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ABSTRACT

A STUDY OF T-AVOIDING ELEMENTS OF COXETER GROUPS

TARYN LAIRD

Kazhdan–Lusztig polynomials arise in the context of Hecke algebras associ-

ated to Coxeter groups. The computation of these polynomials is very difficult for

examples even in relatively small groups. Motivated by a desire to understand the

Kazhdan–Lusztig theory of the Hecke algebra of the underlying Coxeter group,

R.M. Green classified the so-called star reducible Coxeter groups, which have the

property that all fully commutative elements (in the sense of Stembridge) can be

sequentially reduced via star operations to a product of commuting generators.

It turns out that in some Coxeter groups there are elements, called T-avoiding

elements, which cannot be systematically dismantled in this way. More specifi-

cally an element w is called T-avoiding if w does not have a reduced expression

beginning or ending with a pair of non-commuting generators. Clearly, a prod-

uct of commuting generators is trivially T-avoiding. However, sometimes there

are more interesting non-trivially T-avoiding elements. A natural question is

which Coxeter groups have non-trivially T-avoiding elements? Computation of

Kazhdan–Lusztig polynomials involving the non-trivially T-avoiding elements is

difficult in general. However, having an understanding of the T-avoiding ele-

ments provides valuable information about possible obstructions to determining

the Kazhdan–Lusztig polynomials. In this thesis we begin by summarizing the

previously known results regarding T-avoiding elements in certain Coxeter groups

and then classify the T-avoiding elements in Coxeter groups of types Bn and C̃n.
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3.1 Types Ãn and An . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Type Dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Type Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Type I2(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4 T-Avoiding Elements in Coxeter groups of Types C̃n and Bn 31
4.1 T-Avoiding Elements in Coxeter Groups of Type C̃n . . . . . . . . . . . . . . 31
4.2 T-Avoiding Elements of Type Bn . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 5 Characterization of Property T in Coxeter systems of Type Bn 55
5.1 Combinatorial Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Signed Consecutive Patterns and Property T . . . . . . . . . . . . . . . . . . 57
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 64

iii



List of Figures

1.1 Examples of a few Coxeter graphs. . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Irreducible finite Coxeter systems. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Irreducible affine Coxeter systems. . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Irreducible FC-finite Coxeter systems. . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Labeled Hasse diagram for the heap of an element in FC(C̃6). . . . . . . . . 11

1.6 A lattice point representation for the heap of an FC element in W (C̃6). . . . 12

1.7 Two heaps of a non-FC element in W (C̃4). . . . . . . . . . . . . . . . . . . . 13

1.8 Subheap and convex subheap of the heap for an element in W (C̃7). . . . . . 14

1.9 Impermissible configurations for heaps of FC(C̃n). . . . . . . . . . . . . . . . 14

2.1 A visual representation of an element that is left star reducible by s with
respect to t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Visualization of Example 2.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Visualization of Example 2.1.3. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Heap of an element with Property T. . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Heap of a T2-avoiding element in W (C̃4). . . . . . . . . . . . . . . . . . . . . 20
2.6 Heap of a weak star reducible element of FC(B4). . . . . . . . . . . . . . . . 21
2.7 Heap of a non-cancellable element of FC(B4). . . . . . . . . . . . . . . . . . 22

2.8 Heap of a sandwich stack in FC(C̃n) for n odd. . . . . . . . . . . . . . . . . . 22

2.9 Heap of a sandwich stack in FC(C̃n) for n odd. . . . . . . . . . . . . . . . . . 23

3.1 Visual representation of a T2-avoiding element in W (D5). . . . . . . . . . . . 26
3.2 Heap of a single bowtie in W (F5). . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Heap of a stack of bowties in W (F5). . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Heap of a T2-avoiding element in W (F6). . . . . . . . . . . . . . . . . . . . . 29

4.1 Pushed-down representation of a heap. . . . . . . . . . . . . . . . . . . . . . 32
4.2 The subheap of w discussed in Lemma 4.1.2. . . . . . . . . . . . . . . . . . . 33

iv



Chapter 1

Preliminaries

1.1 Introduction

In mathematics, one uses groups to study symmetry. In particular, a reflection group can be
used to study the reflection and rotational symmetry of an object. A Coxeter group can be
thought of as a generalized reflection group, where the group is generated by a set of elements
of order two (i.e., reflections) and there are rules for how the generators interact with each
other. Every element of a Coxeter group can be written as an expression in the generators,
and if the number of generators in an expression (including multiplicity) is minimal, we say
that the expression is reduced.

Kazhdan–Lusztig polynomials arise in the context of Hecke algebras associated to Coxeter
groups. The computation of these polynomials is very difficult even for relatively small
groups. Motivated by the desire to understand the Kazhdan–Lusztig theory of the Hecke
algebra of the underlying Coxeter group, Green [8] classified the so-called star reducible
Coxeter groups which have the property that all fully commutative elements (in the sense
of Stembridge) can be sequentially reduced via star operations to a product of commuting
generators.

It turns out that in some Coxeter groups there are elements, called T-avoiding elements,
which cannot be systematically dismantled in the way described above. More specifically an
element w is called T-avoiding if w does not have a reduced expression beginning or ending
with a pair of non-commuting generators. Clearly, a product of commuting generators is
trivially T-avoiding. However, sometimes there are more interesting T-avoiding elements,
which we will refer to as type 2 T-avoiding elements.

Our interest in T-avoiding elements is motivated by a desire to compute Kahzdan–Lusztig
polynomials, denoted Px,w, where x and w are elements of a fixed Coxeter group. A bound on
the degree of Px,w is known, but in general it is not known when this bound is achieved. Of
particular interest are the coefficients µ(x,w) that appear when the maximum degree of Px,w
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is attained. The polynomials Px,w and coefficients µ(x,w) are determined through recurrence
relations, however no closed form is known for calculating either in an efficient matter.
Calculations involving type 2 T-avoiding elements are generally more difficult as the descent
sets of these elements have undesirable properties. In addition, knowing which elements
are T-avoiding often provides us with the base case for inductive arguments involving star
operations.

In his PhD thesis [7], Gern classified the T-avoiding elements in Coxeter groups of type
Dn. Unlike in types An and Bn, it turns out that the classification in type Dn includes type 2
T-avoiding elements. The T-avoiding elements are rich in combinatorics and are interesting
in their own right. The focus of this thesis is classifying T-avoiding elements in certain
Coxeter groups.

This thesis is organized as follows. After necessary background information is presented
in Section 1.2, we introduce the class of fully commutative elements in Section 1.3. Next in
Section 1.4 we discuss a visual representation for elements of Coxeter groups, called heaps.
In Section 2.1, we introduce the concept of a star reduction and star reducible Coxeter groups
and in Section 2.2 we formally introduce the notion of a T-avoiding element. In Section 2.3
we define non-cancellable elements in Coxeter groups, as well as remark upon a specific
family of non-cancellable elements in W (C̃n) when n is odd. We then state classifications
and conjectures regarding T-avoiding elements in several Coxeter groups in Chapter 3. All of
the results in Chapter 3, barring Section 3.4, are previously known. Chapter 4 contains the
main results of this thesis, namely the classification of T-avoiding elements in Coxeter groups
of types C̃n and Bn, which are new results. Section 5.1 introduces signed permutations and
signed patterns in the context of Coxeter systems of type Bn. We characterize Property T
and T-avoiding in Coxeter systems of type Bn in terms of consecutive signed patterns in
Section 5.2. We conclude with some open questions in Section 5.3.

1.2 Coxeter Systems

A Coxeter system is a pair (W,S) consisting of a finite set S of generating involutions and
a group W , called a Coxeter group, with presentation

W = 〈S | (st)m(s,t) = e〉,

where e is the identity, m(s, t) = 1 if and only if s = t, and m(s, t) = m(t, s) ≥ 2 for s 6= t. If
there is no relation between s, t ∈ S, then we define m(s, t) =∞. However, in this thesis we
assume that all m(s, t) are finite. It turns out that the elements of S are distinct as group
elements and that m(s, t) is the order of st [9]. We call m(s, t) the bond strength of s and t.
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Since s and t are elements of order 2, the relation (st)m(s,t) = e can be rewritten as

sts · · ·︸ ︷︷ ︸
m(s,t)

= tst · · ·︸ ︷︷ ︸
m(s,t)

(1.1)

with m(s, t) ≥ 2 factors. If m(s, t) = 2, then st = ts is called a commutation relation.
Otherwise, if m(s, t) ≥ 3, then the relation in (1.1) is called a braid relation. The replacement

sts · · ·︸ ︷︷ ︸
m(s,t)

7→ tst · · ·︸ ︷︷ ︸
m(s,t)

will be referred to as a commutation if m(s, t) = 2 and a braid move if m(s, t) ≥ 3.

We can represent a Coxeter system (W,S) with a Coxeter graph Γ having

(1) vertex set S and

(2) edges {s, t} for each m(s, t) ≥ 3.

Each edge {s, t} is labeled with its corresponding bond strength. Since m(s, t) = 3 occurs
frequently, it is customary to omit this label. Note that s and t are not connected by an edge
in the graph if and only if m(s, t) = 2. There is a one-to-one correspondence between Coxeter
systems and Coxeter graphs. That is, given a Coxeter graph Γ, we can uniquely reconstruct
the corresponding Coxeter system. If (W,S) is a Coxeter system with corresponding Coxeter
graph Γ, we may denote the Coxeter group as W (Γ) and the generating set as S(Γ) for clarity.
Also, the Coxeter system (W,S) is said to be irreducible if and only if Γ is connected. If the
graph Γ is disconnected, the connected components correspond to factors in a direct product
of the corresponding Coxeter groups [9]. The Coxeter graphs given in Figure 1.1 correspond
to the Coxeter systems that will be primarily addressed in this thesis.

Example 1.2.1.

(a) The Coxeter system of type An is given by the graph in Figure 1.1(a). We can construct
the corresponding Coxeter group W (An) with generating set S(An) = {s1, s2, . . . , sn}
and defining relations

(1) s2i = e for all i;

(2) sisj = sjsi when |i− j| > 1;

(3) sisjsi = sjsisj when |i− j| = 1.

3



4
· · ·

s1 s2 s3 s4 sn−1 sn

(a) An

· · ·
s1 s2 sn−1 sn

sn+1

(b) Ãn

4 4
· · ·

s0 s1 s2 s3 sn−2 sn−1

(c) Bn

· · ·
44

s0 s1 s2 s3 sn−1 sn

(d) C̃n

· · ·
s1 s2 s3 s4 sn−2 sn−1

s0

(e) Dn

4
· · ·

s1 s2 s3 s4 sn−1 sn

(f) Fn

m

s1 s2

(g) I2(m)

Figure 1.1: Examples of a few Coxeter graphs.

