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ABSTRACT 

DRIVERS OF VARIABILITY IN DRY MIXED-CONIFER FORESTS 

OF THE MOGOLLON RIM, ARIZONA 

 

Matt Jaquette 

 

The structure and composition of southwestern dry mixed-conifer forests has changed 

significantly since Euro-American settlement and fire regime disruption in the late 1800s. This 

change in forest condition has decreased their resiliency to disturbance events, endangering the 

important ecosystem services these forests provide. Restoration of southwestern dry mixed-

conifer forests is informed by a historic range of variability, however, managers and researchers 

still lack a full understanding of how environmental conditions drove historic forest conditions. 

My study investigates the variation of southwestern dry mixed-conifer forests on the Mogollon 

Rim in northern Arizona, and (1) compares the historical and contemporary ranges of variability, 

and (2) identifies important environmental drivers of historical and contemporary variation in 

these forests. I utilize forest inventory surveys from 2014 and dendrochronological 

reconstruction modelling to describe the distribution of historical forest structure in 1879. 

Additionally, I use Moran’s I correlogram analysis to measure the degree of spatial 

autocorrelation in the forest at each time period. To further identify important drivers of forest 

variation, I use structural equation modeling techniques to describe the causal pathways between 

forest structure, forest composition, and a suite of environmental factors drawn from measures of 

climate, topography, and soil.  
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Forest structure on the Mogollon Rim has changed significantly from the historic (1879) 

to contemporary (2014) time periods. Density increased from an average of 174 (50 – 350) to 

809 (200 – 2395) trees per ha, basal area increased from 18.3 (1.8 – 66.5) to 32.0 (11.5 – 58.2) 

m2 per ha, and average tree diameter decreased from 29.4 (13.2 – 55.1) to 20.8 (8.5 -37.9) cm. 

These results are similar to the historic range of variability found in other dry mixed-conifer 

forests in the Southwest. I found that the historical forest structure was not significantly spatially 

autocorrelated, while contemporary density and diameter had significant autocorrelation at 

distances under 400m. This suggests that forests were historically heterogeneous at multiple 

spatial scales, and that contemporary forests may be forming more homogeneous stands. I found 

that contemporary measures of climate, topography, and soil tend to have stronger correlation 

with forest structure and composition than historically, and I describe the changes to the relative 

strengths of important environmental pathways. My findings suggest that fire regime disruption 

has altered the structure, composition, and environmental drivers of variation in dry mixed-

conifer forests. Managers can utilize this increased understanding of variation to tailor 

restoration treatments to the environmental template of each site.  
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Preface 

The following thesis was written in the journal format described by the Northern Arizona 

University Graduate College. Chapter 3 has been written and formatted for submission to a peer 

reviewed journal yet to be determined, and is intended to stand on its own. For this reason, there 

is some redundancy between the following chapters. 
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Chapter 1: Introduction 

Dry forests across the southwestern United States have changed significantly over the last 

century, posing a monumental challenge for forest managers. Land use practices following Euro-

American settlement in the late nineteenth century led to these changes. Unregulated logging 

removed many large, fire-resistant trees, providing space for many small young trees to establish. 

Overgrazing decreased and broke the continuity of fine surface fuels that maintained a natural 

fire regime of frequent, low to mixed severity fires. This disruption of the fire regimes is evident 

in the fire record and was perpetuated by active fire suppression in the early twentieth century 

(Bahre, 1998; Cooper, 1960; Savage and Swetnam, 1990). 

Disruption to the frequent fire regime has led to widespread increases in forest density, as 

well as changes to forest composition (Reynolds et al., 2013), decreasing their resilience to 

disturbances such as, insects, drought, and fire (Bryant et al., 2019), and possible conversion to 

non-forested ecosystems (Walker et al., 2018). This decreased resilience endangers the 

ecosystem services that they provide, such as watershed protection (O’Donnell et al., 2018) and 

wildlife habitat for endangered species (Margolis and Malevich et al,. 2016; Wan et al., 2017). 

With drought and severe wildfire expected to increase as climate change progresses (Westerling 

et al., 2006; Allen et al., 2010; Westerling 2016), restoring the resilience of these forests is an 

immediate concern for forest manager (Allen et al., 2019).  

Ecological restoration of these forests has been advocated as a way for managers to 

address these changes (Allen et al., 2002). In its most general definition, ecological restoration is 

the “process of assisting the recovery of an ecosystem that has been degraded, damaged, or 
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destroyed,” and seeks to set these ecosystems on an appropriate trajectory towards sustainable 

ecosystem functioning (SER, 2004). The concept of a historical range of variability is often used 

to guide reference conditions and evaluate the success or progress of restoration efforts (Keane et 

al., 2009). This concept describes the range of conditions that varied through time and space, that 

were present during the development of ecosystems or the evolution of species (Landres et al., 

1999). Historically guided ecological restoration has proven effective at increasing understory 

abundance (Abella and Springer, 2015) and soil functioning (Sánchez Meador et al., 2017), and 

reducing the severity of modeled fire behavior (Fulé et al., 2012; Kalies and Yocom Kent, 2016) 

and the likelihood of post-disturbance conversion to non-forested ecosystems.  

My study focuses on informing a better understanding of the historical variability in dry 

mixed-conifer forests in the Southwest. Like many dry forests in the west, this ecosystem type 

has experienced significant changes to forest structure and composition as a result of frequent 

fire regime disruption (Reynolds et al., 2013). These complex forests are generally found at 

intermediate elevations of 2270 to 3030m, and positioned higher than ponderosa pine (Pinus 

ponderosa) forests and lower than spruce-fir forests (Romme et al., 2009). Historically, these 

forests were open, relatively low density, and dominated by fire tolerant ponderosa pine, 

arranged as a individuals or groups of trees in a matrix of grassy openings (Larson and Churchill, 

2012; Reynolds et al., 2013). With the absence of natural fire regimes for over one hundred 

years, shade-tolerant/fire-intolerant species have filled in these forests, making them denser, 

more closed, and forming larger, denser groups of trees, with fewer openings (Romme et al., 

2009; Reynolds et al., 2013). These trends have been observed in mixed-conifer forests across 

the Southwest (Fulé et al., 2002, 2003, 2009; Cocke et al., 2005; Heinlein et al., 2005; Huffman 
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et al., 2015; Strahan et al., 2016; Rodman et al., 2016, 2017). While the historical conditions of 

ponderosa pine forests have been extensively studied, mixed-conifer forests in the Southwest are 

not as well studied (Larson and Churchill, 2012; Reynolds et al., 2013; Wassermann et al., 

2019). 

My study seeks to improve the understanding of variability in southwestern mixed 

conifer forests by addressing the following research questions: (1) What was the historical range 

of variability in warm/dry mixed-conifer forests on the Mogollon Rim? (2) How did forest 

conditions vary spatially across mid-scales, and has spatial variation changed since fire 

exclusion? and (3) What were the drivers of variability in historical warm/dry mixed-conifer 

forests of the Southwest, and how have they changed? My findings advance the understanding of 

the historical range of variability in dry mixed-conifer forests, guide restoration goals, and 

comment on the relevance of historical conditions to contemporary ecosystems. 

The chapters of the following thesis explore these research questions. Chapter two is a 

comprehensive literature review covering ecological restoration, current knowledge of the 

historical range of variability in southwestern mixed-conifer forests, the drivers of variability in 

these forests. Chapter three is an empirical study evaluating the historical conditions and drivers 

of variability in a dry mixed-conifer forest on the Mogollon Rim, in northern Arizona. Chapter 

four describes the implications this research has for the ecological restoration of these forests. 
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Chapter 2: Literature Review 

Introduction 

Mixed-conifer forests are an important ecosystem covering 1 million hectares in the 

Southwest (Dieterich, 1983). These forests provide important ecosystem services such as 

watershed protection (O’Donnell et al., 2018), carbon sequestration, and nutrient cycling (Kalies 

and Yocom Kent, 2016; Sánchez Meador et al., 2017). They also provide critical wildlife habitat 

for multiple protected species, such as the Mexican spotted owl (Strix occidentalis lucida) (Wan 

et al., 2017) and the Jemez Mountains salamander (Plethedon neomexicanus) (Margolis and 

Malevich, 2016). 

The community and composition of mixed-conifer forests in the Southwest have changed 

because of land management practices. These land management practices disrupted the natural 

fire disturbance regime that maintains these forests. Euro-American settlement varies through the 

region, and most settlement was complete by the end of the 1800s in northern Arizona (Bahre, 

1998; Cooper, 1960). Sheep and cattle grazed in significant numbers almost immediately 

following settlement. This intense, unregulated, grazing disrupted the fine fuels in the understory 

that carry fire and maintain a frequent fire regime. Overharvesting of timber, focused on 

removing larger trees, also changed the structure of mixed-conifer forests in the Southwest by 

opening the overstory and allowing regeneration (Bahre, 1998; Cooper, 1960; Savage and 

Swetnam, 1990). Grazing, logging, and eventually active fire suppression combined to cause 

widespread fire regime disruption across the Southwest. 
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The changes to these forests caused by fire regime disruption have made them vulnerable 

to disturbances such as severe wildfire, drought, insects, disease, and climate change (Reynolds 

et al., 2013; Bryant et al., 2019). Ecological restoration of these forests has been suggested as a 

way to address these changes (Allen et al., 2002). Ecological restoration is broadly defined as the 

“process of assisting the recovery of an ecosystem that has been degraded, damaged, or 

destroyed,” and seeks to set these ecosystems on a trajectory towards sustainable ecosystem 

functioning (SER, 2004). Effective ecological restoration is guided by a reference ecosystem that 

serves as a model for setting restoration goals as well as evaluating progress towards those goals 

(SER, 2004). Using an existing, unaltered ecosystems as a reference is often preferable, however, 

due to the widespread nature of fire regime disruption few mixed-conifer forests remain 

unaffected.  

When extant examples of reference conditions are not available locally, managers may 

use the conditions that were present prior to disruption as the reference. The concept of a 

historical range of variability (HRV) describes the range of conditions that were present during 

the development or evolution of ecosystems or species (Landres et al., 1999; Keane et al., 2009). 

It is important that HRV provides more than just a snapshot of the past, and that it describes a 

range of conditions that vary over time and space. Use of HRV to guide restoration is based on 

two key concepts: “(1) that past conditions and processes provide context and guidance for 

managing ecological systems today, and (2) that disturbance-driven spatial and temporal 

variability is a vital attribute of nearly all ecological systems” (Landres et al., 1999). The 

application of HRV restoration reasons that it by approximating a range of conditions that were 

present during a species evolutionary history, conditions that will continue to sustain that species 
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will likely be present. These historical conditions also are assumed to be sustainable over time 

and resilient to disturbances, and by approximating these conditions managers hope to set the 

ecosystem on a sustainable trajectory (Landres et al., 1999; SER, 2004). The use of HRV to 

guide restoration is not without limitations; limited data, spatial and temporal autocorrelation, 

and scale effects are just some of the considerations managers need to assess (Keane et al., 

2009). There is also concern that historical conditions may no longer be appropriate guides for 

contemporary ecosystems. As climate change progresses, future climate conditions are expected 

to differ significantly from the conditions that were present during ecosystem development and 

species evolution and invasive species are often unfeasible to remove, with the latter 

permanently altering community composition. (Millar et al., 2007, 2014).  

However, there is significant research indicating that restoring dry forests such as 

ponderosa pine and dry mixed-conifer can be beneficial. Restoration treatments in these forests 

typically involve mechanical thinning, prescribed fire, or a combination of both (Fulé et al., 

2012; Abella and Springer, 2015; Sánchez Meador et al., 2017). Restoration treatments that 

combine both thinning and prescribed burning are more effective at maintaining target conditions 

(Stoddard et al., 2015), increase long-term understory vegetation abundance (Abella and 

Springer, 2015), increase soil function and nutrient cycling (Sánchez Meador et al., 2017), and 

decrease the severity of modeled fire behavior (Fulé et al., 2012; Kalies and Yocom Kent, 2016). 

Restoring forests guided by historical conditions can increase resilience to disturbance (Reynolds 

et al., 2013; Bryant et al., 2018), reduce the likelihood of conversion to non-forested ecosystems 

(Walker et al., 2018), and protect water resources (O’Donnell et al., 2018). Restoration 

treatments can also create spatial patterns that are consistent with historical conditions (Churchill 
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et al., 2013; Larson et al., 2012; Cannon et al., 2019), and these restored forests also have a 

reduced risk of severe wildfire (Ziegler et al., 2017). Land managers in the Southwest are 

incorporating HRV into their management objectives and planning documents (Reynolds et al., 

2013; Addington et al., 2018; Evans et al., 2011).  

While there has been extensive research on the historic range of variability in 

southwestern ponderosa pine forests, there is still a need for more research on mixed-conifer 

forests in this region (Reynolds et al., 2013) A recent review of HRV in southwestern forests 

found more than twice as many studies in ponderosa pine than in dry mixed-conifer forests 

(Wassermann et al. 2019). Additional research is needed to understand the drivers of variability 

in these highly variable forests. In this review, I will discuss the methods used to determine HRV 

in dry mixed-conifer forests, the current state of knowledge of HRV in southwestern dry mixed-

conifer forests, and the current state of knowledge concerning the drivers of variability in dry 

mixed-conifer forests. 

Determining the historical range of variability in western forests 

Researchers use a variety of methods to determine HRV in western dry forests, including 

historical accounts, historical surveys, and reconstruction techniques. While historical accounts 

may be qualitative, they can be useful ways of describing HRV and corroborating other lines of 

evidence. Woolsey’s (1911) description of ponderosa pine stands as “a pure park-like stand made 

up of scattered groups of 2 to 20 trees” is often cited as to describe historical conditions in 

ponderosa pine forests. Cooper’s (1960) consolidation of historical accounts give similar 
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descriptions of open, park-like forests of ponderosa pine. Unfortunately, these accounts do not 

describe conditions in mixed-conifer forests  

Historical forest surveys are another line of evidence used to determine the historical 

conditions of forests in across the west. Detailed surveys from experimental forests that mapped 

trees out have been vital to understanding historical conditions in southwestern ponderosa pine 

forests (Sánchez Meador and Moore, 2008). These types of surveys have been used to 

understand fine scale patterns in ponderosa pine forests, and to validate reconstruction models 

(Huffman et al., 2001; Moore et al., 2004; Sánchez Meador et al., 2010). Stephens et al. (2018) 

used historical timber surveys to evaluate historical cool/moist mixed-conifer conditions in the 

Sierras. There is a wide variety in the availability and quality of these surveys and unfortunately, 

detailed historical surveys are typically small in extent, limiting their ability to make inferences 

to the wider landscape. In the Southwest, detailed historical surveys are confined to ponderosa 

pine forests, limiting forest managers’ ability to understand historical conditions in mixed-

conifer forests.  

General Land Office surveys have also been used to determine historical conditions. 

GLO studies from the early 1900s, while spatially extensive, have a very low sampling density, 

only 1 point per 800m, with only 2 to 4 trees per point (Levine et al., 2017). To account for the 

sparse survey design, researchers use plotless density estimators to determine historical 

conditions (Williams and Baker, 2011). These surveys have also been used to determine 

historical conditions in dry forests in the Southwest (Williams and Baker, 2012), however there 

are concerns about the reliability of these estimates (Levine et al. 2017). These concerns suggest 
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that previous density estimates from calculated from GLO surveys (Williams and Baker, 2011, 

2012) tend to overestimate forest densities. 

When the availability of historical surveys is not adequate, an alternative strategy is to 

reconstruct the historical forest conditions from contemporary forest surveys. The historical 

forest conditions can be reconstructed from contemporary surveys using reconstruction methods 

developed by Huffman et al. (2001), Bakker et al. (2008), Sánchez Meador et al. (2010), and 

recently updated by Rodman et al. (2016). This reconstruction model uses dendrochronological 

data and “back-growth” regression equations to estimate the diameter of each tree in a plot 

during a set reconstruction year. Historic diameters for live trees are based on 

dendrochronological increment data collected on site and adjusted using bark thickness equations 

developed by Myers (1963) and Laughlin et al. (2011), and locally developed dbh-dsh 

relationship equations. For trees without increment data, species-specific “back-growth” 

equations are used to estimate the historical diameter. These equations calculate the historic 

inside-bark diameter using log-log regression, and inputs for the inventory and targeted 

reconstruction years, inside-bark diameter at the inventory year, and species-specific 

coefficients. Historic diameters for currently dead trees are estimated by using current diameter 

and decomposition equations based on snag/log class to determine death date, and then input into 

the “back-growth” equations to estimate the diameter during the reconstruction year.  

