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ABSTRACT We consider age-structured population models in which density dependent effects are
based on the number of adults and not on total population size. This represents, for example, a
population whose size is regulated by a limited number of territories of optimal habitat. We model this
in three different ways, obtaining results which vary in the complexity of their dynamics.
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1. INTRODUCTION

It is well known that linear age-structured post-breeding models in which all adults are lumped
into a single class have the form (Williamson [1]):
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Here Nj indicates the number of newborns, N; - Ny the number in each juvenile (non-breeding)
age-class and N, the number of adults. We refer to individuals in age-class N, as sub-adults as
these will breed in the following time step. In the case where p, = s and f; . ;= m, so that sub-adult

parameters are the same as for adults, these two classes can be combined into class N4 simplifying
the model to:
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Non-linear terms must be added to the model to limit population growth and to introduce
carrying capacity, but there are amyriad of ways in which this can be done. Firstly, there is a choice
in which non-linear function should be used. Here we choose a discrete logistic non-linearity (also
called Beverton-Holt) for the dinsity dependence (e.g., Leslie[2]):

o) = (1 +Bx)” ®)

The reason for this choice is based solely on a desire for relatively simple dynamics. It is well
known that the Ricker type choice ¢(x) =e ™™ (e.g., Smouse & Weiss [3]) is more likely to lead to exotic
dynamics. Another option lies in the choice of independent variable for the function ¢. It is generally
accepted that a weighted function of population sizes in the age-classes be used and examples
include dependence on the total number of individuals (for example Pykh and Eframova [4] and
Ugarcovici and Weiss [5]) and on the number of newborns (DeAngelis, Svoboda, Christensen and

Vaughan [6]). Here, we select different choice and use the number of adults (N in (1) orN5 in (1.2)).

Motivation for this choice is as follows: Consider a bird species in which a critical regulator of
population size in a given habitat patch is the number of optimal breeding sites. This patch will
support a number of breeding pairs optimal habitat, but any excess adults will be forced into either
settling for a site of poorer quality or moving elsewhere. We model these conditions by applying
non-linearity into the relevant part of model (2) or (1):

* Adult Survivorship: We assume that fewer adults survive, at least in the area under
consideration, due to competition for primary territories. The survivorship probabilities p;
and s are modified by density dependent factors. We assume that the survivorship of
newborns and juveniles is unaffected.

* Breeding Success: We assume that the average number of successful eggs diminishes with
adults forced into territories of poorer quality. The parameter m is modified by a density
dependent factor.

* Newborn Survivorship: We keep the number of successful eggs as a density independent
term, but modify survival of the newborns through the first year of life, p), with a density
dependent factor.

In Sections 2-4, we consider these scenarios using the simpler model (2). In Section 5, we apply
model (1) to the case of survivorship of both adults and sub-adults. We establish some results,
provide numerical evidence for others, but leave many questions unanswered. The intention is to
illustrate a diversity of results rather than to carry out a thorough analysis as in, e.g., Pykh and
Eframova [4] or Wikan and Mjolhus [7].
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2. ADULT SURVIVORSHIP SCENARIO

Consider model (1.2) in which the non-linearity lies in adult survivorship:

’

S

S =T]\[Z(t) (4)

where B and s” are positive constants with 0 <s” < 1. The following result holds:

Theorem 2.1: Consider (2) in which pg, p;... p_1 and m are constants, 0 <p;<1fori=0,1... k-1,
0 <m, and s is given by (4) where 0 <s" <1 and P is a positive constant. Let ¢ = mpp;...p;_1 and R,

’

s
1-¢""

Then:

1. If Ry <1, then no positive equilibrium exists and the population will become extinct.
2. If Ry > 1, then there is a unique positive equilibrium, and this carrying capacity is stable.

Proof: It is easy to show that in the linear case (3 = 0), the characteristic equation is given by I (A) =
(- DT -5 AF — ¢ ]. Since h () has a unique non-zero turning point between 0 and 1, Perron-
Frobenius theory implies that the stability of the origin is determined by the sign of /1 (1). It follows
that the origin (the extinction equilibrium) is stable if and only if cs” + s’ - 1. This may be written in
terms of net reproductive number R, (see Cushing [8, p. 28]) as Ry < 1. That the origin is globally
asymptotically stable follows from Theorem 1.2.1 in Cushing [8, p. 18].