The Coxeter group W (An) is isomorphic to the symmetric group Symn+1 under the
correspondence si 7→ (i, i+ 1), where (i, i+ 1) is the adjacent transposition that swaps
i and i+ 1.

(b) The Coxeter system of type Bn is given by the graph in Figure 1.1(c). We can construct
the corresponding Coxeter group W (Bn) with generating set S(Bn) = {s0, s1, . . . , sn−1}
and defining relations

(1) s2i = e for all i;

(2) sisj = sjsi when |i− j| > 1;

(3) sisjsi = sjsisj when |i− j| = 1 for i, j ∈ {1, 2, . . . , n− 1};
(4) s0s1s0s1 = s1s0s1s0.
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The Coxeter group W (Bn) is isomorphic to the group, SymB
n , of signed permutations

on the set {1, 2, . . . , n}. We discuss SymB
n in more detail in Section 5.1.

(c) The Coxeter system of type C̃n is given by the graph in Figure 1.1(d). We can construct

the corresponding Coxeter group W (C̃n) with generating set S(C̃n) = {s0, s1, . . . , sn}
and defining relations

(1) s2i = e for all i;

(2) sisj = sjsi when |i− j| > 1 for i ∈ {0, 2, . . . , n};
(3) sisjsi = sjsisj when |i− j| = 1 for i ∈ {1, 2, . . . , n− 1};
(4) s0s1s0s1 = s1s0s1s0;

(5) snsn−1snsn−1 = sn−1snsn−1sn.

Note that W (C̃n) has n+ 1 generators. It turns out that W (C̃n) is an infinite group.

The Coxeter graphs given in Figure 1.2 correspond to the collection of irreducible finite-
type Coxeter systems, whose corresponding Coxeter groups are finite, while the Coxeter
graphs given in Figure 1.3 are the so-called irreducible affine Coxeter systems, whose cor-
responding Coxeter groups are infinite [9]. From now on we will refer to a finite Coxeter
system to be a system where W (Γ) is finite. Note that W (Bn) is one of the irreducible finite

Coxeter groups, so it is finite, while W (C̃n) is one of the affine groups making it infinite.
The irreducible affine Coxeter systems are unique in that if a vertex is removed along with
the corresponding edges from the Coxeter graph, the newly created graph will result in a
Coxeter system with a finite Coxeter group.

Given a Coxeter system (W,S), a word sx1sx2 · · · sxm in the free monoid S∗ on S is called
an expression for w ∈ W if it is equal to w when considered as a group element. If m is
minimal among all expressions for w, the corresponding word is called a reduced expression
for w. In this case, we define the length of w to be l(w) := m. Each element w ∈ W
may have multiple reduced expressions that represent it. If we wish to emphasize a specific,
possibly reduced, expression for w ∈ W we will represent it as w = sx1sx2 · · · sxm (using
sans serif font). If u, v ∈ W , we say that the product uv is reduced if l(uv) = l(u) + l(v).
Matsumoto’s Theorem, which follows, tells us more about how reduced expressions for a
given group element are related.

Proposition 1.2.2 (Matsumoto, [6]). Let (W,S) be a Coxeter system. If w ∈ W , then
given a reduced expression for w we can obtain every other reduced expression for w by a
sequence of braid moves and commutations of the form

sts · · ·︸ ︷︷ ︸
m(s,t)

→ tst · · ·︸ ︷︷ ︸
m(s,t)
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4
· · ·

(a) An

4
· · ·

(b) Bn

m

(c) I2(m)

· · ·
(d) Dn

(e) E6 (f) E7

(g) E8

4

(h) F4

5

(i) H3

5

(j) H4

Figure 1.2: Irreducible finite Coxeter systems.

where s, t ∈ S and m(s, t) ≥ 2. �

It follows from Matsumoto’s Theorem that if a generator s appears in a reduced expression
for w ∈ W , then s appears in all reduced expressions for w. Let w ∈ W and define the support
of w, denoted supp(w), to be the set of all generators that appear in any reduced expression
for w. If supp(w) = S, we say that w has full support.

Given w ∈ W and a fixed reduced expression w for w, any subsequence of w is called a
subexpression of w. We will refer to a subexpression consisting of a consecutive subsequence
of w as a subword of w.
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∞

(a) Ã2

· · ·

(b) Ãn

4
· · ·

(c) B̃n

· · ·
44

(d) C̃n

· · ·

(e) D̃n (f) Ẽ6

(g) Ẽ7 (h) Ẽ8

4

(i) F̃4

6

(j) G̃4

Figure 1.3: Irreducible affine Coxeter systems.

Example 1.2.3. Let w = s7s2s4s5s3s2s3s6 be an expression for w ∈ W (A7). Then we have

s7s2s4s5s3s2s3s6 = s7s4s2s5s3s2s3s6

= s7s4s5s2s3s2s3s6

= s7s4s5s3s2s3s3s6

= s7s4s5s3s2s6,

where the purple-highlighted text corresponds to a commutation, the teal-highlighted text
corresponds to a braid move, and the red-highlighted text corresponds to cancellation. This
shows that the original expression w is not reduced. However, it turns out that s7s4s5s3s2s6
is reduced. Thus, l(w) = 6 and supp(w) = {s2, s3, s4, s5, s6, s7}.
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Let (W,S) be a Coxeter system and let w ∈ W . We define the left descent set and right
descent set of w as follows:

L(w) := {s ∈ S | l(sw) < l(w)}

R(w) := {s ∈ S | l(ws) < l(w)}.
In [2] it is shown that s ∈ L(w) (respectively, R(w)) if and only if there is a reduced
expression for w that begins (respectively, ends) with s.

Example 1.2.4. The following list consists of all reduced expressions for a particular w ∈
W (B4):

s0s1s2s1s3 s0s2s1s2s3
s0s1s2s3s1 s2s0s1s2s3

We see that l(w) = 5 and w has full support. Also, we see that L(w) = {s0, s2} while
R(w) = {s1, s3}.

Given a Coxeter system (W,S), for any subset I ⊆ S, define WI to be the subgroup of
W generated by all s ∈ I. Such a subgroup is called a parabolic subgroup of W . By Section
5.5 of [9], for I ⊆ S, the corresponding parabolic subgroup forms a Coxeter system (WI , I)
with the given values m(s, t).

1.3 Fully Commutative Elements

Let (W,S) be a Coxeter system of type Γ and let w ∈ W (Γ). Following [12], we define a
relation ∼ on the set of reduced expressions for w. Let w1 and w2 be two reduced expressions
for w. We define w1 ∼ w2 if we can obtain w2 from w1 by applying a single commutation move
of the form st 7→ ts where m(s, t) = 2. Now, define the equivalence relation ≈ by taking
the reflexive transitive closure of ∼. Each equivalence class under ≈ is called a commutation
class. If there is a single commutation class for the set of reduced expressions for w, then we
say that w is fully commutative (FC).

The set of FC elements of W (Γ) is denoted by FC(Γ). Given some w ∈ FC(Γ) and a
starting reduced expression for w, observe that the definition of FC states that one only
needs to perform commutations to obtain all reduced expressions for w, but the following
result due to Stembridge [12] states that when w is FC, performing commutations is the only
possible way to obtain another reduced expression for w.

Proposition 1.3.1 (Stembridge, [12]). An element w ∈ FC(Γ) is FC if and only if no
reduced expression for w contains sts · · ·︸ ︷︷ ︸

m(s,t)

as a subword for all m(s, t) ≥ 3. �
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In other words, w is FC if and only if no reduced expression provides the opportunity to
apply a braid move. For example, in a Coxeter system of type Bn an element is FC if no
reduced expression contains the subwords s0s1s0s1, s1s0s1s0, sksk+1sk, and sk+1sksk+1 where
0 < k ≤ n − 2. In a Coxeter system of type C̃n, an element is FC if no reduced expression
for the element contains the subwords seen above with 0 < k ≤ n− 1 and does not contain
the subwords sn−1snsn−1sn and snsn−1snsn−1.

Example 1.3.2. Let w1 = s1s0s1s3s4s5s2s4s6 be a reduced expression for w ∈ W (C̃6).
Applying the commutation s2s4 7→ s4s2, we can obtain another reduced expression for w,
namely w2 = s1s0s1s3s4s5s4s2s6, which is in the same commutation class as w1. How-
ever, applying the braid move s4s5s4 7→ s5s4s5, we obtain another reduced expression
w3 = s1s0s1s3s5s4s5s2s6. Note that since w3 was obtained by applying a braid move, w3 is in
a different commutation class from w1 and w2. Since w has at least two commutation classes,
one containing w1 and w2 and another containing w3, w is not FC by Proposition 1.3.1.

Stembridge classified the Coxeter systems whose groups contain a finite number of FC
elements, the so-called FC-finite Coxeter groups. Both W (An) and W (Bn) are finite Coxeter

groups, and thus, are FC-finite. On the other hand, W (C̃n) is infinite and happens to also
contain infinitely many FC elements. There exist infinite Coxeter groups that contain finitely
many FC elements. For example, W (En) for n ≥ 9 (see Figure 1.4) is infinite, but contains
only finitely many FC elements.

Proposition 1.3.3 (Stembridge, [12]). The irreducible FC-finite Coxeter systems are of
type An with n ≥ 1, Bn with n ≥ 2, Dn with n ≥ 4, En with n ≥ 6, Fn with n ≥ 4, Hn with
n ≥ 3, and I2(m) with 5 ≤ m <∞. �

The irreducible FC-finite Coxeter graphs are given in Figure 1.4. Note that the irre-
ducible finite Coxeter systems given in Figure 1.2 certainly have only a finite number of FC
elements. So the irreducible FC-finite Coxeter systems contain the irreducible finite Coxeter
systems. However, notice there are a few graphs in Figure 1.2 that we have not yet encoun-
tered. Specifically, we have not yet encountered the Coxeter groups determined by graphs
in Figures 1.4(d) for n ≥ 9, 1.4(e) for n ≥ 5, 1.4(f) for n ≥ 5. All of these Coxeter systems
have corresponding infinite groups for sufficiently large n, yet contain only finitely many FC
elements.

1.4 Heaps

We now discuss a visual representation of Coxeter group elements. Each reduced expression
can be associated with a labeled partially ordered set (poset) called a heap. Heaps provide

9



4
· · ·

(a) An

4
· · ·

(b) Bn

· · ·
(c) Dn

· · ·
(d) En

4
· · ·

(e) Fn

5
· · ·

(f) Hn

m

(g) I2(m)

Figure 1.4: Irreducible FC-finite Coxeter systems.

a visual representation of a reduced expression while preserving the relations among the
generators. We follow the development of heaps for straight-line Coxeter groups found
in [1], [3], and [12].