Dendrochronological reconstruction techniques are appropriate where slow 

decomposition and an absence of fire mean that evidence of pre-settlement forest structure is still 

apparent, such as in the Southwest (Huffman et al., 2001; Moore et al., 2004) or the Colorado 

Front Range (Battaglia et al., 2018). Evidence of small trees that were present historically may 
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be missed by the model, but historical accounts and the frequency of fires suggests that these 

small trees did not contribute significantly to the overall historic forest structure. Additionally, 

sensitivity analysis has shown the model to be robust, and comparisons to historical surveys 

indicate that 91 to 94 percent of pre-settlement trees can be identified by contemporary surveys 

(Huffman et al., 2001; Moore et al., 2004). The model was originally developed for use in 

ponderosa pine forests near Flagstaff, AZ, and most research using this model is constrained to 

ponderosa pine forests. Recently, Rodman et al. (2016) expanded the model for use in 

southwestern dry mixed-conifer forests by incorporating ‘back-growth’ equations for additional 

species. These methods continue to be used to determine historical conditions in both ponderosa 

pine and dry mixed-conifer forests of the Southwest (Cocke et al., 2005; Fulé et al., 2009; 

Rodman et al., 2016) 

Fire regimes are an important part of HRV, and there are also a variety of tools that 

researchers use to make study historical fire regimes. One of the most common is the use of fire 

scars. Fire scars can give a good estimate of the frequency of fire regimes, because a single tree 

can record multiple fires as the ‘cat face’ reburns and the tree heals over subsequent scars. 

(Swetnam and Baisan, 1996). However, not all fires scar all trees, so while a scar is definitive 

evidence of a fire, absence of a scar does not necessarily mean a fire did not occur (Swetnam and 

Baisan, 1996). Fire scars also have a long inference period, recording fires as early as the 1500s 

(Dieterich, 1983). Researchers take a probabilistic, opportunistic, or targeted approaches to 

sampling fire scars, and with targeted sampling being both efficient and accurate (Van Horne and 

Fulé, 2006; Farris et al., 2013). It is harder to use fire scar records to make inferences about 
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severe fire regimes because these more intense fires will kill and/or consume a tree and any 

evidence it had recorded. 

Analyzing the age structure of a stand can give good information about the severity of a 

fire regime. Odion et al. (2016) used the average stand age from Forest Inventory Analysis plots 

to make inferences about historical fire regimes. While this extensive network can be used to 

assess contemporary forest conditions (Stephens et al., 2018), researchers should use caution 

when using average stand age to make inferences about cohort establishment. Average stand age 

is not appropriate when applied to ponderosa pine and dry mixed-conifer forests, because stand 

initiation is not necessarily due to high-severity fire (Brown and Wu, 2005; Fulé et al., 2009). 

Additionally, stands that contain residuals older would be mischaracterized by the use of average 

stand age (Stevens et al., 2016). 

Rather than relying only on average stand age, many studies utilize a more detailed 

analysis that groups trees in a stand into cohorts, alongside fire scar analysis (Fulé et al., 2003; 

Tepley and Veblen, 2005; Fulé et al., 2009; Margolis and Balmat, 2009; O’Connor et al., 2014; 

Huffman et al., 2015; Margolis and Malevich, 2016). Heyerdahl et al. (2012, 2014) documents a 

method for categorizing fire severity from tree age data and available fire scars: high severity fire 

regimes leave no fire scars and one cohort with no residual trees established prior to cohort; 

mixed severity fire regimes leave fire scars and have one or more cohorts, or one cohort with 

older residual trees. Low severity leaves fire scars but no distinct cohorts (Heyerdahl et al., 2012, 

2014).  
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Historical range of variability in southwestern dry mixed-conifer forests 

Structure 

An increasing number of studies in southwestern dry mixed-conifer forests has begun to 

define HRV in terms structure. Historically tree density ranged from 89 to 247 trees ha-1, and 

basal area ranged from 7.8 to 28.5 m2 ha-1 (Reynolds et al., 2013). Another more recent review 

describes a similar, but slightly smaller range of 109 to 180 trees ha-1 and 11.6 to19.1 m2 ha-1 for 

basal area (Wasserman et al., 2019). Rodman et al. (2016) found the historical tree density on the 

Mogollon Rim to be within the expected range for dry mixed-conifer (140 trees ha-1 and 10.3 m2 

ha-1), however, contemporary conditions (1117 trees ha-1 and 42.3 m2 ha-1) are well outside the 

historical ranges. Similar trends of significant increases in density have also been observed in 

mixed-conifer forests on the San Francisco Peaks (Cocke et al., 2005; Heinlein et al., 2005), at 

the North Rim of the Grand Canyon (Fulé et al., 2003), at Black Mesa (Strahan et al., 2016), and 

in southwest Colorado (Fulé et al., 2009). 

Historical conditions in dry mixed-conifer forests outside the Southwest are generally 

similar to those in the Southwest. Reference conditions on the Front Range of Colorado and 

southern Wyoming are fairly similar to those in the Southwest and have also experienced 

significant increases in basal area and tree density (Brown et al., 2015; Battaglia et al., 2018). 

Mixed-conifer in the Sierra Nevada in California (Collins 2011, 2015; Lydersen et al., 2013; 

Stephens et al., 2015, 2018) and the Cascades and central mountains in Oregon (Hagmann 2013, 

2014, 2017, Merschel 2014) had wider historical ranges that included denser forests than 

typically found in the Southwest. While basal area and tree density have increased significantly 
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in Oregon forests, some Sierra mixed-conifer only saw significant increases in tree density 

(Stephens et al., 2015, 2018). 

Dry mixed-conifer forests were historically relatively open, similar to conditions reported 

for ponderosa pine forests (Romme et al., 2009). Reference canopy cover has been reported at 13 

to 21%, however Reynolds et al. (2013) acknowledge that there is little data for reference 

openness (which they defined as the inverse of canopy cover) in dry mixed-conifer forests in the 

Southwest. Mixed-conifer in the Sierra Nevada also had low canopy cover, ranging from 20 to 

30%, though contemporary forests have significantly higher cover (Collins et al., 2011; Stephens 

et al., 2015). Mixed-conifer forests on the San Francisco Peaks also have a high contemporary 

canopy cover of 66% (Cocke et al., 2005).  

The spatial arrangement of these conditions is another important aspect of forest 

structure. Fine-scale patterns in ponderosa pine forests are characterized by groups of trees and 

scattered individual trees arranged in a matrix of grass-forb-shrub openings (Larson and 

Churchill, 2012; Reynolds et al., 2013), and dry mixed-conifer forests were hypothesized to have 

similar historical patterns (Reynolds et al., 2013). However, recent research has found fine scale 

patterns to be highly variable, finding both aggregated and random tree patterns in historical 

conditions (Binkley et al., 2008; Lydersen et al., 2013; Rodman et al., 2016, 2017). The high 

variability in the level of aggregation found in mixed conifer is linked to the variability in species 

composition found in these forests; spatial patterns are known to differ between species (Rodman 

et al. 2016; Clyatt et al. 2016). Larson and Churchill’s (2012) review that much of the previous 

research has been focused on the fine-scale patterns, and that ponderosa pine forests in northern 

Arizona and mixed-conifer forests in the Sierra Nevada. The spatial patterns of mixed-conifer 



18 

 

forests largely un-analyzed (Larson and Churchill, 2012; Reynolds et al. 2013), and only recently 

have studies addressed this knowledge gap (Rodman et al., 2016, 2017). 

Composition 

These forests are diverse and can be difficult to define precisely. In the Southwest, these 

forests are typically found at elevation of 2270 m to 3030 m and are generally positioned 

between lower elevation ponderosa pine forests and higher elevation spruce-fir forests, and will 

intergrade with these forests at the boundaries (Romme et al., 2009). Species composition in 

mixed-conifer forests vary along a continuum that is often broken into two categories, ‘warm’ or 

‘dry’ and ‘cool’ or ‘wet.’ The overstory community in dry mixed-conifer are defined by low 

shade tolerance, higher drought tolerance, and frequent-fire adapted traits. They are dominated 

by ponderosa pine (Pinus ponderosa), and includes minor components of Gambel oak (Quercus 

gambelii), Douglas-fir (Pseudotsuga menziesii), and may include southwestern white pine (Pinus 

strobiformis). Additional species found in dry mixed-conifer stands on the Mogollon Rim 

include New Mexico locust (Robinia neomexicana) and bigtooth maple (Acer grandidentatum) 

(Rodman et al. 2016).The understory community in dry mixed-conifer forests includes the shrubs 

Amelanchier alnifolia, Arctostaphylos uva-ursi, Chimaphila umbellatum, Mahonia repens, 

Symphoricarpos rotundifolius, and the herbs and grasses Achillea lanulosa, Antennaria rosea, 

Carex geyeri, Delphinium nelson, Elymus elymoides, Erigeron formosissimus, Geranium 

caespitosum, Koeleria macrantha, Lathyrus leucanthus, Mertensia fusiformis, Poa fendleriana, 

Poa pratensis, Potentilla hippiana, Pseudocymopterus montanus, and Solidago simplex. 

(Romme et al., 2009). 
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The overstory story community in wet mixed-conifer forests are defined by higher shade 

tolerance, lower drought tolerance, and lower fire adaptedness. These forests typically do not 

contain ponderosa pine, and instead contain greater numbers of Quaking aspen (Populus 

tremuloides), Engelmann spruce (Picea engelmannii), Douglas-fir (Pseudotsuga menziesii), 

Subalpine fir (Abies lasiocarpa) and white fir (Abies concolor). The understory community in 

wet mixed-conifer forests includes the shrubs Lonicera involucrata, Rubus parviflorus, 

Sambucus microbotrys, and Vaccinium myrtillis, and the herbs and grasses Actaea rubra, 

Aquilegia elegantula, Arnica cordifolia, Artemisia franserioides, Bromopsis canadensis, Carex 

geyeri, Erigeron eximius, Erythronium grandiflorum, Fragaria vesca, Geranium richardsonii, 

Goodyera oblongifolia, Lathyrus leucanthus, Ligusticum porteri, Luzula parviflora, 

Maianthemum stellatum, Mertensia ciliata, Oreochrysum parryi, Orthilia secunda, Osmorhiza 

depauperata, Pedicularis racemosa, Pyrola minor, and Viola canadensis (Romme et al., 2009). 

Researchers have also described the changes to the composition of dry mixed-conifer 

forests in the Southwest. While these forests were historically dominated by ponderosa pine, 

species composition has shifted towards more shade-tolerant and fire-intolerant species 

(Reynolds et al., 2013). In southwestern Colorado, Fulé et al. (2003) found that ponderosa pine 

decreased by about half of its pre-settlement basal area by 2003, while white fir increased by six 

times and became the numerically dominant tree species in the study area. A similar trend has 

been found on the Mogollon Rim, where white pine, white fir, and Douglass-fir all increased in 

relative abundance (Huffman et al. 2015; Rodman et al. 2016). These changes in composition 

represent a decrease in community resilience to drought and fire (Strahan et al., 2016). While dry 

mixed-conifer forests occur at sites that can support cooler species such as white fir, these 
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species have a lower fire tolerance, and the frequency of historical fire regimes likely kept these 

species restricted to cooler microsites and north facing slopes (Reynolds et al. 2013; Huffman et 

al. 2015) 

Disturbance regimes 

The characteristics of disturbances greatly influence the structure and composition of 

forests. In southwestern dry mixed-conifer forests, a fire regime consisting of frequent, low- to 

mixed-severity fires is understood to be important to maintaining forest conditions (Reynolds et 

al., 2013). On the more frequent end of the spectrum, researchers have estimated mean fire 

intervals (MFI) of 2 to 8.5 years on the Mogollon Rim (Huffman et al., 2015) and 4 to 14 years 

in the Sacramento Mountains (Brown et al., 2001); and 3 to 21 years on the San Francisco Peaks 

(Heinlein et al., 2005). Other researchers have found longer and more variable fire intervals that 

suggest a more mixed-severity fire regime – 12.4 to 31.6 years in northern New Mexico 

(Margolis and Balmat, 2009); 10 to 42 years in the Jemez Mountains (Margolis and Malevich, 

2016); and 9 to 30 years in southwestern Colorado (Korb et al. 2013). Fire regimes can vary 

significantly over relatively short distances, emphasizing the need for managers to understand 

the site-specific characteristics of the fire regime in their area. (Korb et al., 2013). 

There is debate about the role high-severity fire plays in the natural fire regime of 

southwestern dry mixed-conifer forests. While there is agreement that high-severity fires were 

historically present in these forests, there is disagreement about how ecologically significant 

these fires were (Odion et al., 2016). Some research suggests that dry mixed-conifer forests 

historically experienced mixed- to high-severity fires (Williams and Baker, 2012; Odion et al., 
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2014). Other research indicates that high-severity fires only affected 4 to 6% of the landscape 

(Stephens et al., 2015). Yocom-Kent et al. (2015) found high-severity fire to vary widely, with 

patch sizes ranging from 0.1 to 100 hectares. 

After approximately one hundred years of fire suppression, the contemporary fire regime 

differs significantly from historical patterns. Across the western united states, there has been an 

increase in the size and number of large and severe forest fires since the 1980s (Westerling et al. 

2016). In the sky islands of southern Arizona, the recent fire regime diverges significantly from 

the historical range of variability, with the proportion of high severity fire increasing four times 

since approximately 1880 (O’Connor et al. 2014). 

Drivers of Variability 

Dry mixed-conifer forests are highly variable, and while it is useful for forest managers 

to use a range of conditions to guide restoration activities, it is important to understand the 

processes that drive this variation. Such knowledge could help to further guide restoration within 

HRV and tailor prescriptions to site conditions. Fire, climate, soil, and topography are all 

important factors that drive forest condition. 

Fire and other disturbances 

In frequent fire forests such as dry mixed-conifer, fire is the primary disturbance agent 

that shapes forest conditions. Fire impacts species composition: shorter fire return intervals favor 

fire adapted species like ponderosa pine while longer fire return intervals allow fire-intolerant 

species such as white fir to establish and persist (Reynolds et al., 2013). Different species have 
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varying recruitment responses after a fire. Fulé et al. (2009) found that the majority of aspen and 

spruce-fir stands were fire initiated, but half of ponderosa pine stands and the majority of dry 

mixed-conifer stands were not fire initiated. Tepley and Veblen (2015) found ponderosa pine, 

aspen, and Douglas-fir to be dependent on post-fire recruitment, while white fir recruits 

independently of fire timing. However, ponderosa pine regenerates in lower density in the 

interior of large, high-severity burn patches (Owen et al., 2017). 

Dense forests with closed canopies can carry active crown fires which are severe and 

have high mortality, while more open forests support less severe surface fires (Reynolds et al., 

2013). Mixed severity fire leads to heterogeneous and clumpy forest structure (Malone et al. 

2018). Perhaps the best evidence demonstrating the importance that fire has in shaping the 

conditions of dry mixed-conifer forests are the numerous studies that have found changes to 

forest composition and structure after fire has been removed from the landscape (ex: Fulé et al., 

2009; Huffman et al., 2015; Rodman et al. 2016; Strahan et al., 2016). 

Aside from fire, pests and pathogens are disturbances that cause mortality in dry mixed-

conifer forests. Bark beetles affect ponderosa pines, which can form a major component of dry-

mixed conifer stands (Reynolds et al., 2013). Douglas-fir and Fir engraver beetles caused 

approximately 36,000 hectares of mortality in mixed-conifer forests in the Southwest in both 

2013 and 2014 (USDA Forest Service, 2019). Defoliating insects such as spruce budworm and 

Douglass-fir tussock moth will also impact dry mixed-conifer species (Reynolds et al., 2013). 