To reduce the number of parameters in the non-linear model, we apply the change of

variablesNy — BNy, N;— Bp,_1py_o...p;N; for i =0, 1, ... k to (2). This produces the model:
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Ny (t+1) 1 ... 00 0 Ny (t)
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where ¢ = Bp;_1 Py ..P1Po- Solving for non-zero equilibria gives uniquely

cs’+5" -1)

c ’ ’
N0=N1=...=Nk+1= ( 1l ;NZ=(CS +s —1)

This equilibrium is non-negative providing c¢s” + s’ - 1 (R,> 1) which is precisely when the
origin is unstable. (The existence of a positive equilibrium also follows from Theorem 1.2.8 in
Cushing [8, p. 30].) The Jacobian matrix evaluated at the non-zero (carrying capacity) equilibrium is
given by the non-negative matrix:
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which has characteristic equation h(L) = (-1)<*1| A**1 _ ! 5 pp— - |. As with the linear
(c+1)°s (c+1)s

model, Perron-Frobenius theory implies that stability is determined by the sign of k(1) = (-

1) cs,+—s—l and the result follows.
s'(c+1)

Note that the result in part 2 of the theorem is only local and does not imply the global stability
of the carrying capacity equilibrium. However, numerical work seems to indicate that this

equilibrium is globally asymptotically stable, i.e. that any solution with non-zero initial conditions
will tend to this with time.
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Fig. 1 Regions in the s’ - ¢ plane for which solutions go extinct or appear numerically
to tend to a stable carrying capacity. The boundary, on which a transcritical

1-¢

’

bifurcation occurs, is given by ¢ =



168 | International Journal of Mathematical Modeling, Simulation and Applications

3. BREEDING SUCCESS SCENARIO

Consider (2) in which the non-linearity lies in the fecundity m:

’

m

m=m, (5)

(where m and 3 are positive constants) was previously considered by Fisher and Goh [9]. They
show that in this case, a population that does not go extinct tends to a unique stable carrying
capacity. We state the result formally below and note that this is stronger than Theorem 2.1 since
global asymptotic stability is proved. Fisher and Goh's proof uses a Liapunov function applied to a
delay difference equation equivalent to (2).

Theorem 3.1: Consider (2) in which p, p;... p.1 and s are constants, 0 <p;,<1fori=0,1... k -1,
0 <s <1 and m is given by (5) where B and m’ are positive constants. Let ¢ = m’ pyp;...p* ' and R,
cs
1-5

. Then:

(1) If Ry <1 no positive equilibrium exists and the population will become extinct.

(2) If Ry > 1 there is a positive equilibrium, and this carrying capacity is stable. Moreover all
solutions tend to this positive carrying capacity in future time.

The bifurcation diagram for this scenario is the same as that given in Fig. 1 except s replaces s’
as the variable along the horizontal axis.

4. NEWBORN SURVIVORSHIP SCENARIO

This scenario is the most complex for a model of type (1.2); the reason being that theN; (adult)

density-dependent term multiplies an N, term and not anN term in the matrix equation. In fact the
dynamics is quite complex even when k = 2.
Theorem 4.1: Consider

No(t+1) 0 0 ms||Ny()

Ny(t+1|=|—P% 0 0 ||N,(t) ©)
1+ BN, (t

N, (t+1) +B02() Py s N, ()

where p, p;, s and m are constants, 0 < p,, p; <1, 0 <s <1 and m and  are positive constants. Let

c=mpypss and Ry=_C . Then:
1-s

(1) If Ry <1, then no positive equilibrium exists and the population will become extinct.