Let (W,S) be a Coxeter system of type Γ. Suppose w = sx1sx2 · · · sxr is a fixed reduced
expression for w ∈ W (Γ). As in [12], we define a partial ordering on the indices {1, 2, . . . , r}
by the transitive closure of the relation l defined via j l i if i < j and sxi

and sxj
do not

commute. In particular, since w is reduced, j l i if sxi
= sxj

by transitivity. This partial
order is referred to as the heap of w, where i is labeled by sxi

. Note that for simplicity we
are omitting the labels of the underlying poset yet retaining the labels of the corresponding
generators.

It follows from [12] that heaps are well-defined up to commutation class. That is, given
two reduced expressions w1 and w2 for w ∈ W that are in the same commutation class, the
heaps for w1 and w2 will be equal. In particular, if w ∈ FC(Γ), then w has one commutation
class, and Thus, w has a unique heap. Conversely, if w1 and w2 are in different commutation
classes, then the heap of w1 will be distinct from the heap of w2.

Example 1.4.1. Let w = s6s4s2s5s3s1s4s0s1 be a reduced expression for w ∈ FC(C̃6). We
see that w is indexed by {1, 2, 3, 4, 5, 6, 7, 8, 9}. As an example, 9l 8 since 8 < 9 and s0 and
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s1 do not commute. The labeled Hasse diagram for the heap poset is seen in Figure 1.5.

•s2 •s4 • s6
•s1 •s3 • s5

•s0 •s4
•s1

Figure 1.5: Labeled Hasse diagram for the heap of an element in FC(C̃6).

Let w be a reduced expression for an element w ∈ W (C̃n). As in [1] and [3] we can
represent a heap of w as a set of lattice points embedded in {0, 1, 2, . . . , n} × N. To do so,
we assign coordinates (not unique) (x, y) ∈ {0, 1, 2, . . . , n} × N to each entry of the labeled
Hasse diagram for the heap of w in such a way that:

(1) An entry with coordinates (x, y) is labeled si (or i) in the heap if and only if
x = i;

(2) If an entry with coordinates (x, y) is greater than an entry with coordinates (x′, y′)
in the heap then y > y′.

Although the above is specific to W (C̃n), the same construction works for any straight-
line Coxeter graph with the appropriate adjustments made to the label set and assignment
of coordinates. Specifically, for type An our label set is {1, 2, . . . , n} and for type Bn our
label set is {0, 1, . . . , n− 1}.

In the case of any straight-line Coxeter graph, it follows from the definition that (x, y)
covers (x′, y′) in the heap if and only if x = x′±1, y′ < y, and there are no entries (x′′, y′′) such
that x′′ ∈ {x, x′} and y′ < y′′ < y. This implies that we can completely reconstruct the edges
of the Hasse diagram and the corresponding heap poset from a lattice point representation.
The lattice point representation can help us visualize arguments that are potentially complex.
Note that in our heaps the entries fully exposed to the top (respectively, bottom) correspond
to the generators occurring in the left (respectively, right) descent set of the corresponding
reduced expression.

Let w be a reduced expression for w ∈ W (C̃n). We denote the lattice point representation
of the heap poset in {0, 1, 2, . . . n}×N described in the preceding paragraphs via H(w). If w
is FC, then the choice of reduced expression for w is irrelevant and we will often write H(w)
and we refer to H(w) as the heap of w. Note that we will use the same notation for heaps
in Coxeter groups of all types with straight-line Coxeter graphs.

Let w = sx1sx2 · · · sxr be a reduced expression for w ∈ W (C̃n). If sxi
and sxj

are adjacent
generators in the Coxeter graph with i < j, then we must place the point labeled by sxi

at
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a level that is above the level of the point labeled by sxj
. Because generators in a Coxeter

graph that are not adjacent do commute, points whose x-coordinates differ by more than
one can slide past each other or land in the same level. To emphasize the covering relations
of the lattice point representation we will enclose each entry in the heap in a square with
rounded corners (called a block) in such a way that if one entry covers another the blocks
overlap halfway. In addition, we will also label each square for si with i.

There are potentially many ways to illustrate a heap of an arbitrary reduced expression,
each differing by the vertical placement of the blocks. For example, we can place blocks in
vertical positions as high as possible, as low as possible, or some combination of low/high.
In this thesis, we choose what we view to be the best representation of the heap of each
example and when illustrating the heaps of arbitrary reduced expressions we will discuss the
relative position of the entries but never the absolute coordinates.

We say that a block in the heap for a reduced expression is fully exposed to the top
(respectively, bottom) to mean that the top (respectively, bottom) edge of a heap block is
not covered by any blocks above (respectively, below) in the heap. That is, there are no
blocks that cover part of the top or bottom edge of the heap. Since there are multiple heap
representations when w ∈ W (Γ) is not FC, it is possible that a block that is fully exposed
in one heap may not be fully exposed in a different heap representing w.

Example 1.4.2. Let w = s6s4s2s5s3s1s4s0s1 be a reduced expression for w ∈ FC(C̃6) as
seen in Example 1.4.1. Figure 1.6 shows a possible lattice point representation for H(w).
Since w is FC this is the unique heap representation for w. Because w has a unique heap,
we can obtain L(w) (respectively, R(w)) from the blocks that are fully exposed to the top
(respectively, bottom) of the heap. We see that L(w) = {s2, s4, s6} and R(w) = {s1, s4}.

2 4 6

1 3 5

0 4

1

Figure 1.6: A lattice point representation for the heap of an FC element in W (C̃6).

Example 1.4.3. Let w1 = s0s2s4s3s2s1 be a reduced expression for w ∈ W (C̃4). Apply-
ing the commutation move s2s4 7→ s4s2, we can obtain another reduced expression for w,
namely w2 = s0s4s2s3s2s1, which is in the same commutation class as w1, and hence has the
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same heap. However, applying the braid move s2s3s2 7→ s3s2s3, we obtain another reduced
expression w3 = s0s4s3s2s3s1. Note that since w3 was obtained by applying a braid move, w3

is in a different commutation class than w1 and w2. Representations of H(w1), H(w2), and
H(w3) are seen in Figure 1.7, where the braid relation is colored in teal. From the heaps we
see that L(w) = {s0, s2, s4} and R = {s1, s3}. However, if we only had one heap or the other,
we would miss some elements in the left and right descent sets as s3 is not fully exposed to
the bottom of the heap in Figure 1.7(a) and s2 is not fully exposed to the top of the heap in
Figure 1.7(b).

0 2 4

3

2

1

(a) H(w1) and H(w2).

0 4

3

2

1 3

(b) H(w3)

Figure 1.7: Two heaps of a non-FC element in W (C̃4).

As for expressions, it will be helpful to have the notion of a subheap. Let w = sx1sx2 · · · sxr

be a reduced expression for w ∈ W (Γ). We define a heap H ′ to be a subheap of H(w) if
H ′ = H(w′) where w′ = sy1sy2 · · · syk is a subexpression of w. We emphasize that the
subexpression need not be a subword (i.e., a consecutive subexpression).

Recall that a subposet Q of P is called convex if y ∈ Q whenever x < y < z in P and
x, z ∈ Q. We will refer to a subheap as a convex subheap if the underlying subposet is convex.

Example 1.4.4. Let w = s3s2s1s2s5s4s6s5 be a reduced expression for w ∈ W (C̃7). Now let
w′ = s5s4s5 be the subexpression of w that results from deleting all but the fifth, sixth, and
last generators of w. Then the subheap H(w′) is seen in Figure 1.8(a). However, H(w′) is not
convex since there is an entry in H(w) labeled by s6 occurring between the two consecutive
occurrences of s5 that does not occur in H(w′). However, if we do include the entry labeled
by s6, then we get the subheap seen in Figure 1.8(b), which is convex.

It will be extremely useful for us to be able to quickly determine whether a heap corre-
sponds to an element in FC(Bn) or FC(C̃n). The next proposition is a special case of [12,
Proposition 3.3] and follows easily when one considers the consecutive subwords that are

impermissible in reduced expressions for elements in FC(Bn) and FC(C̃n) as discussed in
Section 1.3.
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5

4

5

(a)

5

4 6

5

(b)

Figure 1.8: Subheap and convex subheap of the heap for an element in W (C̃7).

Proposition 1.4.5. Let (W,S) be a Coxeter system of type C̃n. If w ∈ FC(C̃n), then H(w)
cannot contain any of the configurations seen in Figure 1.9, where 0 < k < n− 1 and we use
a square with a dotted boundary to emphasize that no element of the heap may occupy the
corresponding position. �

1

0

1

0

(a)

0

1

0

1

(b)

k + 1

k

k + 1

(c)

k

k + 1

k

(d)

n

n− 1

n

n− 1

(e)

n− 1

n

n− 1

n

(f)

Figure 1.9: Impermissible configurations for heaps of FC(C̃n).

Since W (Bn) is a parabolic subgroup of W (C̃n), we can use Figure 1.9 to classify the
impermissible configurations for elements of FC(Bn). In particular, the impermissible con-
figurations for elements of FC(Bn) are those seen in Figures 1.9(a), 1.9(b) 1.9(c), and 1.9(d).
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Chapter 2

Star Reductions and Property T

2.1 Star Reductions

The notion of a star operation was originally introduced by Kazhdan and Lusztig in [10] for
simply-laced Coxeter systems (i.e., m(s, t) ≤ 3 for all s, t ∈ S), and was later generalized
to all Coxeter systems in [11]. If I = {s, t} is a pair of non-commuting generators of a
Coxeter group W , then I induces four partially defined maps from W to itself, known as
star operations. A star operation, when it is defined, increases or decreases the length of an
element to which it is applied by 1. For our purposes it is enough to only define the star
operations that decrease the length of an element by 1, and as a result we will not develop
the notion in full generality.

Let (W,S) be a Coxeter system of type Γ and let I = {s, t} ⊆ S be a pair of generators
with m(s, t) ≥ 3. Let w ∈ W (Γ) such that s ∈ L(w). We say w is left star reducible by s with
respect to t if m(s, t) ≥ 3, s ∈ L(w), and t ∈ L(sw). We analogously define w to be right
star reducible by s with respect to t. Observe that w is left (respectively, right) star reducible
if and only if w = stu (respectively, w = uts), where the product on the right hand side of
the equation is reduced with u ∈ W (Γ) and m(s, t) ≥ 3. We say that w is star reducible if
it is either left or right star reducible.