Aspen is host to several defoliators and parasites, which contribute to the decline in aspen health 

and regeneration in the Southwest (USDA Forest Service, 2019). Parasites such as southwestern 

(ponderosa pine) dwarf mistletoe and Douglas-fir mistletoe infect about half of mixed-conifer 
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forest acreage in the Southwest (Conklin and Fairweather, 2010). Soil fungi cause root diseases 

(such as Armillaria and Heterobasidion root diseases) and can cause changes to forest 

composition (Reynolds et al., 2013). White pine blister rust affects southwestern white pine, and 

has caused severe damage in the Sacramento Mountains, NM (USDA Forest Service, 2019).  

Climate 

Climate is also an important driver of forest conditions in southwestern dry mixed-

conifer. Fire, which is an important driver of variation, is dependent on weather, so fire-climate 

interactions are one way that climate impacts forests. Superposed epoch analysis – a comparison 

of the climatic conditions before, during, and after multiple fire years – is frequently used to 

investigate this fire-climate relationship. Research suggests that widespread fire typically occurs 

during drought years, a similar relationship to lower elevation ponderosa pine forests (Swetnam 

and Baisan, 1996). However, unlike in ponderosa pine forests where fires are typically preceded 

by wet years, this relationship is generally not found in mixed-conifer forests (Swetnam and 

Baisan, 1996; Fulé et al., 2009; Margolis and Malevich, 2016). In ponderosa forests wet years 

are needed to grow sufficient surface fuels to carry a surface fire, and dry years are then needed 

to make the fuels available to burn, this relationship is due to the importance of surface fuels 

limiting fires. The absence of this relationship to preceding wet years suggests that mixed-conifer 

forests are limited only by the availability of fuel, not its quantity (Swetnam and Baisan, 1996). 

Where this relationship appears in mixed-conifer forests, it might be explained by fire spreading 

from ponderosa pine forests into mixed-conifer (Margolis and Balmat, 2009).  



24 

 

Interestingly, fire-climate relationships have changed since Euro-American settlement 

into the Southwest. Meunier et al. (2014) found that historically, widespread fire occurred during 

drought years preceded by wet years, but that after the 19th century, only preceding wet years 

were important to this relationship. Swetnam et al. (2016) found an opposite change – 

historically, only preceding wet years were significant to the timing of fire years, while after 

Euro-American settlement only drought was significant. Mueller et al. (2020) has found that 

increasingly warm and dry conditions are driving the increase in forested area burned at high-

severity, and the strength of this relationship has only gotten stronger over time. This 

disagreement further emphasizes the complexity of fire-climate and forest relationships and the 

large variability in mixed-conifer forests. 

Aside from fire-climate relations, climatic wetness has important influences on mixed-

conifer structure and composition. Vegetation has a strong relationship with climate, and climate 

has been used to explain up to half of the variability in overstorey species abundance in the 

Southwest (Laughlin et al., 2011). Wetter sites have the potential to support higher densities of 

trees than drier sites do. Stephens et al. (2018) found that historic density in fir-dominated 

mixed-conifer forests in the Sierras was driven by climatic factors associated with water 

availability, and after a history of logging and fire-exclusion these sites experienced large 

increases in small to medium trees. Similarly, wet sites on the Mogollon Rim have experienced 

greater increases in density than have dry sites (Rodman et al. 2017). In drier forests such as 

ponderosa pine, precipitation drives the number of seedlings (Puhlick et al. 2012), and episodic 

years of higher precipitation drives the timing of seedling recruitment, and contributes to the 

even-aged structure of these forests (Brown and Wu 2005; League and Veblen 2006). Drought 
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has the capacity to rapidly change the boundary between lower elevation forest types (Allen and 

Breshears 1998). If this trend holds true in higher elevational forests, mixed-conifer (which is 

essentially a large, heterogeneous ecotone) forests may experience drastic changes as climate 

change continues. 

Soil and topography 

The effects that soils have on forest conditions has also been repeatedly studied in the 

Southwest. Multiple studies have found that soil parent material, and the soil characteristics that 

are associated with these differences are important drivers of forest structure and composition. 

Soil parent material drives differences in understory vegetation communities (Abella and 

Covington, 2006; Laughlin et al., 2007); differences in overstory growth and regeneration 

(Abella and Covington, 2006; Puhlick et al., 2012); overstory structure and pattern (Rodman et 

al., 2017; Abella and Denton, 2009); and stand density index (Kimsey et al., 2019). The 

differences in soil parent material are associated with and often measured by soil characteristics 

such as pH, organic Carbon, total Nitrogen, water capacity, and percent silt, clay. The 

availability of high-resolution soil data (Ramcharan et al. 2017) now makes it possible to 

evaluate the relationship between soil and forest conditions at a finer scale. 

The importance of topography as a driver of forest variation is less clear than the other 

factors discussed above. Urban et al. (2000) modeled mixed-conifer forests in the sierras based 

on topographic variables (slope facets, elevation, drainages). In their model, these topographic 

variables drive the availability of water and the water demand of stands, which thus influence 

forest structure, and define the extent of mixed-conifer forest types. Similarly, Laughlin et al. 
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(2011) successfully used solar radiation along with soil and climate data to predict plant 

community composition. However, Abella and Covington (2006) suggest that the effects of soil 

and climate are more important than topography, but admit their study area was topographically 

simple. When evaluating the relative importance that abiotic factors have on dry mixed-conifer 

historical conditions, Rodman et al. (2017) similarly found that soil, climate and TEU were more 

important than the topographic factors evaluated. It can be difficult to distinguish the individual 

effects of abiotic factors that are tightly intertwined, and Korb et al. (2013) suggested that 

microsite variability in topography, climate, and soil account for the variability in forest 

conditions and fire regimes found across a relatively small extent in south western mixed conifer 

forests in Colorado. 

Determining the relative importance of drivers 

Structural equation models (SEM) provide an analytical framework that can help 

ecologists and restoration managers understand the complex relationships between multiple 

environmental drivers of variability and forest structure and composition. SEM describes “the 

use of two or more structural [cause-effect] equations to model multivariate relationships” 

(Grace, 2006). This modeling approach developed from path analysis (Wright, 1960), and 

modern SEM largely uses maximum likelihood procedures (Grace et al., 2010; Eisenhauer et al., 

2015). SEM allows researchers to model multivariate relationships and feedback loops, explicitly 

evaluate direct and indirect causal relationships in ecological systems, and include unmeasured 

concepts as latent or composite variables (Grace and Bollen, 2008; Grace et al., 2010).  
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These qualities make SEM approaches ideal for analyzing complex ecological systems, 

and SEM has been used to evaluate the relative importance of environmental drivers in a variety 

of ecosystem processes. SEM has been used to understand nutrient cycling and ecosystem 

function (Bowker et al., 2013; Laughlin et al., 2015; Wallace et al., 2018), tree mortality 

(Youngblood et al., 2009), and seed dispersal (Johnstone et al., 2009). In southwestern forests, 

researchers have used SEM to understand relationships between environmental conditions, fire 

history, understory species richness and abundance (Laughlin and Grace, 2006; Laughlin et al., 

2007), and ponderosa pine regeneration (Puhlick et al., 2012).  
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Chapter 3: Environmental drivers of variability in dry mixed-conifer forests on the 

Mogollon Rim, Arizona 

Introduction 

Mixed-conifer forests cover approximately 1 million hectares in the Southwest (Dieterich 

1983) and provide critical ecosystem services such as wildlife habitat (Wan et al., 2017), 

watershed protection (O’Donnell et al., 2018), carbon sequestration, and nutrient cycling (Kalies 

and Yocom Kent, 2016; Sánchez Meador et al., 2017). However, the resilience of these forests 

decreased as a result of fire regime disruption caused by 20th century forest management 

practices, specifically logging, grazing and active fire-suppression (Covington et al., 1994, 

Romme et al., 2009). Disrupting the frequent, low-severity fire regime characteristic of these 

forests has altered the structure and composition of dry mixed-conifer forests in the Southwest 

(Fulé et al 2009, Huffman et al., 2015, Strahan et al., 2016). This has decreased these forest’s 

resilience to disturbances such as severe wildfire, insects, disease, and climate change (Reynolds 

et al., 2013, Bryant et al., 2019). Restoring the structure and composition of these forests can 

increase forest resilience, however all restoration efforts require a benchmark for reference 

conditions (SER 2004). 

A historical range of variability (HRV) describes the spatial and temporal range of 

conditions that historically were characteristic for an ecosystem minimally affected by people 

and is often used as an indicator of reference conditions (Keane et al., 2009). Reliance on HRV 

in ecological restoration assumes that historical conditions provide context for managing 

contemporary ecosystems, and its application is based on the premise that by approximating the 
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range of conditions that were present during a species evolutionary history, conditions that will 

sustain these species are likely present (Landres et al., 1999). While there has been criticism that  

historical conditions will become irrelevant under the novel climate conditions anticipated in the 

future (Millar et al., 2007), restoring these forests to a more fire-adapted composition and 

structure would increase ecosystem resiliency (O’Donnell et al., 2018; Reynolds et al., 2013). An 

increased resiliency may allow these ecosystems to resist transitioning to non-forested 

landscapes due to severe wildfires under unprecedented climate change (Reynolds et al., 2013; 

Bryant et al., 2019; Walker et al., 2018). 

In mixed-conifer forests the historic range of variability has been measured in terms of 

both composition and density. Species composition varies along a temperature-moisture gradient. 

At one end of the spectrum, ‘warm-dry’ mixed-conifer is dominated by ponderosa pine (Pinus 

ponderosa) and can include other fire-tolerant/shade intolerant species such as Gambel oak 

(Quercus gambelii), Douglas-fir (Pseudotsuga menziesii) and southwestern white pine (Pinus 

strobiformis). ‘Cool-moist’ mixed-conifer generally lacks ponderosa pine, and has a greater 

composition of fire-intolerant/shade-tolerant species such as Quaking aspen (Populus 

tremuloides), Engelmann spruce (Picea engelmannii), and white fir (Abies concolor) (Romme et 

al., 2009). Species composition has shifted towards more shade tolerant species over the last 

100+ years; ponderosa pine has decreased in dominance and the proportion of southwestern 

white pine and white fir have increased (Fulé et al., 2009; Huffman et al., 2015; Rodman et al., 

2016; Strahan et al., 2016). 

Forest structure has also changed from undisturbed conditions. Historically, dry mixed-

conifer forests in the Southwest had densities ranging from 51.6 to 245.6 trees per hectare and 
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basal areas of 7.9 to 28.5 m2 per hectare (Reynolds et al., 2013), however, contemporary forest 

conditions across the southwest are much denser (Fulé et al., 2003, 2009; Cocke et al., 2005; 

Heinlein et al., 2005; Strahan et al., 2016; Rodman et al., 2016, 2017). These overly dense forests 

are at an increased risk of burning at high severity in an increasing number of large, high-

severity fires across the Southwest (Westerling et al., 2006; Westerling 2016). This 

contemporary fire regime differs from the natural historical fire regime of frequent, low- to 

mixed- severity fires (Reynolds et al., 2013). Mean fire intervals were generally longer and more 

variable than in ponderosa pine forests, from as short at 2 to 8.5 years on the Mogollon Rim 

(Huffman et al., 2015) to multiple decades in northern New Mexico (Margolis and Balmat, 2009; 

Margolis and Malevich, 2016) and southwestern Colorado (Fulé et al., 2009).  

While previous studies have described the natural range of variability, researchers still 

lack a full understanding of the relationships that drive forest conditions. Topography, climate 

and soil factors are known to influence forest condition. Topographic models and measures of 

solar radiation have been used to understand variation in forest structure and composition (Urban 

et al., 2000; Laughlin et al., 2011). Climate has strong interactions with fire frequency (Swetnam 

and Baisan, 1996; Fulé et al., 2009; Margolis and Malevich, 2016); and precipitation and 

climatic water availability drive variation in seedling establishment (Brown and Wu 2005; 

League and Veblen 2006; Puhlick et al., 2012) and overall tree density (Rodman et al., 2017; 

Stephens et al. 2018). Soil properties, especially parent material, also influence forest structure 

and composition (Abella et al. 2006; Abella and Denton, 2009; Rodman et al., 2017; Kimsey et 

al., 2019). However, forest managers still lack an empirical, biogeographic understanding of how 

these environmental factors drive variability. 



40 

 

Additionally, managers are lacking a complete understanding of spatial heterogeneity in 

dry mixed-conifer forests. Variability in forests is spatially structured, and this spatial 

heterogeneity is hierarchically organized. Fine-scale (<4 ha) patterns typically describe the 

arrangement of individual trees within a stand and are nested within mid-scale (4-400 ha) 

patterns, which describe the variation of stands within a landscape. These mid-scale patterns are 

further nested within landscape-scale (400+ ha) patterns. A review of spatial analyses in fire-

frequent forests found that the majority of spatial analyses of reference conditions focus on fine-

scale tree patterns of clusters of trees, single trees, and openings, that manifest at scales 0.4 to 4 

ha (Reynolds et al. 2013), however these results might be difficult for forest managers to 

implement in their stand level treatments (Larson and Churchill 2012). Landscape restoration 

projects that implement fine scale patterns without incorporating higher-order heterogeneity risk 

creating a landscape that is heterogeneous at fine-scales, but homogeneous over mid- to 

landscape-scales (Larson et al., 2012). Rodman et al. (2016, 2017) describe random fine-scale 

tree patterns on the southwestern dry mixed-conifer forests. Williams and Baker (2012) found 

high variability in a landscape-scale analysis of dry mixed-conifer reference conditions, however 

the resolution of their analysis is too coarse to be useful at mid-scales. The lack of mid-scale 

analyses of heterogeneity in southwestern dry mixed-conifer forest limits managers from 

designing appropriate restoration projects. 

My study addresses these knowledge gaps by investigating historical variability and 

drivers of variability in dry mixed-conifer forests on the Mogollon Rim in northern Arizona. 

Specifically, I focus on answering the following research questions: (1) What was the historic 

range of variability in warm/dry mixed-conifer forests on the Mogollon Rim? (2) How did forest 
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conditions vary spatially across mid-scales, and has spatial variation changed since fire 

exclusion? and (3) What were the drivers of variability in historical dry mixed-conifer forests of 

the Southwest, and how have they changed contemporarily? Answers to these questions can help 

managers incorporate an appropriate level of spatial and structural variability in restoration 

treatments and adjust the restoration objectives to better reflect the environmental template of a 

site. By analyzing how forest variability has changed between historical and contemporary time 

periods, I can better elucidate how fire-exclusion has impacted these forests. 

Methods 

Study Design 

The site on the Mogollon Rim ranges from 2223 to 2399m in elevation, has a mean 

annual temperature of 9.3 degrees Celsius, and receives 9.2 cm of mean annual precipitation. The 

forests fall into the warm/dry classification of mixed-conifer forest (Romme et al., 2009), with a 

major component of ponderosa pine, and a mixture of southwestern white pine, Douglas-fir, 

white fir, Gambel oak, and quaking aspen. Additional species found on the Mogollon Rim 

include New Mexico locust (Robinia neomexicana) and bigtooth maple (Acer grandidentatum) 

(Rodman et al. 2016). Low-severity fires burned frequently on the Mogollon Rim with a mean 

fire interval of 2 to 8.5 years, up until 1879 (Huffman et al., 2015). The forests on the Mogollon 

Rim are currently the target of restoration efforts to increase forest resilience (Four Forest 

Restoration Initiative) and protect important municipal water supplies (Cragin Watershed 

Protection Project), and results from this study can be used to improve the restoration treatments 

across this landscape.  
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This study utilizes existing pre-treatment data collected from the Ecological Restoration 

Institute’s long-term ecological assessment and research network (LEARN). In 2014, the 

Ecological Restoration Institute, with cooperation from the U.S. Forest Service, established a 

randomized, replicated experiment on the Mogollon Rim Ranger District of the Coconino 

National Forest (see Figure 1) to compare restoration treatments. The experimental area consists 

of six experimental blocks, each consisting of three treatment units. Field crews established 15 

forest survey plots on a 60m grid within each treatment unit, for a total of 270 plots across the 

study area. Each experimental block is 40 to 46 ha in size, and the total experimental area covers 

approximately 250 ha, making this site ideal for investigating the variation of stands at mid-

scales (4 to 400 ha). Crews completed data collection in 2014, following methods described in 

detail in Fulé et al. (2002) and Roccaforte et al. (2015). Surveys recorded species, diameter at 

breast height (DBH: 1.37 m above the ground), diameter at stump height (DSH: 40 cm above the 

ground), total height, height to the base of the live crown, two crown radii measurements (long 

and short side) and condition (live tree, snag, log, cut stump, etc.) of all trees taller than breast 

height and all dead trees that may have predated Euro-American settlement (ca. 1879). Crews 

collected dendrochronological tree cores on all pre-settlement trees, trees larger than 40cm DBH, 

and 10% of all trees smaller than 40cm DBH. 