2
2 If Rg>1and 1 —% <5 <1 then there is a unique positive equilibrium, and this carrying

capacity is stable.
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B) IfRy>1and 0 <s <1 —72 then there is a unique positive equilibrium. This carrying

(1-9)°
25— 4s+1
Proof: The model (4.1) is equivalent to the following through the change of variables and
parameters given by Ny — Bpop; No, N; Bp1s Ni, N, = B N,, and m — pgpym.

capacity equilibrium is stable if and only if ¢ <

No(t+1) (1) 0 ms||Ny(t)
Nit+1)|=|————= 0 0 || N ()
N, (t+1) 1+1(\)12(t) 1 s | N2()

In the same manner as for Theorem 2.1, it is easy to show that the population becomes extinct
if ms +s -1 <0 and that if ms + s - 1 > 0 there is a unique positive equilibrium at

ms+s-1 ms(ms+s-1)

N, = ,N;,=ms+s-1, N, =
2 1-s ! 0 1-s

It remains to consider the stability of this equilibrium. To do this we compute the Jacobian
matrix at the equilibrium to obtain:

0 O ms
1-s 0 -(1-5s)(ms+s-1)
ms ms ’
0 1 s

a matrix with one negative entry whose characteristic equation is given by
(1-s)(ms+s-1)
ms

h(\) = -\ +sA? - A+ (1-5).

Since Perron-Frobenius theory does not apply, we use the Jury conditions (see, for example,
Murray [10]) to determine stability. A lengthy calculation shows that the carrying capacity is stable
if and only if

ms[2s% - 4s + 1] < (1 - s)°

If the expression 25> - 4s + 1 < 0, which is true for 1 —ﬂ < s <1, then this is an identity, but if
P 5 y

(1-5)

0<s<1- —2, this gives ms <————— as the condition for stability.
2 25" -4s+1

To return to the original parameters, we replace m by pyp;m so that the left-hand side becomes
mpopss = ¢. Numerical work indicates that the carrying capacity equilibrium is globally
asymptotically stable when it is stable and that a discrete Hopf bifurcation (sometimes called

(1-5)°

22 2er1 The Theorem is summarized
s* -4s+

Neimark-Sacker bifurcation) takes place on the curve c =

in the bifurcation diagram shown in Fig. 2.
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0 s 1
Fig. 2 Bifurcation diagram for the model (4.1). A flip transcritical bifurcation occurs on

the linear boundary; numerical work indicates that a discrete Hopf (Neimark-Sacker)
bifurcation takes place on the non-linear boundary.

5. BREEDING SUCCESS WITH SUBADULTS TREATED DIFFERENTLY TO ADULTS

In this section we consider the scenario of Section 3 in the more general setting of model (1.1). With
fecundities f; , ; and m having the form (1.3), a rescaling of variables leads to the following model:

[ No(t+1) | 0 2 @s_|r Ny (1) ]
Nit+D | 1 1”2),7‘(” 1”2),7‘(” N ()

= @)
Nk-l(t+1) 0o .. 1 0 0 Nk-l(t)
LNat+ED ] g 1 s |LNa®) ]

Analysis of this model is much more difficult than the model considered in Section 3. In the
case where ¢; = ¢,, it is easy to show that the condition for a positive equilibrium is given by
¢ +s>1, and that the unique carrying capacity lies at

_ (c+s-1)

Ny=N;=..=Ng =(c+s-1);N4 1o

but evaluation of the Jacobian matrix at carrying capacity yields a matrix that includes a negative
term and as with the model considered in Section 4, the Perron-Frobenius theorem does not apply.
Instead all roots of the characteristic equation must be considered to establish stability. Before
considering some special cases, we state a general theorem about model (7):

Theorem 5.1: If s = 0, the model (5.1) has a stable k-cycle if and only if ¢; > 1.
Proof: Noting that the sizes of age-classes N, _; and N are equal, and ignoring the latter age class

which consists of post-breeding individuals gives the semelparous model (see for example,
Mjolhus, Wikan and Solberg [11]):



Terence R. Blows and Bianca A. Luedeker |171

_No(t+1)_ 0O .. 00 #1(” _No(t)_
Ny (t+1) X 0 0 o Ny (t)
N4 1) 0 1 0 0 N, (h
(Neat+D | 1y g 4 0 | Ni-1 (8) |

It is easy to show that for c; > 1, there is a stable k-cycle given by (¢; -1, 0, 0...0) = (0, ¢; -1, 0,
0...0)>...>(0,0...c;-1,0) = (0, 0...0, ¢; - 1). This follows because this matrix equation can be re-
written as the delay difference equation

Ny (t-k-1)
1+N 1 (t-k-1)

Niq(t+1) =

This has the form of the discrete logistic equation for which the carrying capacity is globally
attracting.

