monitoring efforts and to place emphasis on the places suitable for 

establishment. Without these methods monitoring is unguided and efforts can be wasted 

as well as time that can be spent on other management efforts.  Remote sensing coupled 

with the utility of GIS has greatly facilitated managers in geospatially collecting and 

disseminating datasets (Pearson et al. 2007).  Species distribution models (SDMs) such as 
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Maximum entropy (MaxEnt) have been widely used by managers to predict areas of 

suitable plant invasion as well as global climate change.   

Young et al. (2007) utilized GIS and MaxEnt to predict areas of invasive plant 

establishment within Big Bend National Park and created an early detection management 

tool.  Holcombe et al. (2010) generated an efficient global climate change model utilizing 

MaxEnt that helped identify the leading edge or areas of potentially suitable habitat of 

Lepidium latifolium. This type of modeling is extremely important for natural areas and 

allows managers to keep better track of populations through more targeted surveys and 

monitoring.  Much effort has been put into monitoring Linaria dalmatica populations in 

the Kaibab National Forest and with these implementations the on the ground monitoring 

effort can be more effective to verify and control populations (Everitt et al. 1996; Osborn 

et al. 2002; Goslee et al. 2003; Parker-Williams and Hunt 2004).    

There were some lessons learned during the process of creating this MaxEnt 

modeling tool. First, goals and objectives of the invasive plant survey need to be made 

clear. Will the survey be used as a rapid assessment of invasive plant establishment or 

will it be used to monitor plants and predict new ones?  Second, the sampling design 

needs to be planned and well structured.  If the purpose of the survey is for monitoring, 

then a fixed, systematic sampling design should be implemented and the same points 

visited each year.  Data should be collected to determine presence and absence of 

invasive species over time.  Third, it was important to keep all data at the same resolution 

(e.g., 30 m) during the analyses to keep data intact. Fourth, more predictor variables 
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could have been used to explore the relationship of  L. dalmatica presence to 

environmental factors; variables such as precipitation, temperature, soil type, geological 

features, and distance to trails and water sources. 
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Fig. 1 Study was conducted in Kendrick Mountain Wilderness within the Kaibab 

National Forest, which is approximately 56 km northwest of Flagstaff, AZ.  Kendrick 

Peak or Kendrick Mountain is one of the highest peaks in the San Francisco volcanic 

field at 3,176.93 m. Area marked with large red circle shows the Kendrick Mountain 

Wilderness location in reference to the city of Flagstaff. The smaller red circle shows 

inset location of the wilderness area within the state of Arizona. 



 
 
 

 
 
 
 

27 

 

 

 

 

Fig. 2 Pumpkin Fire burn severity map created by USFS Kaibab National Forest. Levels 

of burn severity are color coded with acreage amounts affected by Pumpkin Fire. Olive 

green is unburned (416 ha, 1028.2 ac.), lime green is low severity burn (3,211 ha, 7936.7 

ac.), yellow is moderate severity burn (694 ha, 1715.8 ac.) and orange is high severity 

burn (2,061 ha, 5094.7 ac.). 
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Fig. 3 ArcMap 10.3 map of presence-only polygon locations for Linaria dalmatica 

constrained within the study area of Kendrick Mountain Wilderness.  Fifty-one polygons 

in all were collected to compile presence-only locations.  
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Fig. 4 Map showing boundary of Kendrick Mountain Wilderness with converted L. 

dalmatica polygons to sample points shown in red 
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Fig. 5 Jackknife of regularized training gain or “leave-one-out” approach for Linaria 

dalmatica ranks importance of predictor variables (ext_prj_asp_1=aspect, 

ext_prj_elev=elevation, ext_prj_kai=forest type, ext_prj_pkin=burn severity and 

ext_prj_slp_1=slope) and is analogous to a measure of variance.  A more robust analysis 

of variable contributions which account for dependencies between predictor variables by 

building two sorts of models: one involving a given feature by itself, and the other 

involving all features EXCEPT for the given feature.  The x-axis is a measure of model 

predictive ability, using either 1) training gain; 2) test gain; or 3) AUC on test data.  Dark 

blue bars indicate how well a model performs using only that feature compared to the 

maximal model (red bar), and light blue bars indicate how well a model performs 

excluding that feature.  Thus, important variables can either have 1) large dark blue bars, 

indicating strong (but perhaps non-unique) contribution to presences; 2) short light blue 

bars, indicating no other variable contains equivalent information; or 3) both, indicating 

the variable is independently predictive. 
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Fig. 6 MaxEnt testing and training omission analysis and predicted area for Linaria 

dalmatica. The omission on test samples (green line) matched the predicted omission rate 

or threshold (black line) from the Maxent distribution suggesting suitable habitat exists 

above the threshold. Threshold is indicated by blue arrow.  The omission on training 

samples (blue line) fell below the threshold or predicted omission (black line). 
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Fig. 7  The test for validation and evaluation of Maxent models is the receiver operating 

curve (ROC) or area under the ROC curve (AUC). Y-axis shows sensitivity of prediction 

to data and x-axis is predicted area to data. AUC values larger than the random prediction 

of 0.5 (training AUC= 0.760 and testing AUC=0.727) are desired but risk being 

unreliable in how well they explain the model’s predictive power. In this study, the 

presence data were split into training and testing partitions and the AUC values were 

slightly higher among training values then among testing values.  The red line (training) 

shows how well the model fits the training data. The blue line (testing) indicates how 

well the model fits the testing data while also explaining the predictive power of the 

model.   
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Fig. 8 Response curve for elevation and Linaria dalmatica showing on y-axis probability 

of presence and on x-axis levels of elevation. An increase of elevation correlates with an 

increase in the probability of Linaria dalmatica presence.  The drop in probability from 

2900 m to 3100 m may be an artifact of L. dalmatica not being present at those 

elevations.  
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Fig. 9 Response curve for slope and Linaria dalmatica showing on y-axis probability of 

presence and on x-axis degrees of slope. Slope increases the probability of Linaria 

dalmatica presence. 
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Fig. 10   MaxEnt map of predictive probability for Linaria dalmatica showing a 

probability scale from 0-1. Areas of blues and greens exhibit a low probability of 

presence where oranges and reds are a high probability of presence. This model shows 

that areas southeast, southwest and north of Kendrick Peak have high probabilities of 

presence specifically in the Newman Hill/East Newman Hill areas, southeast in Crowley 

Park area as well as north of the wilderness area around Kendrick Spring area.  

 