Determining historic range of variability 

To determine the historic range of variability of the dry mixed-conifer forests of the 

Mogollon Rim, I modeled the historical forest structure and composition using field plot data and 

dendroecological reconstruction techniques. These techniques were developed and discussed in 

detail by Fulé et al. (1997), Huffman et al. (2001), Bakker et al. (2008), Sánchez Meador et al. 
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(2010), and recently updated by Rodman et al. (2016) to incorporate additional species. This 

reconstruction model estimates the diameter of each tree during a set reconstruction year. I used 

1879 for the reconstruction year, as the natural frequent fire regime on the Mogollon Rim burned 

regularly until this year (Huffman et al., 2015). Historical tree diameters were based on 

dendrochronological data (i.e., cross-dated increment cores collected from trees on field plots – 

see above) when available, and species-specific “back-growth” regression equations when 

dendrochronological data is not available. These “back-growth” equations estimate the historical 

diameter using species-specific growth equations, which took the following log-log regression 

form: 

𝑑hist = √𝑑inv
2 − (

4

𝜋
∗ 𝑒(𝑎+𝑏∗log(𝑑inv))) ∗ (𝑦inv − 𝑦hist) 

where dhist is the historical inside-bark diameter (cm), dinv, is the inside-bark diameter (cm) at 

inventory year, yhist is the targeted reconstruction year (1879), yinv is the inventory year (2014), 

and a and b are species specific regression coefficients. In addition, the reconstruction model 

utilizes bark thickness equations developed by Myers (1963) and Laughlin et al. (2011), and 

locally developed DBH-DSH relationship equations. Historical diameters for dead trees were 

estimated by using current diameter and decomposition equations based on snag/log condition 

classes to determine death date (Parker and Thomas, 1979), and then input into the “back-

growth” equations to estimate the diameter during the reconstruction year. While this method of 

reconstructing forest structure may have poor detection of small trees that died and decomposed 

prior to the contemporary surveys, comparisons to historical surveys indicate that 91 to 94% of 
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pre-settlement trees can be identified by contemporary surveys (Huffman et al., 2001; Moore et 

al., 2004).  

I used the results of the reconstruction model to summarize average diameter (cm), tree 

density (trees ha-1), and basal area (m2 per hectare) for each field plot. I quantified composition 

by calculating the ecological importance value (EIV) of each species in each plot, as described 

by Curtis and McIntosh (1951). EIV describes the importance of a given species group by 

accounting for the relative number of trees (abundance) as well as the relative basal area 

(dominance) of the species. This index ranges from 0 to 2 and is calculated using the following 

equation:  

EIV𝑠𝑝𝑝 =
𝑛𝑠𝑝𝑝

𝑛𝑡𝑜𝑡𝑎𝑙
+

𝐵𝐴𝑠𝑝𝑝

𝐵𝐴𝑡𝑜𝑡𝑎𝑙
 

where EIVspp is the species-specific ecological importance value; nspp and BAspp are the species-

specific tree density and basal area, respectively; and ntotal and BAtotal are the total tree density 

and basal area, respectively. I summarized these measures of forest structure and composition 

across the study area to determine the historic range of variability of dry mixed-conifer forests, 

as well as the contemporary range of conditions at the Mogollon Rim site. 

Measuring spatial variability 

I evaluated spatial variability across the study area by quantifying spatial autocorrelation. 

I used the ‘spdep’ package in R (Bivand et al., 2013; Bivand and Wong, 2018) to calculate 

Moran’s I (Moran 1950; Cliff 1973), a commonly used measure of spatial patterns (Larson and 

Churchill, 2012). I calculated Moran’s I for each structure variable (average diameter, tree 
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density, and basal area) and compared it to simulated complete spatial randomness to evaluate 

significance. Significantly positive values of Moran’s I describe groups of similar plots, while 

significantly negative values of Moran’s I describe mixtures of juxtaposed plot conditions (Mast 

and Wolf, 2006). Moran’s I is useful for describing spatial heterogeneity across a network of 

patches, such as multiple stands at mid-scales. 

When calculated globally (i.e., across the entire study area) this statistic describes the 

spatial autocorrelation of a variable – that is, whether the variable is distributed independently 

across a landscape or is dependent upon the value of its neighbors. When calculated at multiple 

neighborhood distances (locally), the local Moran’s I can be plotted against distance to create a 

correlogram, describing the distance at which observations are independent from spatial 

autocorrelation. I calculated a local Moran’s I at distances up to 1000m, at intervals of 60m 

(corresponding to the minimum distance between survey plots). Comparing the correlograms of 

the historical and contemporary data, I visually evaluated whether spatial variability had changed 

since the exclusion of natural frequent fire regimes.  

The arrangement of the experimental blocks at the study site posed a challenge to using 

Moran’s I in my analysis. Ideally, I could evaluate a complete range of distances up to the 

maximum distance between any two points in the study area, however there are significant gaps 

between some blocks. Blocks 2 through 5 are contiguous but Blocks 1 and 6 are disjunct from 

the others (see Figure 1). In Blocks 1 and 6, Moran’s I cannot be calculated across distances 

larger than the maximum distance within the block, so I limited my analysis to 1000m, 

approximately the distance across one block. While this hinders my ability to make inferences 

about landscape spatial patterns, I was still able to evaluate variability across mid-scales. 
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Identifying drivers of variability  

I used structural equation modeling (SEM) techniques in Amos software (Arbuckle, 

2014) to identify the important relationships between environmental factors and forest structure 

and composition that drive variation in dry mixed-conifer forests on the Mogollon Rim. SEM is 

an analytical framework useful for investigating complex ecological systems because it can 

model multivariate relationships and feedback loops, explicitly evaluate direct and indirect 

causal relationships in ecological systems, and include unmeasured concepts as latent or 

composite variables (Grace 2006; Grace and Bollen 2008). SEM has been successfully used in 

southwestern forests to understand ponderosa pine regeneration (Puhlick et al., 2012) and 

relationships between environmental conditions, fire history, understory species richness and 

abundance (Laughlin and Grace, 2006; Laughlin et al., 2007). 

To evaluate these relationships in prior to and following fire regime disruption, I built 

two independent models using reconstructed and contemporary field plot conditions: (1) a 

historical model, and (2) a contemporary model. These two models followed the same model 

building techniques, and started from the same a priori model, but used separate historical and 

contemporary datasets. While I could have tried multi-group modeling, which would focus on 

determining which pathways differ between time periods (Eisenhauer et al., 2015), I am more 

interested in a robust estimate of the historical drivers of variability. 

SEM traditionally starts with an a priori conceptual model which is evaluated before 

making any modifications to arrive at a final model that adequately describes the relationships in 

the data. My conceptual model describes my hypothesis that environmental factors directly 
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influence forest structure and composition, and indirectly influence forest structure through 

composition (see Figure 2). Measured variables were grouped into three broad environmental 

factors: topography, climate, and soils. The measured variables of each environmental factor 

were all correlated to each other, though this is not shown in the Figure 2 for simplicity. Each 

factor could have been represented by many measures, so I compiled a large pool of potential 

explanatory variables to select from (See Appendix A for a complete, detailed list). 

Topographic variables were based on a high-resolution (1m x 1m), LiDAR-derived 

digital elevation model (DEM), and are calculated at 10m resolution in ArcMap10 software and 

in R (version 3.6.1) statistical software using the ‘raster’ (Hijmans, 2019) and ‘SpatialEco’ 

(Evans, 2019) packages. In the conceptual model I selected from Beer’s aspect (or northeastness; 

Beers et al., 1966), heat load index (HLI; McCune and Keon 2002), and solar radiation index 

(SRI; Rich et al., 1994; calculated for the years 1879 and 2014) to represent ‘aspect’ as a 

composite variable; I selected from elevation, topographic slope position (TPI), and hierarchical 

slope position (HSP) to represent ‘position’ as a composite variable; and I selected from slope, 

roughness, and topographic ruggedness index (TRI; Riley et al., 1999; Blaszcynski 1997) to 

represent ‘texture’ as a composite variable. 

Climate factors included seven different climate variables: precipitation, mean 

temperature, minimum and maximum temperature, mean dewpoint temperature, and maximum 

and minimum vapor pressure deficit. This data was acquired from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM Climate Group, 2019) for each month in 30-

year periods from 1895 to 1924 (historical climate) and 1981 to 2010 (contemporary climate). 

PRISM data is used in ecological analyses where weather data has not been collected on site. 
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These climate variables were spatially downscaled from the native 800m x 800m resolution to 

the plot level resolution (60m x 60m) using gradient and inverse distance-squared weighting 

methods as described and implemented by Rodman et al. (2017). The downscaled climate 

variables were summarized as annual averages and seasonal averages for the 30-year periods and 

assigned to each corresponding plot. In the conceptual model I selected from precipitation, 

dewpoint temperature, minimum and maximum vapor pressure deficit variables into a ‘water 

availability’ composite variable; and selected from mean, minimum and maximum temperature 

variables into a ‘temperature’ composite variable. 

Soil parent material is known to influence forest conditions (Abella and Denton, 2009; 

Rodman et al., 2017), however parent material does not vary significantly across the study area. 

In lieu of parent material, I used soil characteristics that do vary across the study area and are 

still important drivers of forest conditions (e.g., Laughlin et al., 2007; Puhlick et al. 2012). Soil 

factors were calculated from the SoilGrids 100m dataset (Ramcharan et al., 2017), making it 

possible to evaluate how changes in soil characteristic impact forest conditions over mid-scales. 

Soil factors included six soil properties (percent organic C, total N, bulk density, pH, percent 

sand, and percent clay) at seven standard soil depths (0, 5, 15, 30, 60, 100, and 200 cm). I 

selected from all these variables to represent a ‘soil’ composite variable.  

I used average diameter and tree density from the historical reconstruction and the 

contemporary survey as indicators of forest structure in the SEMs. To aid in evaluating 

correlations between environmental variables and measures of forest structure I evaluated 

common data transformations to correct for skew in the distributions of average diameter and 

density. I log-transformed historical average diameter and contemporary density, and square 
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root-transformed historical density and contemporary average diameter. I also calculated the 

means, 95% confidence intervals, and conducted t-test for significant difference from these 

transformed structure measures, then back-transformed them for reporting.  

To represent forest composition in the SEMs, I used distance-based ordination techniques 

to reduce the complexity of the community data so that it would be easier to use in variable 

selection and structural equation modeling. I used the ‘vegan’ package (Oksanen et al., 2019) in 

R for this analysis. I transformed plot-level species count data using Wisconsin double 

standardization before calculating Bray-Curtis distance to describe the differences between plot 

overstory communities. I used nonmetric multi-dimensional scaling (NMDS) to calculate 

independent three-axis solutions for both the historical and contemporary community data and to 

calculate species scores within the ordination space. Each three-axis solution was rotated to place 

the maximum variation along the first axis, and I used this first axis score to summarize the 

community composition of each plot. The three measures of transformed average diameter, 

transformed density and the first axis scores from the community ordination, make up the 

response variables for the historical and contemporary models. 

With over one hundred potential explanatory variables to include in each model, but 

needing to keep the models relatively parsimonious, I selected explanatory variables from each 

category to build each composite variable based on correlation with the response variables. I 

selected variables with the most extreme correlations greater than 0.1 or less than -0.1, making 

sure not to select redundant variables (e.g., the same soil characteristic at multiple depths, or the 

same climate variable at multiple seasons). 
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Using these criteria, I identified eleven measures of topography, climate, and soil to 

include in the historical model. For the topography factor, I selected Hierarchical Slope Position 

to represent position, Solar Radiation Index to represent aspect, and Topographic Ruggedness 

Index to represent texture. I selected percent organic C at 30cm, pH at 0cm, and percent clay at 

30cm to represent the composite soil factor. For the composite climate factor, I selected winter 

minimum vapor pressure deficit and spring precipitation to represent water, and fall mean 

temperature, and winter maximum and minimum temperatures to represent temperature. For the 

contemporary model, I identified nine measures of topography, climate, and soil to include in the 

model. For topography, the same factors (HSP, SRI, and TRI) were selected. I selected pH at 

0cm, and percent clay at 30cm to represent the soil factor. For climate, I selected spring 

precipitation and summer mean dewpoint temperature to represent water, and winter minimum 

and maximum temperatures to represent temperature.  

After the variables were selected, I made several modifications to the model. To simplify 

the model where possible, I replaced all of the topography composite variables (aspect, position, 

and texture), which only one explanatory variable, with direct effects. I found that high 

collinearity between the explanatory variables of ‘temperature’ and ‘water’ caused illogical path 

coefficinents in the model, which I resolved by combining these into a single ‘climate’ 

composite. While my approach of correlating all environmental variables is conservative, this 

saturates the model, and model fit statistics cannot be calculated without any spare degrees of 

freedom. To evaluate model fit I removed the least significant correlation from the model, and 

calculated three model fit statistics (chi-squared significance, adjusted goodness-of-fit index 

(AGFI), and root mean square error of approximation (RMSEA)) over one degree of freedom. 



51 

 

Because there was no significant correlation in the paths removed, the final models behave 

essentially the same as a saturated model. While saturated models are traditionally not used as 

the final SEM, this is appropriate in this analysis because my objectives are to evaluate the 

relative importance of the environmental factors rather than test a novel theory of hypothesized 

relationships in the ecosystem.  

Results 

Historical and Contemporary Conditions 

I successfully modeled historical forest conditions prior to fire regime disruption (1879) 

using dendrochronological reconstruction techniques. These conditions differed significantly 

from the contemporary conditions that were surveyed in 2014. Forest structure in both historical 

and contemporary time periods are summarized in Table 1 and Figure 3. Mean tree diameter 

across the Mogollon Rim averaged 27.5 (13.3 - 57.0) cm historically and varied widely (see 

Figure 4). Some stands were dominated by very large trees; the highest average diameter in 1879 

was 93.0 cm. Contemporary average tree diameter was significantly lower (t-test p < 0.01) with 

an average of 20.1 (7.4 - 39.0) cm.  

In 1879, basal area averaged 12.6 (2.0 – 79.4) m2 ha-1 (see Figure 5). Again, there were 

extreme outliers characterized by large trees, with a maximum basal area of 117.6 m2 ha-1. 

Historical basal area was highly variable but significantly lower than contemporary conditions (t-

test p < 0.01). Contemporary basal area averaged 30.8 (12.0 – 58.3) m2 ha-1. 
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The most drastic change in forest structure is seen in the density of trees (see Figure 6). 

Historical forests had an average density of 165 (48 – 352) trees ha-1. Very sparse plots existed 

historically, and one plot was reconstructed with no trees (i.e. 0 trees ha-1). The contemporary 

forest is significantly denser than the historical conditions (t-test p < 0.01), with an average 

density of 657 (188 – 2302) trees ha-1. Some plots saw a tremendous increase in density, with a 

maximum tree density observed of 4025 trees ha-1. 

The historical forest overstory composition was typical of dry mixed-conifer in the 

Southwest (see Figure 7). Ponderosa pine accounted for about half of total EIV (0.934), with 

minor components of white fir (0.368), Douglas-fir (0.302), and Gambel oak (0.214). 

Contemporary composition is also characteristic of dry-mixed conifer, though ponderosa pine 

decreased in importance (0.622) and there has been a shift towards wet mixed-conifer species. 