Although a sub-adult/adult model does not apply when s = 0 (adults do not breed on an
annual basis, only when they transition from sub-adults), this case is helpful in understanding the
complex dynamics of the general model (5.1). Below we discuss the three simplest cases: k =2, 3
and 4. Specifically we work with the case ¢; = ¢, although some numerical work indicates little
qualitative difference if these values are unequal.

The case k = 2: In this case, the Jury conditions can be used to determine the stability of the carrying

—1)?
capacity. In the case where ¢; = ¢,, this condition requires s <1/3 and is given by ¢ < (i 3) . A flip

-3s
bifurcation takes place across this curve, so that a stable 2-cycle replaces the stable carrying
capacity. Also, in light of Theorem 5.1, there is a stable 2-cycle when s = 0. Numerical work

~-1)?
indicates that this stable 2-cycle persists throughout the region given by 0 <s < %, c> % See
-3s

Fig. 5.1.

Numerical work indicates a similar qualitative diagram in the case where ¢; and ¢, are unequal.
Again, solutions in the unstable region appear to tend to a stable 2-cycle.
The cases k = 3 and k = 4: In these cases, the Jury conditions are prohibitively difficult to apply, but
numerically these cases have the same qualitative bifurcation diagram as Figure 3. (The equation of
the boundary on which the carrying capacity loses stability will be different.)

In the k = 3 case, numerical work indicates that the carrying capacity loses stability through a
discrete Hopf (Neimark-Sacker) bifurcation. Dynamics on what is initially a closed curve, settles
down to a 3-cycle through the process known as phase locking. (This is similar to what happens in
the model of Wikan and Mjolhus [7]). See Fig. 4.
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Fig. 3 Numerical bifurcation diagram for the model (5.1) with k = 2 and ¢; = ¢,. A flip bifurcation occurs on
. L . 1 (s-1)?
the line ¢ = 1 - s and a period-doubling bifurcation occurs on 0 <'s < 5 c> ﬁ

-3s

The blue region has a stable 2-cycle.
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Fig. 4 Numerical bifurcation diagram for the model (5.1) when k = 3 and c; = c,. A flip bifurcation occurs on
the linear boundary; a discrete Hopf bifurcation occurs on the boundary between the white and blue regions.
Phase locking occurs between the blue and brown. The brown region has a stable 3-cycle.
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In the k = 4 case, numerical work indicates that the carrying capacity loses stability through a
flip bifurcation to a stable 2-cycle. Although there is a stable 4-cycle on s = 0, the transition is not as
simple as having a second flip bifurcation from a 2-cycle to a 4-cycle.

Stable

0 0.2 0.4 0.6 0.8

Fig. 5 Numerical bifurcation diagram for the model (5.1) when k = 4 and ¢, = ¢,. A flip bifurcation occurs on
the linear boundary; a period-doubling bifurcation occurs on the boundary between the white and red regions.
The red region has a stable 2-cycle and the green region has a stable 4-cycle. There are
no low order cycles in the blue region.

Numerical work in the case where s = 0.15 and ¢; = ¢, is incrementally increased indicates the
initial 2-cycle period doubles to a 4-cycle which then loses stability. Following a discrete Hopf
(Neimark-Sacker) bifurcation, phase locking returns this to a 4-cycle. See Fig. 5.

More work is required to fully understand model (5.1). It is clear from Theorem 5.1, that each
value of k will have a different bifurcation diagram than for other values. Consideration of the cases
k =2, 3 and 4 indicate some of this diversity.
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