Example 2.1.1. Let w = s0s1s0s2 be a reduced expression for w ∈ W (B3). We see that w
is left star reducible by s0 with respect to s1 to s1s0s2 since m(s0, s1) = 4 and s0 ∈ L(w)
while s1 ∈ L(s0w). Notice that w is FC and R(w) = {s2, s0} since s0 and s2 commute. We
see that ws2 = s0s1s0 and ws0 = s0s1s2. Note that in both instances s1 /∈ R(ws2) = {s0}
and s1 /∈ L(ws0) = {s2}. Because of this w is not right star reducible.

It may be helpful to visualize star reductions in terms of heaps. Let (W,S) be a Coxeter
system with straight-line Coxeter graph Γ and let I = {s, t} ⊆ S be a pair of generators with
m(s, t) ≥ 3. Suppose w is left star reducible by s with respect to t. Then there exists a heap
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for some reduced expression of w where the block for s is fully exposed to the top such that
removing the block for s off of the top allows for t to now be fully exposed to the top of the
heap. Similarly, if w is right star reducible by s with respect to t, then there exists a heap
for some reduced expression of w where the block for s is fully exposed to the bottom of the
heap such that removing the block for s off the bottom allows for t to now be fully exposed
to the bottom. Conversely, if a heap of w ∈ W (Γ) has this property, then w is star reducible.
In Figure 2.1 we see the top portion of two possible heap representations of an element that
is left star reducible by s with respect to t, where the dotted square indicates that no block
may occupy this position. Notice that flipping the heap upside down in Figure 2.1 will result
in a heap that is right star reducible.

s

t

(a)

s

t

(b)

Figure 2.1: A visual representation of an element that is left star reducible by s with respect
to t.

The following example utilizes heaps to show that an element is star reducible.

Example 2.1.2. Let w = s0s1s0s2 be a reduced expression for w ∈ W (B4). Note that w
is FC. By Example 2.1.1 we know that w is left star reducible by s0 with respect to s1. In
Figure 2.2(a), we see the heap of w. Notice that the block for s0 is fully exposed to the top
of the heap. Removing the block for s0 gives the heap in Figure 2.2(b). Notice that the
block for s1 is now fully exposed to the top of the heap. Hence, w is left star reducible by
s0 with respect to s1. However, notice that the blocks for s0 and s2 are fully exposed to the
bottom. In removing either of these blocks individually we are unable to fully expose s1 to
the bottom. Thus, we can see that w is not right star reducible.

It is important to note that for non-FC group elements, when we are evaluating for star
reducibility we must consider all heap representations for the element before concluding that
it is not star reducible. That is, if w is not FC, then we are not be able to say that w is not
star reducible when viewing a single heap as there could be a different heap for w in which
we are able to fully expose a block that was previously blocked in a different heap.

Example 2.1.3. Let w = s3s1s2s1s0s1s3s0s2s4 be a reduced expression for w ∈ W (C̃3).
The heap of w is given in Figure 2.3(a), where we have highlighted a braid in teal. Notice
that this heap appears to not be star reducible since if we were to remove the block for s1
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20

1

0

(a)

20

1

(b)

Figure 2.2: Visualization of Example 2.1.1.

or s3 individually we would not fully expose s2 to the top of the heap. The same goes for
attempting to fully expose blocks in the bottom of the heap. However, when we perform the
braid move, resulting in the heap seen in Figure 2.3(b), it is now obvious that the element is
star reducible. Thus, when considering a non-FC element for star reducibility via the heap,
it is very important to consider all heaps for that element.

1 3

2

1

0

1 3

0 2 4

(a)

2

3

1

20

1 3

0 2 4

(b)

Figure 2.3: Visualization of Example 2.1.3.

We say that w ∈ W (Γ) is star reducible to a product of commuting generators if there is
a sequence

w1 = w 7→ w2 7→ · · · 7→ wn

where for each 1 ≤ i ≤ n, wi is left star reducible or right star reducible to wi+1 with respect
to some pair {si, ti}, and wn is a product of commuting generators. Using the notion of star
reduction we are now able to introduce the concept of a star reducible Coxeter group. Let
(W,S) be a Coxeter group of type Γ. We say that (W,S) or W (Γ) is star reducible if every
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element of FC(Γ) is star reducible to a product of commuting generators. Notice that we
are restricting to just the FC elements in W (Γ). Visually a star reducible Coxeter group can
be thought of in the following way. Given a heap for an element in FC(Γ), we are able to
systematically remove fully exposed blocks from the top or bottom of the heap and at each
step have a block that was previously not fully exposed become fully exposed until we are
left with a heap that can be drawn as a single row.

In [8], Green classified all star reducible Coxeter groups.

Proposition 2.1.4 (Green, [8]). Let (W,S) be a Coxeter system of type Γ. Then (W,S)
is star reducible if and only if each component of Γ is either a complete graph with labels
m(s, t) ≥ 3 or is one of the following types: type An (n ≥ 1), type Bn (n ≥ 2), type Dn

(n ≥ 4), type Fn (n ≥ 4), type Hn (n ≥ 2), type I2(m) (m ≥ 3), type Ãn (n ≥ 3 and n even),

type C̃n (n ≥ 3 and n odd), type Ẽ6, or type F̃5. �

2.2 Property T

In [8], Green utilizes the following theorem to help classify the star reducible Coxeter groups.

Proposition 2.2.1 (Green, [8], Theorem 4.1). Let (W,S) be a star reducible Coxeter system
of type Γ, and let w ∈ W . Then one of the following possibilities occurs for some Coxeter
generators s, t, u with m(s, t) 6= 2, m(t, u) 6= 2, and m(s, u) = 2:

(1) w is a product of commuting generators;

(2) w has a reduced product w = stu;

(3) w has a reduced product w = uts;

(4) w has a reduced product w = sutv. �

Notice that Items (2) and (3) indicate an element that is left or right star reducible,
respectively. Also notice that an element w that has the form of Item (1) does not meet
the conditions of Items (2) and (3). In particular, w is not star reducible if it satisfies the
condition of Item (1). Lastly, note that if an element w is of the form of Item (4) and not of
the form of Items (2) and (3), then w is not star reducible. Note that Items (2), (3), and (4)
are not mutually exclusive.

Motivated by the proposition above, we define the notions of Property T and T-avoiding.
Let (W,S) be a Coxeter system of type Γ and let w ∈ W . We say that w has Property T
if and only if there exists a reduced product for w such that w = stu or w = uts where
m(s, t) ≥ 3 and u ∈ W . That is, w has Property T if there exists a reduced expression for
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w that begins or ends with a product of non-commuting generators. An element w ∈ W (Γ)
is called T-avoiding if w does not have Property T. This implies that a T-avoiding element
is not star reducible.

Since elements that are star reducible also have Property T we already know how to
visualize Property T in terms of heaps. Visually a product of commuting generators be
made into a single row heap by pushing all the blocks into the same vertical position. It
is clear that a single row heap will not portray the characteristic of Property T as seen in
Figure 2.1 and Thus, a product of commuting generators is T-avoiding, which we state as a
proposition.

Proposition 2.2.2. Let (W,S) be a Coxeter system of type Γ. If w ∈ W (Γ) such that w is
a product of commuting generators, then w is T-avoiding. �

We will call the identity or an element that is a product of commuting generators type
I T-avoiding, which we abbreviate as T1-avoiding. If w is T-avoiding and not a of type I,
we will say that w is type II T-avoiding, which we abbreviate as T2-avoiding. It is not clear
that T2-avoiding elements exist. Referring back to Green’s classification (Proposition 2.2.1)
of what elements in star reducible Coxeter groups look like, we see that Item (1) corresponds
to an element w being T1-avoiding, Items (2) and (3) refer to the element w having Property
T on the left and right, respectively and Item (4) refers to an element being T2-avoiding
provided no reduced expression for the element exhibits Items (2) and (3). In star reducible
Coxeter systems, every FC element is star reducible to a product of commuting generators,
which implies that no FC element can be T2-avoiding in such groups. For example, as will
be seen in Chapters 3 and 5, the Coxeter systems of type An and Bn have no T2-avoiding
elements, while the Coxeter systems of type Dn do.

Example 2.2.3. Let w = s1s3s5 be a reduced expression for w ∈ W (A5). Since w is a
product of commuting generators, by Proposition 2.2.2 we know that w is T1-avoiding.

Example 2.2.4. Let w1 = s5s3s2s4s1 be a reduced expression for w ∈ W (A5). At first
glance it may appear that w does not have Property T since both s1 and s4 commute as
well as s3 and s5. However, note that applying the commutation move s4s2 7→ s2s4 results
in w2 = s1s2s4s3s5. Hence w has Property T since m(s1, s2) = 3 and there is a reduced
expression for w that begins with s1s2. In Figure 2.4 we see the heap of w. Note that we can
see Property T in the bottom of the heap highlighted in orange. In addition to the orange
highlighted subheap, w also has Property T with respect to s3 and s2 in the top of the heap,
and s4 and s5 in the bottom of the heap.

Example 2.2.5. Let w = s0s2s4s1s3s0s2s4 be a reduced expression for w ∈ W (C̃4). The
heap of w is seen in Figure 2.5. It turns out that w is FC and T2-avoiding. Notice that no
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2 4

1

Figure 2.4: Heap of an element with Property T.

matter which single block we remove that is fully exposed to the top of the heap no new
element becomes fully exposed. The same applies to the bottom of the heap. Thus, w is
T2-avoiding.

0 2 4

1 3

0 2 4

Figure 2.5: Heap of a T2-avoiding element in W (C̃4).

One thing to notice here is that all Coxeter groups have T1-avoiding elements as the
identity is T1-avoiding and they also contain products of commuting generators, since indi-
vidual elements of S are considered products of commuting generators. The more interesting
T2-avoiding elements do not appear in all Coxeter groups. In Chapter 3 we will summarize
what is known about the T-avoiding elements in Coxeter systems of types Ãn, An, Dn, Fn,
and I2(m), and in Chapters 5 and 4 we classify the T-avoiding elements in Coxeter systems

of types Bn and C̃n.

2.3 Non-Cancellable Elements

We now introduce the concept of weak star reducibility, which is related to the notion of
cancellable in [4]. Let (W,S) be a Coxeter system of type Γ and let I = {s, t} ⊆ S be a
pair of non-commuting generators. If w ∈ FC(Γ), then w is left weak star reducible by s with
respect to t to sw if

(1) w is left star reducible by s with respect to t, and

(2) tw /∈ FC(Γ).
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Notice that Condition (2) implies that l(tw) > l(w). Also note that we are restricting our
definition of weak star reducible to the set of FC elements of W (Γ). We analogously define
right weak star reducible by s with respect to t to ws. We say that w is weak star reducible if w
is either left or right weak star reducible. Otherwise, we say that w is non-cancellable. Notice
that from this we know that if w ∈ W (Γ) is weak star reducible, the w is star reducible.
However, w being star reducible does not imply that w is weak star reducible.