White fir now accounts for about a third of total EIV (0.620), Douglas-fir increased to 0.370 

EIV, and southwestern white pine increased from 0.018 to 0.102 EIV. There were also changes 

in the relative dominance of sprouting deciduous trees: Gambel oak (0.214 to 0.106) and aspen 

(0.118 to 0.008) decreased; bigtooth maple and New Mexico locust increased (0.042 to 0.146; 

and 0.004 to 0.024, respectively). 

Spatial Variability 

Overall, measurements of historical forest structure displayed low spatial autocorrelation 

which was consistent with a random arrangement. This heterogeneity can be seen in the maps of 

historical forest structure (Figures 4, 5, and 6). Historically, average diameter had low Moran’s I 

and fell within the envelope of complete spatial randomness at all distances (Figure 8a). Basal 
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area was significantly autocorrelated at distances of 90 and 210m but at all other distances was 

within the envelope of complete spatial randomness (Figure 8b). Interestingly, density was 

significantly negatively autocorrelated at 810m, but was otherwise spatially random (Figure 8c).  

Unlike historical conditions, some contemporary conditions exhibited significant spatial 

autocorrelation. Average diameter was highly autocorrelated over distances of 0 to 360m and 

significantly autocorrelated at distances up to 1000m (Figure 8a). This homogeneity is apparent 

in the contemporary map in Figure 4. Density was significantly autocorrelated in contemporary 

forests at distances up to 360m and showed slight autocorrelation again at around 600m, but was 

otherwise random (Figure 8c). This homogeneity is also apparent in the contemporary map in 

Figure 6. Unlike average diameter and density, contemporary basal area remained largely 

random, only showing slight autocorrelation at distances of 210m and 570m (Figure 8b). Overall, 

contemporary conditions appear highly autocorrelated at distances up to 360m, and show some 

autocorrelation up to 1000m. 

Drivers of Variability 

Both historical and contemporary community ordinations successfully described 

composition in three axes, with final stresses of 0.11 and 0.12 (respectively). Each ordination 

was rotated to orient the most variation along the first axis (Axis 1). Using Axis 1 explained 

sufficient variation in overstory composition (r2 of 0.425 and 0.511 for historic and contemporary 

ordinations, respectively). In both ordinations Axis 1 described a continuum ranging from 

ponderosa pine dominated sites at the far negative end, to sites dominated by relatively rare 

sprouting species (bigtooth maple and New Mexico locust) at the positive end. Intermediate 
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values described sites with Douglas-fir, white fir, southwestern white pine, Gambel Oak, and 

aspen (see Figure 9a and 9b). In the historical ordination, Gambel oak and aspen were grouped at 

one end of Axis 2, and Douglas-fir, white fir and southwestern white pine were grouped at the 

other end. Gambel oak and Douglas-fir were grouped at one end of Axis 3, and southwestern 

white pine, white fir, and aspen were grouped at the other end (Figure 9c). In the contemporary 

ordination, there was less differentiation of species along Axis 2 or Axis 3. Gambel oak is 

differentiated on Axis 2 (Figure 9b), and southwestern white pine is differentiated on Axis 3 

(Figure 9d), but the other species are clustered together. 

In both the historical and contemporary datasets, environmental variables had stronger 

correlation with composition than with structure or composition (see Figure 10). Historical 

correlation coefficients were lower than contemporarily. Additionally, the relationships between 

average diameter and most environmental variables switched signs, changing from weakly 

positive to moderately negative, or weakly negative to moderately positive between historical 

and contemporary time periods. 

The historical SEM has adequate fit: p > 0.05, RMSEA < 0.001, and AGFI > 0.9 (see 

Table 2). The historical model has moderate descriptive power for composition (r2 =  0.483) but 

had low descriptive power for average diameter (r2 = 0.088) and basal area (r2 = 0.101).  

Topography and climate factors had relatively high importance in driving historical forest 

structure and composition, while the soil factor had a lower impact on forest conditions (see 

Figure 11). The climate-to-composition had the highest single path coefficient in the historical 

model (0.66), while topography has a higher overall impact on historical composition than 
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climate, from the cumulative effect of Aspect, Position, and Texture (total absolute value of 

0.73). Climate was a significant driver of historical density (0.28) and diameter (0.37), but were 

of roughly equal importance with topography for these structural variables (0.24 and 0.32, 

respectively). Aspect and texture were not significant drivers of tree density or diameter. Soil had 

an impact on historical density (0.35) and diameter (0.38) that was similar to that of climate and 

topography. Soil had a relatively small, though still significant, impact in driving historical forest 

composition (0.39). Composition did not significantly drive variation in historical tree density 

but did have an impact on average tree diameter. While statistically significant, this path 

coefficient (-0.23) was the smallest driver of historical average diameter. See Appendix B for full 

details of path components. 

The contemporary model also converged at a solution with good fit (p > 0.05, RMSEA < 

0.001, and AGFI > 0.9; see Table 2), though again these measures of goodness of fit were 

evaluated on one degree of freedom. The model had good descriptive power for density (r2 = 

0.296) and diameter (r2 = 0.317), and even better description of forest composition (r2 = 0.632).  

In the contemporary model, climate factors have the strongest relative importance for 

composition, while topography has the highest relative importance for forest structure (Figure 

12). The pathway from climate to composition has the strongest path coefficient in the model 

(0.79) while pathways that lead from climate to density (0.21) and average diameter (0.21) have 

relatively low importance. Topography had the strongest influence on contemporary forest 

density (-0.36) and average diameter (0.32). Like the historical model, neither aspect nor texture 

were significant drivers of contemporary forest structure. The cumulative effects of position and 

aspect on composition (-0.59), was a relatively important pathway, however, texture is not an 
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important driver of contemporary composition. Soil has a relatively weak importance to both 

contemporary forest density (0.20) and diameter (0.26); this differs from the historical model, 

where soil was a relatively equal driver of forest structure. The pathway from soil to composition 

(0.35) is the weakest driver of contemporary composition. The relationship between 

contemporary forest composition and structure differs from the one suggested by the historical 

model. Contemporarily, composition is a significant driver of forest density (0.26), but not forest 

diameter. See Appendix B for full details of path components. 

Discussion 

My results suggest that the abrupt disruption to the historical frequent fire regime has 

drastically altered the forests on the Mogollon Rim, as has been reported in dry mixed-conifer 

forests across the Southwest (Fulé et al., 2003, 2009; Cocke et al., 2005; Heinlein et al., 2005; 

Rodman et al., 2016, 2017). My analysis of the historical reconstruction data describes the 

conditions that existed in the forest prior to fire regime disruption, while the analysis of the 

contemporary survey data describes the forest conditions after an extended period of fire 

exclusion. The differences between contemporary conditions and the historical range of 

variability, and the changes to forest composition emphasize the need for forest restoration 

initiatives.  

The reconstruction of the plots in the study area suggested that the historical dry mixed-

conifer forests on the Mogollon Rim were consistently low density, with large and variable 

average tree sizes, leading to a low but variable basal area across the rim. This draws a picture of 

relatively open forests with a variety of small and large trees, possibly describing stands with 
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multiple cohorts. The historical range of variability found in the study area is similar to the 

ranges found in other studies of dry mixed-conifer. Basal area ranged from about 2 to 79 m2 ha-1 

and averaged 12.6 m2 ha-1, and density averaged 165 trees ha-1 and ranged from 48 to 352 trees 

ha-1 (Table 2). The average density and basal area on Mogollon Rm fall also fall within the 

ranges described by both Reynolds et al., (2013) and Wassermann et al., (2019).  

The average basal area and tree density that I found in the study area are slightly higher 

than the conditions reconstructed at dry mixed-conifer sites elsewhere on the Mogollon Rim 

(Rodman et al., 2016), at Black Mesa (Strahan et al., 2016), and in the San Juan mountains (Fulé 

et al., 2009). The historical conditions in dry mixed-conifer at the Grand Canyon, however, are 

generally denser than those found in the study area (Fulé et al., 2002, 2003). Interestingly, the 

historical conditions from the study area are slightly denser than those reported in Williams and 

Baker (2012) for the Mogollon Rim. When compared to mixed-conifer reference conditions 

outside the Southwest, my results are similar to those found on the Front Range of northern 

Colorado and southern Wyoming (Brown et al., 2015; Battaglia et al., 2018), and considerably 

less dense than the results reported from parts of the Sierras (Lydersen et al., 2013). Historical 

conditions from other parts of the Sierras (Collins et al., 2015; Stephens et al., 2015, 2018), and 

in Oregon (Hagmann et al., 2013, 2014, 2017), had higher basal area and lower tree density than 

in the study area suggesting those forests had fewer and larger trees than those found on the 

Mogollon Rim.  

I found that historical tree diameter also varied widely, averaging 27.5 cm but ranging 

from 13.3 to 57.0 cm. Other studies in the Southwest typically report just basal area and tree 

densities – while tree size can be inferred from these two statistics, I have reported these for easy 
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interpretation. The diversity of tree sizes indicates that some plots were dominated by very large 

trees, but few sites were dominated by very small trees. This gives empirical support to the 

restoration strategy of keeping large trees, which should help to recreate the full range of 

variability on a site. 

Contemporary forest conditions diverged significantly from the historical range of 

variability in all three measures of forest structure. Average diameter is significantly lower in 

contemporary conditions reflecting the legacy of harvesting larger trees for timber and the influx 

of many small trees due to fire exclusion. Basal area and tree density increased significantly. 

This is consistent with other comparisons of historical and contemporary forest conditions in dry 

mixed-conifer forests across the Southwest; Fulé et al. (2003), Heinlein et al. (2005), Rodman et 

al. (2016, 2017), and Strahan et al. (2016) all recorded massive increases in the density and basal 

area in dry mixed-conifer forests over a similar time frame.  

I recorded a shift in forest composition away from dry-mixed conifer, towards a more 

wet-mixed conifer composition. Based on changes to EIV, ponderosa pine has decreased in 

importance, while white fir has increased greatly, and now the two species are roughly equally 

important. Southwestern white pine and Douglas-fir also experienced modest increases. This 

trend has been recorded before on the Mogollon Rim (Huffman et al., 2015; Rodman et al., 

2016) and in other mixed conifer forests across the Southwest (Fulé et al., 2003; Heinlein et al., 

2005; Strahan et al., 2015; Margolis and Malevich 2016). Sprouting hardwoods did not all 

respond equally to the disruption of the historical fire regime. Aspen were historically present in 

small numbers across the study area but are now almost completely absent. Fulé et al. (2003) 

concluded that a majority of aspen stands are initiated by fire. The lack of frequent fires over the 
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last hundred years may be the cause of this decline on the Mogollon Rim, though this could also 

be due to a combination of drought, ungulate browsing, insect damage, and disease (USDA, 

2019a). Increasing density may explain the decrease in oak and the increase in bigtooth maple, 

which has a higher shade tolerance than oak (USDA, 2019b). Similar conversion from oak 

dominance to maple dominance has been recorded in Utah (Nixon, 1967). My results support the 

interpretation that in dry mixed-conifer forests, white fir is limited by fire more than site 

conditions (Reynolds et al., 2013; Huffman et al., 2015). Frequent fires kept these mesic, fire-

intolerant species in check, but when released from fire they have begun filling in areas where 

they were previously excluded. 

These changes to forest structure and composition are accompanied by changes to the 

spatial pattern to forest conditions. Spatial patterns occur at multiple, nested scales, from fine- 

(<4 ha) to mid- (4 to 400 ha) and landscape-scales (>400 ha) (Reynolds et al., 2013). Most of the 

previous research on spatial patterns in western forests has focused on describing the patterns of 

groups of trees, individual trees, and openings, which are typically exhibited at scales from 0.4 to 

4 ha (Larson and Churchill, 2012). Rodman et al. (2016), for example, analyzed stem-mapped 

plots to evaluate the aggregation of trees, and found both random and aggregated patterns on the 

Mogollon Rim. My results indicate that prior to fire regime disruption, the forests on the 

Mogollon Rim exhibited random spatial patterns across mid-scales, up to 1000m (~314 ha). 

Similarly, Strahan et al. (2016) analysis of community traits in dry mixed-conifer forests at Black 

Mesa also found no significant autocorrelation at similar resolutions, and at distances up to 

2500m. The resolution of my correlogram analysis is not particularly suited to detecting fine-

scale patterns, which is better analyzed by stem mapped plots. However, patterns on the upper 
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end of fine-scale (4 ha) would have shown up at lag distances of around 200m, suggesting that 

even at fine-scales the forests on the Mogollon Rim are randomly arranged. Rodman et al. (2017) 

also suggested that these forests exhibit random fine-scale patterns.  

This random arrangement of forest conditions describes a multi-scalar level of structural 

heterogeneity that has been theorized (Reynolds et al., 2013), but not well documented. Both 

aggregated and random fine-scale spatial patterns have been recorded in previous studies of dry 

mixed-conifer reference conditions (Rodman et al., 2017; Binkley et al., 2008, Lydersen et al., 

2013).  

I found contemporary forest conditions on the Mogollon Rim to be strongly 

autocorrelated at distances to 360m, giving a general sense that these forests have formed large 

homogeneous patches, roughly 40ha in size. Some autocorrelation at distances up to 1000m 

suggests that there is low variation between these patches. Disruption to the historical frequent 

fire regime, which maintained the forest patterns is the probable explanation for this change. 

Strahan et al. (2016) describe a similar shift in the mid-scale variability of community traits, 

reporting significant spatial autocorrelation up to 250m. Managers seeking to restore historical 

spatial patterns should not use the existing large and homogeneous stands as the units of 

management – rather, these patches should be broken up into many variable stands, and 

restoration prescriptions need to incorporate random variation (i.e., not aggregated) of forest 

structure within each stand. 

Fire was likely the primary driver of historical variability on Mogollon Rim, more so than 

environmental factors such as topography, climate, and soils. My model of historical drivers of 
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variability has poor explanatory power for describing variation in forest structure, and moderate 

power for composition (see Table 2). This weak relationship between environment and forest 

structure is also seen in the low bivariate correlations between average diameter, density and 

almost all of the environmental predictors. One reason for poor explanation of structure is the 

low variability in historical densities. Historically there was little variation in density, which 

could have been kept consistently low by a natural fire regime of frequent, low- to mixed-

severity fires. I was unable to include site-specific measures of fire in my models, and the 

relative importance of fire versus environmental factors in determining historical structure and 

composition needs further research.  

My SEM suggested that climate and topography were the most important drivers of 

variation in historical forest structure and composition, while soil factors were relatively 

unimportant drivers. The importance of climate is supported by studies that use climate to 

explain up to half of the variation in overstory species abundances (Laughlin et al., 2011), or 

linked sites with high historical density to higher water availability and lower water demand 

(Stephens et al., 2018). Historical climate factors indicate that warm and dry winters, high spring 

precipitation, and warm fall temperatures correlate with low ponderosa pine dominance. 

Pathways leading from climate towards density and diameter indicate that sites with more water 

availability have higher densities, and sites with cold and dry winters are associated with larger 

trees. Winter temperatures may be associated with how well a site is able to keep snowpack into 

the spring, which is known to be important in determining forest density (Stephens et al., 2018). 

Spring precipitation is important for the timing of ponderosa pine seedling establishment on the 

Front Range (League and Veblen, 2006), and fall temperatures could be important to wildfire 



62 

 

behavior by influencing fuel moisture. The strength of fire-climate relationships in historical fire 

regimes could also explain the relative importance of climate factors for driving historical forest 

conditions. Periods of severe drought are understood to influence the timing of widespread fire 

years in mixed-conifer forests by making fuels available to burn (Swetnam and Baisan, 1996; 

Fulé et al., 2009; Margolis and Malevich, 2016). 

Topography was also an important driver of historical variation on the Mogollon Rim. 

Position was consistently a top driver, which makes sense because microsite variability is 

important to forest conditions (Korb et al., 2013, Urban et al., 2000). Aspect is also a logical 

driver of variation; sites with more solar radiation dry out faster, so more drought tolerant species 

like ponderosa pine and Gambel oak are able to occupy these sites. Additionally, this increased 

drying could increase the availability of existing fuels, making these sites able to carry fire more 

frequently. Interestingly, Rodman et al. (2017) did not find any topographic factors to be 

important to describing historical forest conditions on the Mogollon Rim, nor did Abella and 

Covington (2006) at other sites in northern Arizona. The selective plot selection used in these 

studies may have avoided topographically complex sites, while the systematic grid in my study 

area captured a wider variety of topographic conditions that drove greater variation in forest 

structure and composition. 