Again it might be useful to visualize the concept of weak star reducibility in terms of
heaps. Recall that in Section 2.1 we described what a star reduction looks like in terms of
heaps. Since the definition of weak star reducible includes that the element a heap represents
is star reducible we again need to have those properties illustrated in Figure 2.4. In addition,
for a heap to be weak star reducible, adding the block that becomes fully exposed when a
block is removed from the heap must create a braid in the heap forcing the new larger heap
to not be FC. That is, one of the impermissible configurations seen in Section 1.4 will appear
at the top or bottom of the heap.

Example 2.3.1. Let w = s0s1s0s2 be a reduced expression for w ∈ W (B4) as in Example ??.
Figure 2.6(a) shows the heap of w. Notice that in the heap we can clearly see that w is left
star reducible by s0 with respect to s1. In Figure 2.6(b) we see that adding s1 to the top
of the heap creates a braid which is highlighted in orange. Therefore, w is left weak star
reducible by s0 with respect to s1 to w = s1s0s2. In addition, Example 2.1.1 showed that w
is not right star reducible and hence w is not right weak star reducible.

0 2

1

0

(a) Heap of w

20

1

0

1

(b) Heap of s1w

Figure 2.6: Heap of a weak star reducible element of FC(B4).

Example 2.3.2. Let w ∈ FC(B4) and let w = s0s1 be a reduced expression for w. Note
that w is left (respectively, right) star reducible by s0 with respect to s1 (respectively, by
s1 with respect to s0). However, s1s0s1 ∈ FC(B4) (respectively, s0s1s0 ∈ FC(B4)). The
corresponding heap for w appears in Figure 2.7. Clearly when s0 is added to the bottom of
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the heap, the new heap is still in FC(B4) and the same can be said when s1 is added to the
top of the heap. Thus, w is non-cancellable.

0

1

Figure 2.7: Heap of a non-cancellable element of FC(B4).

In [3], Ernst classified the non-cancellable elements in Coxeter systems of type W (Bn)

and W (C̃n). We will state part of the classification here as it is important to the development

of the T2-avoiding elements in W (C̃n) for n odd. For the full classification see [3, Sections
4.2 and 5].

Before we state the classification we first define a specific group element in W (C̃n) for n
odd which we will refer to as a sandwich stack, an example of which is seen in Figure 2.8.
Notice that this element has full support, is FC, and is T2-avoiding.

0 2 · · · n− 2 n

1 3 · · · n− 1

0 2 · · · n− 2 n

Figure 2.8: Heap of a sandwich stack in FC(C̃n) for n odd.

We can extend this pattern to the heap seen in Figure 2.9. Like the smaller example
in Figure 2.8 the element that corresponds to this heap has full support, is FC, and is
T2-avoiding. We define sandwich stacks to be the elements in W (C̃n) for n odd that have a
heap of the form given in Figure 2.9.

Remark 2.3.3. In Coxeter systems of type C̃n for n odd, the sandwich stacks are the only
T2-avoiding non-cancellable elements with full support. All other types of non-cancellable
elements in W (C̃n) (n odd) that were classified in [3] do not have full support or have

Property T. This is important to our classification of T-avoiding elements in W (C̃n) for n
odd.
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0 2 · · · n− 2 n

1 3 · · · n− 1

0 2 · · · n− 2 n

...

1 3 · · · n− 1

0 2 · · · n− 2 n

Figure 2.9: Heap of a sandwich stack in FC(C̃n) for n odd.
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Chapter 3

T-Avoiding Elements in Coxeter
groups of Types Ãn, An, Dn, Fn, and
I2(m)

In this chapter we classify the T-avoiding elements in Coxeter systems of types Ãn, An, Dn, Fn,
and I2(m). All of the results presented in this Chapters are previously known with the ex-
ception of I2(m).

3.1 Types Ãn and An

In this section we state what is already known classification regarding T-avoiding elements
in Coxeter systems of type Ãn and An and we present a conjecture regarding the T2-avoiding
elements in W (Ãn for n even. We first focus on W (Ãn).

Proposition 3.1.1. If n ≥ 2 and n is odd, then there are no T2-avoiding elements in W (Ãn).

Otherwise, if n ≥ 2 and n is even, then W (Ãn) contains T2-avoiding elements.

Proof. This is [5, Proposition 3.1.2] after a translation of terminology. �

The classification seen in [5] did not specifically classify the T2-avoiding elements for type

Ãn for n even. The following is our conjecture regarding what the T2-avoiding elements are
in W (Ãn) for n even.

Conjecture 3.1.2. The only T2-avoiding elements in W (Ãn) for n even are of the form
(s0s2 · · · sn−2sns1s3 · · · sn−3sn−1)k for k ∈ Z+.
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Recall that W (Ãn), for n even, is not a star reducible Coxeter group (Proposition 2.1.4).

Hence it is possible that the T2-avoiding elements in W (Ãn), for n even, are FC. Further,

as W (An) is a parabolic subgroup of W (Ãn) and W (An) is a star reducible Coxeter group,
any FC T2-avoiding elements must have full support. First notice that

w = (s0s2 · · · sn−2sns1s3 · · · sn−3sn−1)k

is a reduced product. Also, w is FC, and has full support. In addition, w is in fact T-
avoiding. Since W (Ãn) does not have a straight-line Coxeter graph, the heaps in W (Ãn)
are more appropriately viewed as three-dimensional. We can envision the element above
as a “castle turret” in which every block is in the wall. As stated in the conjecture we
believe that these are the only T2-avoiding elements. However, it remains an open question
as to whether there are any T2-avoiding elements in W (Ãn) \ FC(Ãn). Classifying these
T2-avoiding elements remains an open problem. We now proceed with the classification of
T-avoiding elements in Coxeter groups of type An.

Theorem 3.1.3. There are no T2-avoiding elements in W (An).

Proof. Notice that the Coxeter graph of type An can be obtained from the Coxeter graph
of type Ãk, for k > n. This is done by removing the appropriate number of vertices and
edges from the Coxeter graph of type Ãk. Since W (Ãk) for k even has no T2-avoiding
elements, this forces W (An) to not have T2-avoiding elements. Thus, W (An) does not have
any T2-avoiding elements. �

3.2 Type Dn

In this section we summarize the previously known classification of the T-avoiding elements
in Coxeter systems of type Dn, seen in [7]. Recall that W (Dn) is a star reducible Coxeter
group and as a result any potential T2-avoiding elements are not FC.

Proposition 3.2.1. There are T2-avoiding elements in W (Dn) for n ≥ 4.

Proof. This is a consequence of [7, Section 2.2]. �

We now will classify these elements as seen in [7]. Before we do so we define interval
notation useful to the classification from [7, Definition 2.3.1]. For 2 ≤ i ≤ j denote the
element sisi+1 · · · sj−1sj by [i, j]. For i ≥ 3, denote s1s3s4 · · · si by [1, i] and for j ≥ 2 denote
s1s2s3 · · · sj by [0, j]. If 0 ≤ j < i and i ≥ 2 define [j, i] = [i, j]−1. Finally, for i, j ≥ 3
denote sisi−1si−2 · · · s4s3s1s2s3s4 · · · sj by [−i, j]. The following determines the classification
for T-avoiding elements in W (Dn).
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Proposition 3.2.2. Let w ∈ W (Dn) be T2-avoiding. Then w = wku (reduced product) for
some m ≤ k ≤ n, where u is the identity or is a product of commuting generators such that
supp(u) ⊆ {sm+2, sm+3, sm+4, . . . , sn} and

wn =

{
[2, 0][4, 0] · · · [k − 2, 0][k, 0][k − j, k − 2j] · · · [k − 1, k − 2][k, k] n even

[2, 0][4, 0] · · · [m− 2, 0][m, 0][m− k,m− 2k] · · · [m− 1,m− 2][m,m] n odd

where m = k − 1 and

j =

{
k
2
− 2 if k is even

k−1
2
− 2 if k is odd.

Proof. This is [7, Lemmas 2.2.18 and 2.3.4]. Although it is not immediately obvious, wn is
reduced and not FC. �

In Figure 3.1, we see two different elements that are T-avoiding in W (D5). Notice that
the blocks that are highlighted in red alternate, this prevents the teal-highlighted braid from
forcing its way to the top or the bottom of the heap. Due to the fork in the graph we must
make slight alterations to heaps for W (Dn). Specifically we allow s0 and s1 to occupy the
same horizontal placement.

0 3 5

2 4

1 3

2

0 3

2 4

1 3 5

Figure 3.1: Visual representation of a T2-avoiding element in W (D5).

3.3 Type Fn

In this section we state the known but unpublished classification of T-avoiding elements in
Coxeter systems of type F4 and F5. Note that these results are not needed in Chapters 5
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and 4.
We start with the Coxeter system of type F5. Recall that W (F5) is a star reducible

Coxeter group so any T2-avoiding elements will not be FC. Before we begin the classification
we introduce the notion of a specific element in W (F5) called a bowtie, which is given by the
heap in Figure 3.2. Note that in Figure 3.2(a), the orange blocks correspond to the elements
that have bond strength 4. It turns out that the expression determined by this heap is in fact
reduced. Looking at the heap in Figure 3.2(b), we have highlighted a braid in teal. We can
obtain a “stack of bowties” by removing the top-most layer of the given heap of the bowtie
and adding a new bowtie to the stack. Doing this repeatedly results in the heap seen in
Figure 3.3. Similar to a single bowtie, the expression that corresponds to a stack of bowties
is reduced and not FC. These heaps are referenced in the following unpublished theorem by
Cross, Ernst, Hills-Kimball, and Quaranta (2012), which classifies the T-avoiding elements
in the Coxeter systems of type F5.

1 3 5

2 4

3

2 4

1 3 5

(a)

1 3 5

2 4

3

2 4

1 3 5

(b)

Figure 3.2: Heap of a single bowtie in W (F5).

Proposition 3.3.1. The only T2-avoiding elements in W (F5) are stacks of bowties. �

As a result of the classification in type F5, Cross et al. were also able to classify the
T-avoiding elements in W (F4).

Corollary 3.3.2. There are no T2-avoiding elements in the Coxeter system of type F4.

Proof. Since there are no T2-avoiding elements in W (F5) that do not have full support,
we know that there are not any T2-avoiding elements in W (F4). Because if there were
T2-avoiding elements they would also be T2-avoiding in W (F5). �
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1 3 5

2 4

3

2 4

1 3 5

2 4

3

2 4

1 3 5

...

1 3 5

2 4

3

2 4

1 3 5

Figure 3.3: Heap of a stack of bowties in W (F5).

Cross et al. conjectured that in Coxeter systems of type Fn for n ≥ 5, an element is
T2-avoiding if and only if it is a stack of bowties multiplied by a product of commuting
generators, where the product of commuting generators does not contain the the generators
appearing in the stack of bowties. In 2013, Gilbertson and Ernst worked with this conjecture
and quickly found it to be false. The heap seen in Figure 3.4 corresponds to a T2-avoiding
element in the Coxeter group of type F6 that is not a bowtie. It turns out that like the
bowties discussed above these elements can also be stacked to create an infinite number
of T2-avoiding elements. In addition, as n gets large there are a number of modifications
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that can be made that result in additional T2-avoiding elements. From this we conjecture
that the classification of T-avoiding elements in Coxeter systems of type Fn for n ≥ 6 gets
complicated very quickly. Classifying T-avoiding elements in W (Fn) for n ≥ 6 remains an
open problem.

2 4 6

3 5

2 4

1 3

2

1 3

2 4

3 5

2 4 6

Figure 3.4: Heap of a T2-avoiding element in W (F6).

3.4 Type I2(m)

In this section, we classify the T-avoiding elements in Coxeter systems of type I2(m). Note
that in Coxeter systems of type I2(m), the only products of commuting generators have
length 1. Although the following is a quick result, we believe that it does not already appear
in the literature.

Theorem 3.4.1. There are no T2-avoiding elements in Coxeter systems of type I2(m).

Proof. The graph for the Coxeter system of I2(m) appears in Figure 1.2(c). Note that the
graph consists of two vertices, namely, s1 and s2, and a single edge with weight m. Also,
recall that W (I2(m)) is a star reducible Coxeter group. This implies that any T2-avoiding
elements in W (I2(m)) must not be FC, as all of the FC elements have Property T or are
T1-avoiding. The only non-FC element in W (I2(m)) is the element of length m that has
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exactly two reduced expressions consisting of alternating products of s1 and s2. Cleary, this
element begins and ends with a product of non-commuting generators. Thus, this element
has Property T. Hence W (I2(m)) has no T2-avoiding elements. �
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Chapter 4

T-Avoiding Elements in Coxeter
groups of Types C̃n and Bn

4.1 T-Avoiding Elements in Coxeter Groups of Type C̃n

In this section we will classify the T-avoiding elements in Coxeter systems of type C̃n, a new
result. We will first show that there are no T2-avoiding elements that are not FC in W (C̃n).

Before we begin the proof we must first define the notion of a pushed-down representation
of a heap. First recall that there are potentially many ways to draw the lattice point
representation of a heap, each differing by the amount of vertical space between blocks. We
wish to fix one such representation. Let w be a reduced expression for w ∈ W (C̃n). We
construct the pushed-down representation of H(w) by first giving all blocks fully exposed
to the bottom the same vertical position, and then all other blocks are placed as low as
possible in the heap. That is, the heap has been constructed by placing all blocks in the
lowest possible vertical position of the heap. Notice that we can now label the rows in the
heap from bottom to top where the bottom-most row is row 1 and proceed naturally upward
from there.

We now define the height of a braid. Given the presence of a braid in the heap of a
reduced expression w, we define the height of the braid to be the row number in which
the uppermost block involved in the braid is located in the pushed-down representation. It
is important to note that in the pushed-down representation, a braid may not appear in
consecutive rows. That is, some of the blocks involved in a braid may be lower in the heap
and the braid may not be immediately apparent.

Example 4.1.1. Let w = s0s1s3s2s1s0s1s3 be a reduced expression for w ∈ W (C3). The
pushed-down representation of the heap for w is given in Figure 4.1. The height of the braid
s1s2s1, which is highlighted in teal in Figure 4.1, is 5 since the upper block for s1 is located
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in the fifth row of the pushed-down representation of the heap. Notice that the block for s3
can slide up higher in the heap. If we were to slide the block for s3 up until it hits the block
for s2 we would obtain the braid s3s2s3 in the heap. In this case, the height for the braid
s3s2s3 is also 5.

0

31

2

1

0

1 3

Figure 4.1: Pushed-down representation of a heap.

We now show that there are no T2-avoiding elements in W (C̃n) \ FC(C̃n). We first need
the following lemma.

Lemma 4.1.2. Let w = uv (reduced) in a Coxeter system of type C̃n such that v is FC and
has a reduced expression beginning with s0s1 · · · sn−1snsn−1. Then w has Property T on the
right.

Proof. Let w = uv (reduced) in a Coxeter system of type C̃n such that v is FC and has a
reduced expression beginning with s0s1 · · · sn−1snsn−1. The top of the heap for v is shown in
Figure 4.2(a) which must be a convex subheap of the heap for some reduced expression for
w. If H(v) is equal to the heap in Figure 4.2(a), then v, and hence w, have Property T on
the right. If the heap given in Figure 4.2(a) is not the complete heap for v, then since v is
FC, it must be the case that the heap in Figure 4.2(b) is a convex subheap of H(v). Since
we must avoid the impermissible heap configurations of Proposition 1.4.5 we see that H(v)
must have a zigzagging shape that changes direction every time it encounters s0 or sn. That
is,

v = (s0s1 · · · sn−1snsn−1 · · · s1)m
{
s0s1 · · · sj−1sj, for j ≤ n

s0s1 · · · sn−1snsn−1 · · · sj, for j > 1.

From this we see that w ends with sj−1sj or sj+1sj which implies w has Property T on the
right. �
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0

1

2
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4

. . .
. . .

n− 1

n

n− 1

(a)

0

1

2

3

4

. . .
. . .

n− 1

n

n− 1

n− 2

(b)

Figure 4.2: The subheap of w discussed in Lemma 4.1.2.

Theorem 4.1.3. There are no T2-avoiding elements in W (C̃n) \ FC(C̃n).

Proof. We proceed by contradiction. Let w ∈ W (C̃n) \ FC(C̃n) such that w is T2-avoiding.
Consider all possible pushed-down representations for heaps of w. Choose a representation
that has a minimal height braid among all braids appearing in all heaps for w and let k
represent that minimum height. There may be a tie, in which case choose your favorite.
Without loss of generality we assume the generators involved in the braid are si−1 and si,
where the bond strength is case specific. In the following cases we give the height of a
braid and unless we indicate otherwise whenever we refer to a block being in a specific row,
we are considering the pushed-down representation of the heap. In order to consider the
braids that we are looking for we need to allow some flexibility when referring to the vertical
position of a given block. In the following cases, all subheaps are assumed to be convex. We
proceed by considering 4 cases, where we handle k = 3 when m(si−1, si) = 3 and k = 4 when
m(si−1, si) = 4 in Case (1). For Cases (2), (3), and (4) we assume that k ≥ 4.

Case (1): In this case, we are assuming that the braid is located in consecutive rows
with the upper-most block in either row 3 or row 4 depending on the bond strength and the

33



lowest block involved in the braid is located in the bottom-most row of the heap.
Subcase (1.1): Suppose k = 3. This implies that m(si−1, si) = 3. Without loss of

generality assume si−1 is in the bottom-most row of the heap. Clearly, the block for si+1

must be in the bottom-most row of the heap as well, otherwise w has Property T, which is
a contradiction to the original choice of w. Restricting our focus to the subheap of w that
contains the braid we are considering, we see that this subheap of w has the following form

i− 1 i+ 1

i

i− 1

where the blocks for si−1 and si+1 are in the bottom-most row of the heap and are thus fully
exposed. Applying the braid move we get the subheap seen here

i+ 1

i

i− 1

i

which clearly has Property T since si−1 is now in the first row of the pushed-down represen-
tation. This is a contradiction to the way in which we chose w.

Subcase (1.2): Suppose k = 4. This implies that m(si−1, si) = 4. Without loss of
generality assume si−1 = s0 and si = s1. The other case being si−1 = sn−1 and si = sn which
we could handle with a symmetric argument.

Subcase (1.2.1): First we take s0 to be the topmost block in the braid. Then we obtain
the subheap seen here

1

0

1

0
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which clearly indicates that w has Property T on the right. This is a contradiction to the
way in which we chose w.

Subcase (1.2.2): Now we take s1 to be the topmost block involved in the braid. Clearly,
the block for s2 must be in the bottom-most row of the heap as well, otherwise w has
Property T, which is a contradiction to the orginal choice of w. Restricting our focus to the
subheap of w that contains the braid we are considering, we see that the subheap of w has
the following form

i

i− 1 i+ 1

i

i− 1

where the blocks for si−1 and si+1 are in the bottom-most row of the heap and are thus fully
exposed. Applying the braid move we get the subheap seen here

2

1

0

1

0

which shows that w has Property T since si−1 is now in the first row of a pushed-down
representation for w. This is a contradiction to the way in which we chose w. For the rest
of the cases we will assume that k ≥ 4.

Case (2): Suppose the braid has height k and assume the braid does not involve s0, s1, sn−1
or sn. This implies that m(si−1, si) = 3, m(si−2, si−1) = 3 and m(si, si+1) = 3. Without loss
of generality assume si is in the kth row of the heap and if necessary we have brought the
blocks for si−1 and si up next to si in row k. We now consider which blocks may occur in
the (k − 3)th row of the heap in two cases.

Subcase (2.1): Assume that the block for si−1 is in the heap in the (k − 3)th row and
we allow for the block for si+1 to be in the same row as well, but it does not necessarily
have to be. In the following figures of subheaps, the block for si+1 will be represented in
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a purple-striped block to indicate that it could be present but it does not have to be. The
following is the subheap that we are considering

i− 1 i+ 1

i− 2 i

i− 1

i

where we have highlighted the braid in teal. Notice that the block for si−2 is present in the
(k−2)th row otherwise there is a braid with height less than k and w would not be reduced.
Applying the braid move to the heap we get the following subheap

i− 1 i+ 1

i− 2

i− 1

i

i− 1

which has a new braid in it. This braid, which we have highlighted in red for emphasis, has
height k − 1. In applying the braid move we have obtained a heap which has a braid with
height less than k our original choice. This is a contradiction to the way in which we chose
our heap.