Soil was a significant, but relatively unimportant driver of variability both the historical 

as well as the contemporary models. Rodman et al. (2017), Abella and Denton (2009), Kimsey et 

al. (2019), and Laughlin et al. (2007) demonstrate that soil parent material drives significant 

variation in forest structure and composition. There is limited variation in soil parent material 

across the study site, which likely is why soil was a relatively unimportant factor in my analysis. 
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Environmental factors exhibited a stronger influence on contemporary forest conditions 

than on historical structure and composition, likely due to anthropogenic exclusion of frequent 

fire. The contemporary model had stronger explanatory power than the historical model (see 

Table 2), which is reflected by the stronger correlations between contemporary environmental 

variables and forest measures (see Figure 10). Climate was distinctly the most important driver 

of forest composition on the contemporary landscape, and indicated that sites with high spring 

precipitation, cold winter low temperatures, and dry summers are associated with low ponderosa 

pine dominance. Forest composition may have previously been constrained by fire adaptedness, 

but without that constraint climate dominated as a key driver of forest composition; this narrative 

of compositional release from fire constraints has been described in other studies (Fulé et al., 

2003; Reynolds et al., 2013; Huffman et al., 2015; Rodman et al., 2016; Strahan et al., 2016). 

Mueller et al. (2020) described a strengthening fire-climate relationship, whereas others report 

changes in the timing of widespread fire years relative to periods of drought or above average 

precipitation since fire-regime disruption (Meunier et al., 2014; Swetnam et al., 2016). Similarly, 

I found that climate has increased in relative importance, and different components of climate 

have become more important, supporting an interpretation of strengthening relationship between 

climate and forest structural characteristics. 

Topography was less important to contemporary forest composition than it was in the 

past, perhaps because microsite variability that used to interact with fire is no longer a driving 

force (Korb et al., 2013). While weaker, this path describes the same relationship that was found 

historically: sunny sites and sites on upper slopes and ridgetops drive forest composition towards 

ponderosa pine dominance. Topography is the strongest driver of both density and diameter, but 
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this relationship has changed dramatically since Euro-American settlement. While lower slopes 

and valleys historically had lower density and larger trees, contemporarily they are dominated by 

high densities of smaller diameter trees. Historical logging targeted large, commercially valuable 

trees, which may have been concentrated in lower sites. While density has increased significantly 

across the entire study area, Rodman et al. (2017) and Stephens et al. (2018) both found that 

density increases were greatest at mesic sites like valleys and lower slopes. The increase in 

density on the Mogollon Rim is also related to compositional changes. Composition is now a 

significant driver of forest density, and intermediate conifers and sprouting species that would 

have previously been kept in low densities by frequent fire are now filling up lower sites. 

Conclusions 

The drastic changes to forest structure and composition on the Mogollon Rim exemplify 

the changes seen in dry mixed-conifer forests across the Southwest and demonstrate the need for 

extensive restoration efforts. Current distributions of average tree diameter, basal area and 

density are all outside of the historical range of variability. These over-dense forests are at a 

heightened risk of large, severe wildfire, which could cause a transition to unforested ecosystem 

types, and reduce the functioning of ecosystem services. 

The historic range of variability described in this study can serve as a guide for 

restoration projects on the Rim, emphasizing the need to reduce forest density, and maintain a 

wide range of conditions. The reduction in average diameter on the Mogollon Rim suggests that 

restoration treatments should seek to preserve large trees, and focus thinning on smaller diameter 

trees, this agrees with the strategy currently used. The historical importance of topography 
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indicates that large tree preservation and aggressive density reductions should be focused in 

valley bottoms and lower slopes. 

Additionally, my spatial analysis provides much needed expansion of the understanding 

of reference scales of heterogeneity at the mid-scale, which is comparable to stands and thus 

useful for forest managers. The random historical patterns observed on the Mogollon Rim, 

combined with the low descriptive power of SEM, suggests that that structural patterns were not 

strongly driven by environmental factors, so perhaps fire was the main driver of this structural 

variation. The significantly autocorrelated contemporary pattern, combined with the strong 

descriptive power of the environmental drivers model suggests that the large homogeneous 

stands are formed and maintained by environmental conditions – especially climate factors. This 

interpretation advocates for the reintroduction of fire as a restoration tool to maintain 

ecologically appropriate spatial patterns in dry mixed-conifer forests. 

Reintroduction of fire could not only serve as a tool to recreate random spatial patterns 

but could serve to reduce the density of small diameter trees and restore historical forest 

composition. Small diameter trees have higher fire-related mortality than large trees, and the 

incursion of shade tolerant species would also be limited by fire, because these trees are 

generally not very fire tolerant (Fulé and Laughlin, 2006). Low severity fire, even multiple burns 

at low severity, do not always result in forest density that approximates historical conditions, so 

it is important to allow moderate severity fire to burn on the Mogollon Rim (Huffman et al., 

2017, 2018). However, recent research suggests that this can also have mortality on larger trees 

(Stoddard et al., 2020). Some loss of large trees may be acceptable in dry mixed-conifer forests 

where some of the large trees that die in the fire may be species that are undesirable from a 
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restoration perspective; however, further research and applied management experiments are 

needed to better understand how mixed-severity fire can be used to achieve multiple restoration 

objectives. 

While contemporary forest conditions are also driven by environmental factors, these 

relationships were weaker and different in the past, suggesting that a site’s contemporary 

environmental template cannot be used to entirely describe its historical condition. Climate has a 

strengthening and changing relationship to forest conditions and should not necessarily be used 

to guide historically based restoration treatments. Restoration treatments cannot ignore climate, 

especially given the strengthening relationship and climate change, and historical climate 

relationships may be an unreliable guide under some circumstances. While topography would 

serve as a poor guide for forest structure, topographic position may serve as a useful guide for 

restoring historical forest composition. It was very important in the past, is still relatively 

important, and the basic relationship between position and composition has remained essentially 

unchanged. This indicates that restoration treatments should seek to encourage pine-dominated 

stands on ridgetops and upper slopes, while allowing a more mixed composition of conifers and 

shade tolerant hardwoods in valley bottoms and lower slopes. The topographically complex 

Mogollon Rim has a diversity of microsites that could serve as refugia for mesic mixed-conifer 

species as climate change intensifies over coming decades. 

Overall, my research paints a picture of highly variable, heterogeneous, and open dry 

mixed-conifer forests in the past on the Mogollon Rim, with ponderosa pine dominating stands 

on ridgetops, and more mixed composition persisting in valley bottoms. This should serve as a 

guide for restoration treatments on the Mogollon Rim. Future restoration treatments should seek 
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to restore these conditions through targeted thinning operations, and the reintroduction of low- 

and mixed-severity fires through resource objective fire or allowing prescribed burns to burn at 

increased severity. Restoring these forests will increase resilience to large and severe wildfires, a 

growing threat under climate change. However, past climate relationships may not serve as an 

effective guide under novel climate situations, so managers seeking to adapt these forests to new 

conditions may be advised to try a wide variety of treatments and opportunistically make use of 

microsites. My increased understanding of historic ranges, patterns, and environmental drivers of 

variability may be useful for maintaining dry mixed-conifer forests across the Southwest. 
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Figures 

 

Figure 1: Map of study area. Location of Coconino National Forest within Arizona (a.), location 

of Mogollon LEARN blocks within the Coconino National Forest (b.), and the location of the 

Mogollon LEARN blocks on the Mogollon Rim, overlain on DEM. 
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Figure 2: The conceptual model used at the beginning of structural equation modeling. This 

model visualizes my initial hypothesis that measures of topography, climate, and soil directly 

drive variation in structure and composition, and indirectly drive variation in structure through 

composition. Dashed boxes represent conceptual groupings of variables, solid boxes represent 

measured variables, hexagons represent composites of multiple measured variable, and arrows 

indicate causal relationships in the data. Correlation between all environmental variables is 

included in the model, but for simplicity is not shown in the diagram. 
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Figure 3: Historical and contemporary forest structure. Box plots depicting average diameter, 

basal area, and density for both historical (1879) and contemporary (2014) forest conditions. 

Comparisons between the two time periods indicate a decrease in average tree diameter, an 

increase in basal area, and a drastic increase in density. 
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Figure 4: Maps of historical (left) and contemporary (right) average diameter. Comparison 

between the two panels shows a decrease in average diameter from 1879 to 2014. 
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Figure 5: Maps of historical (left) and contemporary (right) basal area. Comparison between the 

two panels shows an increase in basal area from 1879 to 2014. 
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Figure 6: Maps of historical (left) and contemporary (right) density. Comparison between the 

two panels shows an increase in density from 1879 to 2014. 
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Figure 7: Historical and contemporary forest community composition. Squares are color coded 

by species, and each square represents 1 percent of total ecological importance values for the 

given time period. Species are identified by four letter codes: ABCO (white fir; Abies concolor), 

ACGR (bigtooth maple; Acer grandidentatum), PIPO (ponderosa pine; Pinus ponderosa), PIST 

(southwestern white pine; Pinus strobiformis), POTR (quaking aspen; Populus tremuloides), 

PSME (Douglas-fir; Pseudotsuga menziesii), QUGA (Gambel oak; Quercus gambelii), and 

RONE (New Mexico locust; Robinia neomexicana). Comparison between the two panels shows 

a decrease in fire adapted species from 1879 to 2014. 
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Figure 8: Correlograms of historical and contemporary forest structure. Each panel displays the 

spatial autocorrelation (as measured by Moran's I) for historical and contemporary conditions 

(differentiated by color). Points connected by solid lines indicate the Moran’s I at a given lag 

distance, and the dotted lines indicate the upper and lower limits of a simulated complete spatial 

randomness threshold. Points that are above the threshold are significantly spatially 

autocorrelated, points that are below the threshold are significantly negatively autocorrelated. 

Historically, measures of forest structure were generally not autocorrelated. Contemporarily, 

average diameter and density are both significantly autocorrelated. 
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Figure 9: Ordinations of historical and contemporary forest community data. Points represent the 

composition of each site, the distance between points represents the similarity between the 

composition of each site; points that are close together are similar, points that are far apart are 

dissimilar.  The three-axis ordination space is displayed as Axis 1 by Axis 2 (a and b), and Axis 

1 by Axis 3 (c and d). Four letter species codes indicate the species scores within the ordination 

space: ABCO (white fir; Abies concolor), ACGR (bigtooth maple; Acer grandidentatum), PIPO 

(ponderosa pine; Pinus ponderosa), PIST (southwestern white pine; Pinus strobiformis), POTR 

(quaking aspen; Populus tremuloides), PSME (Douglas-fir; Pseudotsuga menziesii), QUGA 

(Gambel oak; Quercus gambelii), and RONE (New Mexico locust; Robinia neomexicana) 
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Figure 10: Correlation between selected predictors and model responses. Correlation between 

pairs of environmental variables selected for inclusion in either of the historical and 

contemporary models, and measures of forest structure and composition included in the models. 

Strength and direction of the correlation is indicated by color and reported by the correlation 

coefficient. Historical correlation coefficients tended to be lower than contemporarily, indicating 
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that the relationship between a site’s environment and its structure may not have been as strong 

in the past as it is now. 
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Figure 11: Historical model diagram. The relative importance of each environmental factor 

(Topography, Climate, and Soil) can be interpreted by the width of the pathways leading to 

Structure and Composition, which have been scaled to indicate the magnitude of the path 

coefficient. Paths with negative coefficients are marked with diagonal stripes. Only paths with 

coefficients significantly different from 0 are included in the diagram. Coefficients are also 

reported on the paths, and letters on the path correspond to entries in Appendix B: Historic and 

contemporary model pathway details. Topography and climate have the greatest influence on 

forest composition, and climate and soil have the greatest influence on forest structure. 
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Figure 12: Contemporary model diagram. The relative importance of each environmental factor 

(Topography, Climate, and Soil) can be interpreted by the width of the pathways leading to 

Structure and Composition, which have been scaled to indicate the magnitude of the path 

coefficient. Paths with negative coefficients are marked with diagonal stripes. Only paths with 

coefficients significantly different from 0 are included in the diagram. Coefficients are also 

reported on the paths, and letters on the path correspond to entries in Appendix B: Historic and 

contemporary model pathway details. Topography and climate have the greatest influence on 

forest composition, and climate and soil have the greatest influence on forest structure. 
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Tables 

Table 1: Summary of historical and contemporary forest structure. The mean value and 

95%confidence interval are given for average diameter, basal area, and density, for both 

historical and contemporary time periods. Variables marked with * are statistically different (p > 

0.01) between time periods. 

  

Time Period Average Diameter* (cm) Basal Area* (m2 ha-1) Density* (trees ha-1) 

Historical  27.5 (13.3 – 57.0) 12.6 (2.0 – 79.4) 165 (48 – 352) 

Contemporary 20.1 (7.4 – 39.0) 30.8 (12.0 – 58.3) 657 (188 – 2302) 



82 

 

 

 Model Fit  Response Variable r2 

Model 

Chi2 p-

value 

RMSEA AGFI 

 

Density 

Average 

Diameter 

Composition 

Historical 0.447 <0.001 0.968  0.088 0.101 0.483 

Contemporary 0.424 <0.001 0.980  0.296 0.317 0.632 

Table 2: Summary of model performance. Measures of model fit (p-value, Root Mean Square 

Error of Approximation (RMSEA), and Adjusted Goodness-of-Fit Index (AGFI) are reported, as 

are measures of the predictive power of the models (r2 for Average Diameter, Density, and 

Composition). Model fit statistics are calculated over one degree of freedom for both Historical 

and Contemporary models. While both models fit the data well, the historical model does not 

have strong predictive capability for structural measures. The contemporary model has better 

predictive capability than the historical model for all response variables. 
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Chapter 4: Management Implications 

Introduction 

Forests across the Southwest have changed drastically over the last century, and now 

pose a monumental challenge for forest managers. Extensive overgrazing by Euro-American 

settlers disrupted a frequent fire regime near the end of the nineteenth century (Covington et al., 

1994; Bahre, 1998). Low-intensity, frequent surface fires are a primary disturbance agent in 

these dry forests (Reynolds et al., 2013) and the prolonged exclusion of fire has led to significant 

increases in forest density (eg: Fulé et al.,2003, 2009; Cocke et al., 2005; Heinlein et al., 2005, 

Rodman et al., 2016). These overly dense forests have decreased resiliency to drought, and 

increased risk of uncharacteristic, high-severity wildfire (Reynolds et al., 2013; Bryant et al., 

2019)  

Ecological restoration is a common approach that managers have used to increase the 

resiliency of forests in the Southwest. This practice has many definitions but is defined most 

generally as “the process of assisting the recovery of an ecosystem that has been degraded, 

damaged, or destroyed,” and uses reference conditions to set restoration goals and evaluate 

success (SER, 2004). A historical range of variability (HRV) describes the range of conditions 

that naturally occurred in the past and are widely used as reference conditions (Landres, et al., 

1999). The use of HRV is based on the assumption that historical conditions are relevant to the 

current conditions and that approximating the range of conditions that were present during a 

species evolutionary history will likely create suitable conditions for sustaining that species or 

ecosystem into the future (Landres, et al., 1999; Keane et al., 2009).  
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There is concern that the novel conditions predicted under a changing climate make 

historical conditions less relevant to current and future ecosystems, calling into question a strict 

adherence to historical conditions in restoration (Millar et al., 2007, 2014). However, 

reestablishing historical conditions and processes in southwestern forests may be appropriate for 

the increasing droughts and severe wildfire expected as climate change continues (Fulé et al., 

2008). Restoration guided by these conditions can increase resilience to disturbance (Bryant et 

al., 2019), reduce the risk of conversion to non-forested ecosystems (Walker et al., 2018), and 

protect watershed resources (O’Donnell et al., 2018). 