Subcase (2.2): Assume that the block for si+1 is in the (k − 3)th row of the heap and
the block for si−1 does not appear in the (k− 3)th row. The following is the subheap we are
considering

i+ 1

i

i− 1

i
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where the dotted square represents that si−1 may not occupy the indicated position and the
braid is highlighted in teal. Applying the braid move in the subheap we obtain the following
heap

i+ 1i− 1

i

i− 1

where the height of the new braid is k − 1. This contradicts the way in which we chose the
heap of w. From this we gather that the braid must contain s0, s1, sn−1, or sn.

Case (3): Suppose the braid has height k and assume the braid contains s2 or sn−2.
Without loss of generality we assume that the braid contains s2 as the other argument is
symmetric to the one presented here. Notice that if the braid contains s2s3s2, we are in Case
(2), as a result we assume our braid is of the form s1s2s1 or s2s1s2.

Subcase (3.1): Assume the block for s1 is in row k, then as we are not in Case (1) we
know that at least one of the blocks for s0, s2 are in the (k − 3)th row.

Subcase (3.1.1): Assume that the block for s0 is in row k − 3 but the block for s2 is not
in row k − 3. The following is the subheap we are considering

0

1

2

1

where we have highlighted the braid in teal and have indicated with dotted blocks positions
which cannot be occupied. Applying the braid move to the heap we get the following subheap

0 2

1

2

where the new braid now has height k − 1. This contradicts the way in which we chose the
heap of w.
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Subcase (3.1.2): Assume that the block for s2 is in row k. Potentially the block for s0 is
in row k, however it does not have to be, so we emphasize this in the following heap with a
purple-striped block. Then the subheap we are considering is as follows

20

1

2

1

where the braid we are considering in the heap is highlighted in teal. Notice that if this was
the heap for w, the expression for w would not be reduced. This forces the block for s3 to
be in the heap as follows:

20

1

2

1

3

Applying the braid move to the heap we get the following subheap

0 2

3

2

1

2

where a new braid has appeared which we have highlighted in red. Notice that the height
of this new braid is k − 1, which is a contradiction to the original choice of w.

Subcase (3.2): Assume s2 is in row k. This implies that at least one of the blocks for s1
or s3 is in the (k − 3)th row. We proceed in cases.
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Subcase (3.2.1): Assume that only the block for s3 is in row k − 3. Then we have the
subheap

3

2

1

2

where we have highlighted the heap in teal. Applying the braid move to this subheap we
obtain the following subheap

1 3

2

1

where the braid has height k− 1, which is a contradiction to the way in which we chose the
heap for w.

Subcase (3.2.2): Assume that the block for s1 is in row k − 3 and the block for s3 is not
in row k − 3. Then we have the subheap

1

2

1

2

where we have highlighted the braid in teal. Notice that if this is the actual subheap, the
corresponding expression for w is not reduced, so we know that s0 must appear in the heap
which we illustrate here
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0

1

2

1

2

applying the braid move to the heap we obtain the following subheap

1

0

1

2

1

Notice that there are no new braids. However, we know that this cannot be the bottom row
of our subheap as then w has Property T on the right. This implies that the block for s2
is in the row beneath the blocks for s1 and s3. Notice that s0 cannot be in this row since
otherwise the heap would contain a lower braid. This leads to the heap

1

0

1

2

1

2

where we have emphasized that s0 cannot be in the position with a dotted block. Again
this cannot be the bottom row of the subheap and utilizing the same argument we get the
following heap
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1

0

1

2

1

2

3

Again this cannot be the bottom row of the heap. Iterating this argument, we get the
following subheap:

1

0

1

2

1

2

3

4

. . .
. . .

n− 1

n

n− 1

But then by Lemma 4.1.2 w has Property T on the right. This is a contradiction to the way
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in which we chose w.
Subcase (3.2.3): Assume that blocks for s1 and s3 are in row k − 3. Then the subheap

we are considering is

1 3

20

1

2

where the braid is highlighted in teal. Applying the braid move we get the following subheap

1 3

0

1

2

1

where no new braids have appeared, and in fact the original braid is higher now with height
k+1. Notice however, that the (k−3)th row will not be the bottom row of our heap because
w would have Property T with respect to s1 and s0, a contradiction to our assumption. With
this in mind we consider the (k − 4)th row. Notice that s0 will not appear in the (k − 4)th
row as we would have a lower braid. This implies that the (k − 4)th row contains at least
one of s2 or s4. We handle this scenario in three additional subcases.

Subcase (3.2.3.1): Suppose s2 is in the (k − 4)th row but s4 is not. Then we have the
subheap
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2

1 3

0

1

2

1

where we have highlighted the new block in red. We have also placed dotted blocks in
positions where no blocks may appear. Notice that if this new row is row 1, then w would
have Property T with respect to s2 and s1. As before, this cannot be the bottom row of our
heap. However, the presences of s1 or s3 in the next row will create a braid with height less
than k as seen here

2

1 3

0

1

2

1

31

where we have highlighted the new blocks with red-stripes. This is a contradiction to the
way in which we chose w.

Subcase (3.2.3.2): Suppose s4 is in the (k − 4)th row but s2 is not. Then we have the
subheap
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4

1 3

0

1

2

1

where we have highlighted the new block in red. Notice that if this new row is row 1, then
w would have Property T with respect to s3 and s4. Again, this implies that this is not the
bottom row of the heap. Repeating this process again we obtain the subheap

3 5

4

1 3

0

1

2

1

Then we have the subheap:
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5

4

1 3

0

1

2

1

Iterating this process we end up with the subheap:

5

4

1 3

0

1

2

1

. . .
. . .

n− 2

n− 1

n

n− 1

where we have highlighted the additions in red and have placed dotted blocks in positions
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that blocks may not occupy. It is clear that must continue the heap diagonally downward
to the left, but if we end before reaching s0 the heap would have Property T, which is a
contradiction to the way in which we chose w. Suppose that the zig-zag continues on after
reaching s0. Then we are able to drop the block for s1 down and create a lower braid. This
is a contradiction to the way in which we chose w.

Subcase (3.2.3.3): Suppose the blocks for s2 and s4 are in the (k − 4)th row. Then we
have the subheap

2 4

1 3

0

1

2

1

This subheap has Property T in the bottom with respect to s2 and s1. Thus this cannot be
the bottom row of our heap. Repeating this process, we see that s1 will not be in row k − 5
since this would create a lower braid. Thus we must have s3 or s5 in the (k − 5)th row. We
represent this with the following subheap

3 5

2 4

1 3

0

1

2

1

where again we have highlighted the additions in red and put dotted blocks where no block
may appear. Notice that if we were to only place one of the blocks for s3 or s5 we would
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quickly be in Subcase (3.2.3.1) or (3.2.3.2) above. Thus we know we must place both s3
and s5 in the (k − 5)th row. Again, if the (k − 5)th row is the first row, then w would
have Property T with respect to s3 and s2. This implies that the (k − 5)th row is not the
bottom-most row in our heap. Iterating this process we obtain the following subheap

1

2

1

0

1 3

2

3

4

5

4

. . .
. . .

. . .

n− 3 n− 1

n− 2 n

where again we see that if the row containing the blocks for sn−2 and sn corresponds to row
1, then w would have Property T with respect to sn−2 and sn−3. Continuing in this manner,
we obtain the following subheap
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1

2

1

0

1 3

2

3

4

5

4

. . .
. . .

. . .

n− 4 n− 2

n− 3 n− 1

n− 2 n

n− 1n− 3

where the red blocks correspond to a portion of an FC element. Recall that as we created
this subheap we placed blocks in a manner to prevent a braid from appearing with height
less than k we prevented blocks from being placed inside the double diagonal (signified by
the dotted blocks). However the orange blocks create a new braid with height less than k.
This is a contradiction to the way in which we chose w.

Case (4): Suppose the braid has height k and assume the braid contains s1 or sn−1.
Without loss of generality we assume that the braid contains s1, as the the other argument
is symmetric to the one presented here. Notice that if the braid is s1s2s1, then we are in
Case (3), so assume the braid consists of s0 and s1.

Subcase (4.1): In this case, we take our braid to be s1s0s1s0. Assume that, if necessary,
the blocks that complete the braid have been brought up next to s1 in the kth row. We now
consider which blocks can occur in the (k − 3)th row and (k − 4)th row in two cases. We
know that row k − 3 is not the bottom row of our heap which implies s1 must be in row
k − 4. Notice that if the block for s2 is not in the (k − 3)th row then the expression for w
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was not reduced. Assume the block for s2 is located in the (k− 3)th row. Then the subheap
we are considering is

0 2

1

0

1

where the braid we mentioned is highlighted in orange. Applying the braid move we get the
following subheap

2

1

0

1

0

in which we see that the original braid is now located higher in the heap with height k + 1.
Since k > 4 (otherwise we are in Case (1)), we know that in the original heap, s0 and s2 are
located above row 1. This implies that the heap for w has more rows underneath, which we
will now systematically fill in.

Subcase (4.1.1): We first consider if the block for s1 is located in row k − 4 in the heap
immediately above and s3 is allowed but not required to be there. This leads to the following
heap:
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31

2

1

0

1

0

Notice that the block for s0 cannot be in between the blocks for s1 which are highlighted in
red, since otherwise the corresponding expression for w is not reduced. This implies that we
have

31

2

1

0

1

0

where we have indicated the absence of the block for s0 as usual. In the above there is a
new braid has height k− 2 which is has height lower than k, the height of the original braid
that we chose. This is a contradiction to the way in which we chose w.

Subcase (4.1.2): Now we consider the case where the block for s3 is in the (k − 4)th row
and the block for s1 is not. This leads to the following subheap:
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3

2

1

0

1

0

Although there are no new braids present, the bottom row of the subheap is not the bottom
row of the heap for w since otherwise w would have Property T. Repeating the above
argument we extend our heap to look like

4

3

2

1

0

1

0

where again we see no new braids. Again, we know that the bottom row of the subheap
above is not the bottom row of the heap for w since otherwise w would have Property T.
Iterating this process we obtain a heap that looks like:
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0

1

0

1

2

3

4

. . .
. . .

n− 1

n

n− 1

Then by Lemma 4.1.2 we know that w has Property T on the right. This is a contradiction
to the way in which we chose the heap for w.

Subcase (4.2): Assume the braid of height k is s0s1s0s1. We now consider which blocks
may occur in row k− 4. Notice that s0 cannot be in the (k− 4)th row as the corresponding
expression for w would not be reduced. This implies that s2 is in the (k − 4)th row as the
(k − 3)th row cannot be row 1, otherwise we are in Case (1.2.1). From this we get the
subheap

2

1

0

1

0

where we have highlighted the braid in orange. Applying the braid move we get the following
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subheap

0 2

1

0

1

where the height of the braid is now k−1. This is a contradiction to our original assumption
that the heap we started with contains the lowest braid.