My study (presented in Chapter 3) seeks to improve the understanding of variability in 

southwestern dry mixed-conifer forests by addressing the following research questions: (1) What 

was the historical range of variability in warm/dry mixed-conifer forests on the Mogollon Rim? 

(2) How did forest conditions vary spatially across mid-scales, and has spatial variation changed 

since fire exclusion? and (3) What were the drivers of variability in historical dry mixed-conifer 

forests of the Southwest, and how have they changed? I utilized data from a network of forest 

survey plots on the Mogollon Rim in northern Arizona to reconstruct the historical conditions of 

dry mixed-conifer forests, and used structural equation modeling (SEM) to evaluate the relative 

importance of environmental drivers before and after frequent fire regime disruption. 

Contemporary forest structure and composition differ significantly from historical conditions, 

and environmental drivers of variation have changed in strength and relative importance after 

prolonged fire exclusion. The historical conditions that I report can be used to guide restoration 

treatments and evaluate their success. My historical and contemporary models describe which 

ecosystem relationships are still relevant and might be useful for tailoring restoration treatments. 
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Additional research into HRV and restoration experimentation can help forest managers address 

the challenges of landscape-scale restoration.  

Changes in dry mixed-conifer forest conditions 

The results of my reconstruction and spatial heterogeneity analysis emphasizes the need 

for restoration in dry mixed-conifer forests and can be used by restoration managers to serve as 

targets for restoration treatments. While the historical conditions reported from the study area are 

not drastically different than the HRV described in reviews such as Reynolds et al. (2013) and 

Wassermann et al. (2019), my analysis of mid-scale heterogeneity is a useful addition to 

managers’ understanding of historical variation in dry mixed-conifer forests. 

Current forest conditions on the Mogollon Rim are significantly outside the HRV for dry 

mixed-conifer forests in the Southwest. In the study area, contemporary forest structure is 

significantly different from the reconstructed conditions and are outside the HRV suggested by 

reviews. Average basal area increased from 12.6 to 30.8 m2 ha-1, and average tree density 

increased from 165 to 657 trees ha-1. The historical averages on the Mogollon Rim are within the 

ranges described in Reynolds et al. (2013) (7.8 to 28.5 m2 ha-1; and 89 to 247 trees ha-1) and in 

Wassermann et al. (2019) (11.6 to 19.1 m2 ha-1; and 109 to 180 trees ha-1); however, 

contemporary structure – especially tree density – are outside these ranges. Similar increases in 

basal area and tree density have been found elsewhere on the Mogollon Rim (Rodman et al., 

2016) and across the Southwest (Cocke et al., 2005; Heinlein et al., 2005; Fulé et al., 2009; 

Strahan et al., 2016). This widespread departure from HRV emphasizes the need for landscape-

scale restoration.  
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The range of historical conditions found in the study area on the Mogollon Rim can be 

used to help design restoration treatments. The wide range of basal area and density conditions 

that historically were present on the landscape suggests that treatments should seek to establish a 

variety of conditions, with some relatively open stands and some relatively dense stands. The 

large historical average diameter (27.5 cm) suggests that treatments should seek to increase the 

average diameter of stands. Additionally, the upper end of the range of average diameters (57.0 

cm) demonstrates that some stands were dominated by very large trees, and large, especially 

large and old, trees should be preserved when possible. Future research can use the conditions 

reported in my study to evaluate the success of the future restoration treatments planned at these 

sites, as well as the success of forest-wide restoration on the Mogollon Rim, such as the Four 

Forest Restoration Initiative and the Cragin Watershed Protection Project. 

Species composition is often used as an indicator of restoration success and is part of 

Reynolds et al. (2013) restoration framework. The changes to forest structure in southwestern 

dry mixed-conifer forests are associated with changes to the overstory composition. Species 

composition in the study area shifted from ponderosa pine dominance towards a more mixed 

species composition. Historically, ponderosa pine was clearly dominant, while in the 

contemporary forest ponderosa pine shares dominance with white fir. The shift in species 

composition observed in my study is consistent with other studies on the Mogollon Rim 

(Huffman et al., 2015; Rodman et al., 2016) and across the Southwest (Fulé et al., 2003, 2009; 

Heinlein et al., 2005; Margolis and Malevich, 2016). These changes represent a decrease in the 

forest’s ability to resist fire and drought (Strahan et al., 2016). Treatments that restore historical 
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overstory species composition would likely increase the forests resilience to these disturbances 

that are expected to increase as climate change intensifies. 

My analysis of mid-scale heterogeneity offers important insight into historical variability 

at a scale useful for managers. Spatial patterns are nested at multiple scales: fine scale patterns 

(<4 ha) typically describe the arrangement of trees into groups, individuals, and openings, and 

are nested into stands, which make up mid-scale patterns (4-400 ha). These mid-scale patterns 

describe variation in stands, and are further nested within landscape-scale patterns (400+ ha) that 

describe the patterns of stands across a landscape (Reynolds et al., 2013). A majority of studies 

that quantify spatial patterns in southwestern forests examine the fine-scale patterns of trees and 

how they form a matrix of individuals, groups and openings at scales smaller than 4 ha (Larson 

and Churchill, 2012). Both random and aggregated spatial patterns have been described in dry 

mixed-conifer forests (Binkley et al., 2008; Lydersen et al., 2013; Rodman et al., 2016, 2017). 

My results indicate that historical forests on the Mogollon Rim varied randomly across mid-

scales; historical structure varied randomly at distances from 60 to 1000m, loosely corresponding 

to scales of 1 to 300 ha. Contemporary forest patterns differ significantly from historical 

conditions and are significantly autocorrelated at distances up to 360m, roughly 40 ha. A similar 

shift toward stronger autocorrelation at distances up to 250m has also been reported for 

community traits at Black Mesa (Strahan et al., 2016), and a shift towards fine-scale aggregation 

has been reported on the Mogollon Rim (Rodman et al., 2017). 

This discrepancy between historical and contemporary patterns poses a challenge for 

restoration of these forests. In addition to restoring an appropriate range of conditions, 

restoration goals often seek to restore heterogeneity (Landres et al., 1999; Reynolds et al., 2013). 



95 

 

My results suggest that managers should seek to create random variation across mid-scales. 

However, the contemporary forest has formed larger, more homogeneous stands which may not 

be an appropriate unit of management for reintroducing historical random conditions. When 

designing treatments, managers should consider breaking up these large stands, or allowing 

density and diameter distributions to vary randomly within stands. It is important to remember 

that treatments should vary across multiple scales to prevent an even application of fine-scale 

patterns without being appropriately nested within higher-order scales (Larson et al., 2012). 

Drivers of historical and contemporary variability 

My models of historical and contemporary drivers of variability offer insights for 

managers. My historical model’s low descriptive power suggests that environmental factors were 

not drivers of large variation in historical forest structure. Low-intensity, frequent surface fire is, 

however, understood to be the primary disturbance agent in southwestern dry mixed-conifer 

forests. Fire drives variation in forest conditions through impacts on stand initiation (Fulé et al., 

2009), recruitment (Tepley and Veblen, 2015; Owen et al., 2017), and pattern (Malone et al., 

2018). In my study I was unable to include plot-specific measures of fire frequency or severity, 

and were thus unable to explicitly include fire as a factor in my models. The low descriptive 

power of my historical model agrees with the understanding of fire as the main driving force 

shaping historical forests.  

Ecological restoration not only seeks to recreate functional conditions, but to also 

reestablish the processes that maintain those healthy conditions (SER, 2004). The importance of 

fire to historical forest conditions calls for the reintroduction of fire into dry mixed-conifer 
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forests. While a combination of mechanical thinning and prescribed burning is effective at 

brining forest structure in line with HRV (Stoddard et al., 2015) and reducing the risk of severe 

wildfire (Kalies and Yocom Kent, 2016), there is renewed interest in allowing natural wildfires 

to burn unimpeded in low risk areas to achieve restoration objectives (van Wagtendonk, 2007). 

These fires, also known as resource objective fires, are effective at reducing basal area and tree 

density in dry mixed-conifer forests, targeting small diameter trees, and shifting species 

composition towards ponderosa pine dominance (Fulé and Laughlin, 2006). These restoration 

benefits can also be persistent more than 10 years after the fire, however, there is concern about 

delayed mortality of large diameter trees (Stoddard et al., 2020). Additionally, moderate severity 

wildfire may be more effective at restoring ponderosa pine forests to HRV than multiple low 

severity fires (Huffman et al., 2017, 2018). Further experimentation may be needed to evaluate 

how resource objective fires may be used to achieve multiple restoration objectives in dry mixed-

conifer forests, and whether resource objective fires can restore historical relationships between 

environmental factors and forest structure and composition. 

My historical and contemporary models describe a dynamic relationship between forest 

conditions and climate factors, suggesting that climate is a poor guide for historically based 

ecological restoration. My contemporary model indicates that climate is the primary driver of 

contemporary forest composition, and that the relative importance of climate has increased since 

fire exclusion. Historically, environmental factors only explain moderate variation in 

composition and little variation in forest structure. Additionally, these relationships change 

between the historical and contemporary models, with a shift in which climate variables are 

important and the direction of these relationships. The historical modeled indicate that warm and 
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dry winters (high winter minimum and maximum temperatures; high winter vapor pressure 

deficit), high spring precipitation, and warm fall average temperatures correlate with low 

ponderosa pine dominance, while the contemporary model indicated that sites with high spring 

precipitation, cold winter lows, and dry summers (low summer average dewpoint temperature) 

are associated with low ponderosa pine dominance (see Appendix B). The relationship between 

climate conditions and forest conditions is variable and therefore an unreliable tool for guiding 

historically based restoration treatments. Managers should not use historical forest-climate 

relationships to guide restoration because the relationship driving variation on the contemporary 

landscape is fundamentally different, and may send treated areas down an unexpected trajectory.  

This is not to say that climate conditions should be ignored when seeking to improve 

forest resilience. As climate moves further from the evolutionary conditions that these forests 

developed under, the relationship between forest conditions and climate factors becomes 

increasingly uncertain. When making decisions in the face of uncertainty, forest managers can 

hedge their bets against climate change by adopting variable treatments in the hopes that some 

will create conditions that are sustainable under a new climate (Millar et al., 2007, 2014). Further 

research and experimentation may be needed to evaluate whether restoring historical forest 

conditions reestablishes the historical climate-forests relationships, and whether these treatments 

help forests adapt to novel climate conditions. 

While climate may be a poor guide for historically based restoration, topography may be 

a useful guide for restoration of dry mixed-conifer forests in the Southwest. Topography was the 

most important driver of historical composition and a significant driver of contemporary 

composition. Similar relationships between position and aspect were identified in both models: 



98 

 

sunny sites (high solar radiation index) or sites on ridgetops and upper slopes (high hierarchical 

slope position) are dominated by ponderosa pine, while shady sites (low solar radiation index) or 

sites in valley bottoms and lower slopes (low hierarchical slope position) have a more mixed 

composition. This relationship has remained consistent even through fire regime disruption and 

changes in forest composition, making it a good tool for guiding the desired composition of 

restoration treatments across variable topography. Stands on sunny sites, or on ridges and upper 

slopes should be the target of more aggressive composition management, with a target 

composition dominated by ponderosa pine. On shady sites and valley bottoms, managers can 

allow a more mixed composition to persist. Managers should opportunistically make use of 

microsite variability to vary treatments and create heterogeneity across the restored landscape. 

Variations in local topography have been linked to variations in forest conditions and fire 

regimes (Korb et al., 2013). Mesic sites, like those found in valley bottoms have experienced 

more drastic increases in density than xeric sites like those found on ridge tops and upper slopes 

(Rodman et al., 2017). My historical and contemporary models also agree with this narrative: 

historically, sites on lower slopes were characterized by fewer, larger trees, while contemporarily 

these same sites are characterized by numerous, smaller trees. This reversal could be due to the 

logging history of the Southwest which targeted large trees. If these larger trees were 

concentrated in lower sites, these sites would experience changes to structure more acutely.  

There are limitations to my study that managers should be aware of when considering my 

results. Foremost, I was unable to explicitly include measures of disturbances in my models of 

the drivers of variability. Fire is the primary disturbance agent in dry mixed-conifer forests, but I 

did not have plot-level estimates of fire history in the study area and thus could not include fire 
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as a factor in my models. The importance of fire is well established and fire’s impact to the study 

area may be inferred by comparison of the two time periods, the historical forest conditions and 

drivers describing a forest with an intact frequent fire regime, while the contemporary forest 

conditions and drivers describing a forest after a prolonged disruption to the fire regime. A 

thorough survey of fire scars and stand age structure overlapping the study area would provide a 

fine- to mid-scale measure of fire history, and could more explicitly evaluate the relative 

importance and interaction of fire and environmental drivers of variability. I was unable to 

include other disturbances, such as insects, disease, logging, grazing or other management 

history into my models due to a similar lack of plot-level data.  

My analysis of the Mogollon Rim did not capture variation in soil parent material, 

another important driver of forest variation. Parent material is associated with differences in 

understory composition (Abella and Covington, 2006; Laughlin et al., 2007), differences in 

overstory growth and regeneration (Abella and Covington, 2006; Puhlick et al., 2012), overstory 

structure and pattern (Abella and Denton, 2009; Rodman et al., 2017) and stand density index 

(Kimsey et al., 2019). While parent material did not vary across the study area, I was able to 

include soil characteristics including pH, organic carbon, total nitrogen, water capacity, and 

percent silt, clay. My results are most directly applicable to dry mixed-conifer sites on similar 

limestone-based soils and are likely relevant to managers operating across a single parent 

material.  
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Appendix A: Descriptions and summary statistics for all potential variables  

Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Temperature 

Annual tmax 15.18 14.58 15.92 0.32 Annual average of daily 

maximum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Annual tmax 15.55 14.95 16.31 0.33 Annual average of daily 

maximum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Spring tmax 13.91 13.28 14.65 0.33 Spring average of daily 

maximum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Spring tmax 14.44 13.80 15.22 0.34 Spring average of daily 

maximum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Summer tmax 24.67 23.98 25.48 0.36 Summer average of daily 

maximum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Summer tmax 25.44 24.75 26.27 0.36 Summer average of daily 

maximum temperature 

(1981 to 2010) 

degrees Celsius PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Temperature 

Fall tmax 15.97 15.43 16.69 0.31 Fall average of daily 

maximum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Fall tmax 16.27 15.72 17.01 0.31 Fall average of daily 

maximum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Winter tmax 6.17 5.63 6.86 0.31 Winter average of daily 

maximum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Winter tmax 6.07 5.54 6.76 0.30 Winter average of daily 

maximum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Annual tmean 8.96 8.85 9.05 0.03 Annual average of daily 

average temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Annual tmean 9.31 9.20 9.40 0.04 Annual average of daily 

average temperature 

(1981 to 2010) 

degrees Celsius PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Temperature 

Spring tmean 7.35 7.23 7.50 0.05 Spring average of daily 

average temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Spring tmean 7.84 7.73 8.00 0.05 Spring average of daily 

average temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Summer tmean 18.06 17.94 18.14 0.04 Summer average of daily 

average temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Summer tmean 18.53 18.40 18.63 0.05 Summer average of daily 

average temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Fall tmean 9.82 9.68 9.91 0.06 Fall average of daily 

average temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Fall tmean 10.16 9.99 10.29 0.08 Fall average of daily 

average temperature 

(1981 to 2010) 

degrees Celsius PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Temperature 

Winter tmean 0.60 0.45 0.76 0.05 Winter average of daily 

average temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Winter tmean 0.71 0.63 0.84 0.04 Winter average of daily 

average temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Annual tmin 2.77 1.96 3.25 0.32 Annual average of daily 

minimum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Annual tmin 3.07 2.25 3.61 0.33 Annual average of daily 

minimum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Spring tmin 0.79 0.11 1.21 0.26 Spring average of daily 

minimum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Spring tmin 1.24 0.57 1.68 0.26 Spring average of daily 

minimum temperature 

(1981 to 2010) 

degrees Celsius PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Temperature 

Summer tmin 11.45 10.61 12.05 0.35 Summer average of daily 

minimum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Summer tmin 11.62 10.79 12.26 0.36 Summer average of daily 

minimum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Fall tmin 3.67 2.67 4.29 0.40 Fall average of daily 

minimum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Fall tmin 4.04 3.00 4.76 0.44 Fall average of daily 

minimum temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Temperature 

Winter tmin -4.98 -5.70 -4.69 0.26 Winter average of daily 

minimum temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Temperature 

Winter tmin -4.64 -5.34 -4.25 0.27 Winter average of daily 

minimum temperature 

(1981 to 2010) 

degrees Celsius PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Annual ppt 921 760 975 71 Annual total precipitation 

(1895 to 1924) 

millimeters PRISM 

Climate: 

Water 

Annual ppt 887 752 932 59 Annual total precipitation 

(1981 to 2010) 

millimeters PRISM 

Climate: 

Water 

Spring ppt 169 131 187 17 Spring total precipitation 

(1895 to 1924) 

millimeters PRISM 

Climate: 

Water 

Spring ppt 169 136 184 15 Spring total precipitation 

(1981 to 2010) 

millimeters PRISM 

Climate: 

Water 

Summer ppt 267 203 286 29 Summer total 

precipitation (1895 to 

1924) 

millimeters PRISM 

Climate: 

Water 

Summer ppt 242 182 259 27 Summer total 

precipitation (1981 to 

2010) 

millimeters PRISM 

Climate: 

Water 

Fall ppt 195 179 200 7 Fall total precipitation 

(1895 to 1924) 

millimeters PRISM 

Climate: 

Water 

Fall ppt 190 177 194 5 Fall total precipitation 

(1981 to 2010) 

millimeters PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Winter ppt 289 246 316 19 Winter total precipitation 

(1895 to 1924) 

millimeters PRISM 

Climate: 

Water 

Winter ppt 286 255 306 14 Winter total precipitation 

(1981 to 2010) 

millimeters PRISM 

Climate: 

Water 

Annual tdmean -3.95 -4.02 -3.88 0.03 Annual average of daily 

dewpoint temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Water 

Annual tdmean -2.29 -2.38 -2.21 0.04 Annual average of daily 

dewpoint temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Water 

Spring tdmean -7.40 -7.48 -7.32 0.04 Spring average of daily 

dewpoint temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Water 

Spring tdmean -5.45 -5.54 -5.30 0.06 Spring average of daily 

dewpoint temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Water 

Summer tdmean 3.02 2.86 3.16 0.07 Summer average of daily 

dewpoint temperature 

(1895 to 1924) 

degrees Celsius PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Summer tdmean 4.41 4.28 4.53 0.07 Summer average of daily 

dewpoint temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Water 

Fall tdmean -2.59 -2.67 -2.50 0.04 Fall average of daily 

dewpoint temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Water 

Fall tdmean -0.78 -0.89 -0.65 0.05 Fall average of daily 

dewpoint temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Water 

Winter tdmean -8.82 -8.89 -8.75 0.02 Winter average of daily 

dewpoint temperature 

(1895 to 1924) 

degrees Celsius PRISM 

Climate: 

Water 

Winter tdmean -7.36 -7.41 -7.26 0.03 Winter average of daily 

dewpoint temperature 

(1981 to 2010) 

degrees Celsius PRISM 

Climate: 

Water 

Annual vpdmax 14.65 13.94 15.51 0.37 Annual average of daily 

maximum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Annual vpdmax 14.94 14.19 15.75 0.35 Annual average of daily 

maximum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Spring vpdmax 13.51 12.87 14.24 0.32 Spring average of daily 

maximum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 

Climate: 

Water 

Spring vpdmax 13.73 13.11 14.40 0.29 Spring average of daily 

maximum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Summer vpdmax 24.22 23.03 25.61 0.61 Summer average of daily 

maximum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 

Climate: 

Water 

Summer vpdmax 25.03 23.56 26.49 0.66 Summer average of daily 

maximum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Fall vpdmax 14.35 13.72 15.21 0.35 Fall average of daily 

maximum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Fall vpdmax 14.38 13.73 15.16 0.32 Fall average of daily 

maximum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Winter vpdmax 6.53 6.15 6.99 0.20 Winter average of daily 

maximum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 

Climate: 

Water 

Winter vpdmax 6.61 6.36 6.93 0.13 Winter average of daily 

maximum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Annual vpdmin 3.26 2.84 3.56 0.18 Annual average of daily 

minimum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 

Climate: 

Water 

Annual vpdmin 3.09 2.92 3.27 0.09 Annual average of daily 

minimum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Spring vpdmin 3.10 2.78 3.32 0.13 Spring average of daily 

minimum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Spring vpdmin 3.15 2.97 3.30 0.07 Spring average of daily 

minimum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Summer vpdmin 5.30 4.61 5.84 0.31 Summer average of daily 

minimum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 

Climate: 

Water 

Summer vpdmin 5.13 4.88 5.46 0.15 Summer average of daily 

minimum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Fall vpdmin 3.16 2.66 3.53 0.22 Fall average of daily 

minimum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 

Climate: 

Water 

Fall vpdmin 2.86 2.64 3.11 0.12 Fall average of daily 

minimum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Climate: 

Water 

Winter vpdmin 1.48 1.30 1.55 0.06 Winter average of daily 

minimum vapor pressure 

deficit (1895 to 1924) 

hectopascals PRISM 
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Factor Variable Mean Min Max SD Description Units Source 

Climate: 

Water 

Winter vpdmin 1.20 1.15 1.23 0.02 Winter average of daily 

minimum vapor pressure 

deficit (1981 to 2010) 

hectopascals PRISM 

Soil BD 0cm 666 527 948 67 Bulk density of the fine 

earth fraction (<2 mm) at 

0cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 

Soil BD 5cm 891 766 1002 51 Bulk density of the fine 

earth fraction (<2 mm) at 

5cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 

Soil BD 15cm 1131 1023 1212 36 Bulk density of the fine 

earth fraction (<2 mm) at 

15cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 

Soil BD 30cm 1228 1162 1287 25 Bulk density of the fine 

earth fraction (<2 mm) at 

30cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 

Soil BD 60cm 1336 1219 1418 44 Bulk density of the fine 

earth fraction (<2 mm) at 

60cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 
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Factor Variable Mean Min Max SD Description Units Source 

Soil BD 100cm 1447 1364 1504 25 Bulk density of the fine 

earth fraction (<2 mm) at 

100cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 

Soil BD 200cm 1439 1362 1507 30 Bulk density of the fine 

earth fraction (<2 mm) at 

200cm soil depth 

grams per cubic 

centimeter 

Soil 

Grids 

Soil Clay 0cm 16 11 21 2 Percent clay at 0cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Clay 5cm 16 11 21 2 Percent clay at 5cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Clay 15cm 17 13 21 2 Percent clay at 15cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Clay 30cm 24 16 37 5 Percent clay at 30cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Clay 60cm 36 24 50 6 Percent clay at 60cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Clay 100cm 37 25 49 6 Percent clay at 100cm soil 

depth 

Percent by 

weight 

Soil 

Grids 
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Factor Variable Mean Min Max SD Description Units Source 

Soil Clay 200cm 36 24 50 6 Percent clay at 200cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 0cm 70 48 81 5 Total Nitrogen at 0cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 5cm 37 29 43 3 Total Nitrogen at 5cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 15cm 21 16 25 2 Total Nitrogen at 15cm 

soil depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 30cm 13 8 18 2 Total Nitrogen at 30cm 

soil depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 60cm 10 6 15 2 Total Nitrogen at 60cm 

soil depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 100cm 9 4 14 2 Total Nitrogen at 100cm 

soil depth 

Percent by 

weight 

Soil 

Grids 

Soil N Total 200cm 11 5 15 2 Total Nitrogen at 200cm 

soil depth 

Percent by 

weight 

Soil 

Grids 
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Factor Variable Mean Min Max SD Description Units Source 

Soil pH 0cm 58.3 55.1 62.7 1.7  pH in 1:1 soil–water 

solution at 0cm soil depth 

pH Soil 

Grids 

Soil pH 5cm 56.8 53.7 61.0 1.6  pH in 1:1 soil–water 

solution at 5cm soil depth 

pH Soil 

Grids 

Soil pH 15cm 57.0 54.5 61.0 1.5  pH in 1:1 soil–water 

solution at 15cm soil 

depth 

pH Soil 

Grids 

Soil pH 30cm 57.0 55.0 60.3 1.3  pH in 1:1 soil–water 

solution at 30cm soil 

depth 

pH Soil 

Grids 

Soil pH 60cm 57.1 55.2 60.6 1.3  pH in 1:1 soil–water 

solution at 60cm soil 

depth 

pH Soil 

Grids 

Soil pH 100cm 57.2 55.1 61.6 1.5  pH in 1:1 soil–water 

solution at 100cm soil 

depth 

pH Soil 

Grids 

Soil pH 200cm 57.4 55.1 61.9 1.6  pH in 1:1 soil–water 

solution at 200cm soil 

depth 

pH Soil 

Grids 
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Factor Variable Mean Min Max SD Description Units Source 

Soil Sand 0cm 27 18 36 4 Percent sand at 0cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Sand 5cm 28 19 36 4 Percent sand at 5cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Sand 15cm 27 18 36 4 Percent sand at 15cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Sand 30cm 27 20 35 4 Percent sand at 30cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Sand 60cm 28 20 37 4 Percent sand at 60cm soil 

depth 

Percent by 

weight 

Soil 

Grids 

Soil Sand 100cm 31 22 40 4 Percent sand at 100cm 

soil depth 

Percent by 

weight 

Soil 

Grids 

Soil Sand 200cm 32 23 40 4 Percent sand at 200cm 

soil depth 

Percent by 

weight 

Soil 

Grids 

Soil SOC 0cm 294 186 338 23 Soil organic Carbon at 

0cm soil depth 

Percent by 

weight 

Soil 

Grids 
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Factor Variable Mean Min Max SD Description Units Source 

Soil SOC 5cm 72 44 96 14 Soil organic Carbon at 

5cm soil depth 

Percent by 

weight 

Soil 

Grids 

Soil SOC 15cm 28 18 37 6 Soil organic Carbon at 

15cm soil depth 

Percent by 

weight 

Soil 

Grids 

Soil SOC 30cm 17 8 25 4 Soil organic Carbon at 

30cm soil depth 

Percent by 

weight 

Soil 

Grids 

Soil SOC 60cm 10 5 14 2 Soil organic Carbon at 

60cm soil depth 

Percent by 

weight 

Soil 

Grids 

Soil SOC 100cm 8 4 13 2 Soil organic Carbon at 

100cm soil depth 

Percent by 

weight 

Soil 

Grids 

Soil SOC 200cm 9 3 16 3 Soil organic Carbon at 

200cm soil depth 

Percent by 

weight 

Soil 

Grids 

Topography: 

Aspect 

Beer's Aspect 1.44 0.00 2.00 0.56 Cosine transformed aspect NA DEM 

Topography: 

Aspect 

Heat Load Index 

(HLI) 

0.83 0.71 0.97 0.05 Slope-aspect 

transformation 

NA DEM 
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Factor Variable Mean Min Max SD Description Units Source 

Topography: 

Aspect 

Solar Radiation 

Index (SRI) 

1715499 1593948 1810763 41603 Amount of incoming solar 

insolation 

Watt hours per 

square meter 

DEM 

Topography: 

Position 

Elevation 2332 2223 2399 41 Elevation above sea level meters DEM 

Topography: 

Position 

Hierarchical 

Slope Position 

(HSP) 

3295 -10371 14386 5249 Multi-scalar measure of 

topographic exposure 

NA DEM 

Topography: 

Position 

Topographic 

Position Index 

(TPI) 

0.55 -11.53 9.75 3.61 Local measure of 

topographic exposure 

NA DEM 

Topography: 

Texture 

Roughness 17.1 1.4 31.2 5.8 Maximum elevational 

difference 

meters DEM 

Topography: 

Texture 

Slope 5.5 0.0 10.5 2.3 Steepness of terrain degrees DEM 

Topography: 

Texture 

Terrain 

Ruggedness 

Index (TRI) 

19.3 2.0 42.0 7.2 Average of elevational 

differences 

meters DEM 
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Table 3: Summary of all potential environmental variables. Variables are organized by environmental factor, and subgroup if 

applicable. Summary statistics (mean, minimum, maximum, and standard deviation, brief description, units and data source are 

provided for each variable. Historical and contemporary climate variables are listed separately. 
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Appendix B: Historical and contemporary model pathway details 

Diagram 

Key 

Pathway 
Model Coefficient Components 

From To 

a Position Density 
Historical 0.245* HSP 

Contemporary -0.358* HSP 

b Position Diameter 
Historical -0.324* HSP 

Contemporary 0.321* HSP 

c Position Composition 
Historical -0.371* HSP 

Contemporary -0.405* HSP 

NA 
Texture Density 

Historical -0.065 TRI 

NA Contemporary -0.095 TRI 

NA 
Texture Diameter 

Historical 0.053 TRI 

NA Contemporary -0.020 TRI 

c 
Texture Composition 

Historical 0.126* TRI 

NA Contemporary 0.068 TRI 

NA 
Aspect Density 

Historical 0.008 SRI 

NA Contemporary 0.010 SRI 

NA 
Aspect Diameter 

Historical -0.124 SRI 

NA Contemporary 0.072 SRI 

c Aspect Composition 
Historical -0.233* SRI 

Contemporary -0.184* SRI 

d Climate Density 

Historical 0.276* 
Winter Tmin (-0.491); Winter Tmax (0.657); Fall Tmean 

(0.473); Spring Precip (3.546); Winter VPDmin (-3.462) 

Contemporary 0.212* 
Winter Tmin (-2.566); Winter Tmax (-3.615); Spring 

Precip (-1.742); Summer Tdmean (-0.035) 

e Climate Diameter Historical 0.370* 

Winter Tmin (-2.052); Winter Tmax (-0.228); Fall 

Tmean (0.27); Spring Precip (0.773); Winter VPDmin 

(1.821) 
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Diagram 

Key 

Pathway 
Model Coefficient Components 

From To 

Contemporary 0.212* 
Winter Tmin (2.423); Winter Tmax (3.568); Spring 

Precip (2.202); Summer Tdmean (1.224) 

f Climate Composition 

Historical 0.657* 
Winter Tmin (6.969); Winter Tmax (1.124); Fall Tmean 

(-0.769); Spring Precip (2.375); Winter VPDmin (-6.687) 

Contemporary 0.792* 
Winter Tmin (-0.855); Winter Tmax (0.185); Spring 

Precip (1.512); Summer Tdmean (-0.486) 

g Soil Density 
Historical 0.352* Clay.30cm (0.207); ph.0cm (-0.726); SOC.30cm (0.437) 

Contemporary 0.203* ph.0cm (-0.793); SOC.30cm (0.233) 

h Soil Diameter 
Historical 0.383* 

Clay.30cm (-0.482); pH.0cm (0.441); SOC.30cm (-

0.863) 

Contemporary 0.259* pH.0cm (0.723); SOC.30cm (-0.309) 

i Soil Composition 
Historical 0.389* Clay.30cm (0.26); pH.0cm (0.924); SOC.30cm (0.116) 

Contemporary 0.345* pH.0cm (0.661); SOC.30cm (-0.373) 

j 
Composition Diameter 

Historical -0.228* Axis 1 

NA Contemporary -0.058 Axis 1 

NA 
Composition Density 

Historical 0.104 Axis 1 

k Contemporary 0.255* Axis 1 

Table 4: Summary of pathways in Historic and contemporary models. Letters in the Diagram Key column correspond to the letters on 

pathways in figures 10 and 11. Values of NA indicate that this pathway is not included in these model diagrams. Pathway: From and 

Pathway: To describe the directional relationship between model components that each pathway represents. The Model column 

indicates whether the following values correspond to the pathway in the historical model or the Contemporary model. The Coefficient 

column contains the path coefficient, which describes the relative magnitude and direction of each pathway’s relationship. Values with 
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* are statistically significant from 0 (p < 0.05). The Components column contains the predictors used to calculate each pathway; if 

more than one predictor was used, the path coefficients used to calculate the composite are given in parentheses.  

 