Therefore, it follow that W (C̃n) does not contain any not FC T2-avoiding elements. �

We will now classify the T2-avoiding elements in W (C̃n). We first classify T2-avoiding

elements in W (C̃n) for n odd and then proceed to the classification for n even.

Theorem 4.1.4. If n is odd, then there are no T2-avoiding elements in Coxeter systems of
type C̃n.

Proof. Consider the Coxeter system of type C̃n. By Theorem 4.1.3 we know that W (C̃n)

contains no T2-avoiding elements that are not FC. Recall that W (C̃n) is a star reducible

Coxeter group, which implies that W (C̃n) contains no T2-avoiding elements that are FC.

Thus, ,as W (C̃n) has no T2-avoiding elements that are FC and no T2-avoiding elements that

are not FC, W (C̃n) has no T2-avoiding elements. �

We next classify the T2-avoiding elements in Coxeter systems of type C̃n for n even.
Recall that W (C̃n) for n even is not a star reducible Coxeter group. In Theorem 4.1.3 we

showed that W (C̃n) does not have T2-avoiding elements that are not FC. This leaves us with
only the FC elements to check.

Theorem 4.1.5. If n is even, then the only T2-avoiding elements in W (C̃n) are sandwich
stacks.

Proof. Let w ∈ W (C̃n) such that w is T2-avoiding. By Theorem 4.1.3, we know that w is an
FC element. Further, we can restrict our search to the subset of non-cancellable elements
that are not star reducible. Specifically we can consider the non-cancellable elements that
do not contain Property T. Recall that in Remark 2.3.3 we stated that the only T2-avoiding
elements with full support are sandwich stacks. Thus, the only T2-avoiding elements in
W (C̃n) for n odd are sandwich stacks. �
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4.2 T-Avoiding Elements of Type Bn

Unlike the type C̃n case, classifying T-avoiding elements in Coxeter systems of type Bn is
straight forward.

Theorem 4.2.1. There are no T2-avoiding elements in Coxeter systems of type Bn.

Proof. Each W (Bn) is a parabolic subgroup of W (C̃k) for k ≥ n and k odd. Since W (C̃k)
for k odd has no T2-avoiding elements, then W (Bn) will not have any T2-avoiding elements.
�

In the next Chapter, we characterize Property T and T-avoiding in Coxeter systems in
terms of signed pattern avoidance.
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Chapter 5

Characterization of Property T in
Coxeter systems of Type Bn

Mimicking the classification of T-avoiding elements of Coxeter systems of Type Dn seen
in [7], we characterize Property T and T-avoiding elements of Coxeter systems in type Bn.
We start by introducing some combinatorial tools for Coxeter systems of type Bn.

5.1 Combinatorial Tools

Recall from Example 1.2.1 that W (Bn) ∼= SymB
n (also called the hyperoctahedral group).

We define SymB
n to be the group of all bijections w of the set {−n, . . . ,−1, 0, 1, 2, . . . , n}

such that
w(−a) = −w(a)

for all a ∈ {−n, . . . ,−1, 0, 1, 2, . . . , n}. For w ∈ SymB
n we write w = [a1, a2, . . . , an], to mean

that w(i) = ai for i ∈ {1, 2, . . . n} and call this the signed permutation notation of w. That
is, we can write w ∈ W (Bn) using signed permutation notation

w = [w(1), w(2), . . . , w(n− 1), w(n)],

where we write a bar underneath a number in place of a negative sign in order to simplify
notation.

As a set of generators for SymB
n we take S(Bn) = {s0, s1, s2, . . . , sn−1}, where for each

i ∈ {1, 2, . . . n− 1}, we have

si = [1, 2, . . . i− 1, i+ 1, i, i+ 2, . . . , n− 1, n]

and we identify s0 with
s0 = [1, 2 . . . , n].

55



Further w(−i) = −w(i) for |i| ∈ {1, 2, . . . , n}. The following propositions provide insight
into what happens to a given signed permutation when we multiply by si on the right or the
left.

Proposition 5.1.1. Let w ∈ W (Bn) with corresponding signed permutation

w = [w(1), w(2), . . . , w(n)].

Suppose si ∈ S(Bn). If i ≥ 1, then multiplying w on the right by si has the effect of
interchanging w(i) and w(i+1) in the signed permutation notation. If i = 0, then multiplying
w on the right by si has the effect of switching the sign of w(1).

Proof. This follows from [2, Section 8.1 and A3.1]. �

Proposition 5.1.2. Let w ∈ W (Bn) with corresponding signed permutation

w = [w(1), w(2), . . . , w(n)].

Suppose si ∈ S(Bn). If i ≥ 1, then multiplying on the left by si has the effect of interchanging
the entries whose absolute values are i and i+1 in the signed permutation notation. If i = 0,
then multiplying w on the left by si has the effect of switching the sign of the entry whose
absolute value is 1.

Proof. This follows from [2, Section 8.1 and A3.1]. �

Suppose w ∈ W (Bn) has reduced expression w = sx1sx2 · · · sxn . We may construct the
signed permutation of w from left to right as it is the easier way to multiply based upon
the above propositions. However, note that our convention is still composition from left to
right. We provide an example of this construction below.

Example 5.1.3. Let w ∈ W (B6) with a given reduced expression w = s0s1s3s4s5s2. Then we
iteratively build the signed permutation as follows. First, s0 = [1, 2, 3, 4, 5, 6] by definition.
Next s0s1 = [2, 1, 3, 4, 5, 6] since multiplying by s1 on the right hand side switches the values
in position 1 and position 2. Repeating this we get s0s1s3 = [2, 1, 4, 3, 5, 6] and ultimately
we end with w = [2, 4, 1, 5, 6, 3].

Given the signed permutation notation for an element w ∈ W (Bn) we can easily calculate
the left and right descent sets of w. The following proposition explains how.

Proposition 5.1.4. Let w ∈ W (Bn). Then

R(w) = {si ∈ S | w(i) > w(i+ 1)}

where w(0) = 0 by definition.
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Proof. This is [2, Proposition 8.1.2]. �

We now will introduce the concept of signed pattern avoidance, which will help with the
classification of the T-avoiding elements in Coxeter systems of type Bn. Our approach mimics
the one found in [7]. Let w ∈ W (Bn), and let a, b, c ∈ Z. We say that w contains the signed
consecutive pattern abc if there is some i ∈ {1, 2, . . . , n−2} such that (|w(i)|, |w(i+1)|, |w(i+
2)|) is in the same relative order as (|a|, |b|, |c|) and sgn(w(i)) = sgn(a), sgn(w(i + 1)) =
sgn(b), and sgn(w(i + 2)) = sgn(c), where typically one takes a, b, c to be a subset of the
set {±1,±2,±3}. We say that w avoids the signed consecutive pattern abc if there is no
i ∈ {1, 2, . . . , n−2} such that (|w(i)|, |w(i+ 1)|, |w(i+ 2)|) is in the same consecutive order as
(|a|, |b|, |c|) such that sgn(w(i)) = sgn(a), sgn(w(i+1)) = sgn(b), and sgn(w(i+2)) = sgn(c).

Example 5.1.5. Let w ∈ W (B4) with signed permutation

w = [2, 4, 1, 3].

We see that w has the signed consecutive pattern 231, since (|w(1)|, |w(2)|, |w(3)|) are in the
same relative order as (| − 2|, |3|, | − 1|), and sgn(w(1)) = sgn(−2), sgn(w(2)) = sgn(3), and
sgn(w(3)) = sgn(−1). However, w avoids the signed consecutive pattern 123.

Occasionally, we will need to factor w ∈ W (Bn) in a specific manner. Let I = {s, t} for
s, t ∈ S(Bn) such that s and t do not commute. Define W I as the set of all w ∈ W (Bn) such
that L(w) ∩ I = ∅ and define WI = 〈s, t〉. In [9], it is shown that any element w ∈ W (Bn)
can be written as w = wIwI (reduced) where wI ∈ W I and wI ∈ WI .

5.2 Signed Consecutive Patterns and Property T

By Theorem 4.2.1 there are no T2-avoiding elements in Coxeter systems of type Bn. If n = 2,
there are 8 elements in W (B2). In this case, the T1-avoiding elements are

[12] = e

[12] = s0

[21] = s1

and the elements with Property T are

[21] = s1s0

[21] = s0s1

[12] = s1s0s1

[21] = s0s1s0

[12] = s0s1s0s1 = s0s1s0s1.
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For the remainder of this section we assume that n ≥ 3. There are 23 · 3! = 48 possible
choices of signed consecutive triples as seen in the table below.

123 123 123 123 123 123 123 123
132 132 132 132 132 132 132 132
213 213 213 213 213 213 213 213
231 231 231 231 231 231 231 231
312 312 312 312 312 312 312 312
321 321 321 321 321 321 321 321

The following propositions provide a characterization of elements with Property T in
Coxeter systems of type Bn for n ≥ 3 in terms of pattern containment.

Proposition 5.2.1. An element w ∈ W (Bn) has a reduced expression ending in sisi+1si
where m(si, si+1) = 3 if and only if w contains one of the following signed consecutive
patterns beginning at position i:

321 321 123 123
312 312 213 213

Proof. Suppose w contains one of the signed consecutive patterns seen above. Then there is
some i such that w(i) > w(i + 1) > w(i + 2). By Proposition 5.1.4, si, si+1 ∈ R(w). Since
m(si, si+1) = 3 and si, si+1 ∈ R(w), w ends in sisi+1si or si+1sisi+1.

Conversely, suppose w has a reduced expression ending in sisi+1si where m(si, si+1) = 3.
This implies that wI = sisi+1si where I = {si, si+1} which implies that si, si+1 ∈ R(w).
Since si, si+1 ∈ R(w), we see that w(i) > w(i+ 1) > w(i+ 2) by Proposition 5.1.4. Thus, w
contains one of the signed consecutive patterns seen above. �

Proposition 5.2.2. An element w ∈ W (Bn) has a reduced expression ending in sisi+1 where
m(si, si+1) = 3 if and only if w contains one of the following consecutive patterns beginning
at position i:

231 231 123 123
132 132 213 213

Proof. Suppose w contains one of the signed consecutive patterns seen above. Then there
is some i such that w(i + 1) > w(i) > w(i + 2). By Proposition 5.1.4, si+1 ∈ R(w). Now
multiplying on the right by si+1 we see that wsi+1(i+1) = w(i+2) and wsi+1(i) = w(i). We
know that w(i + 2) < w(i), which implies that si ∈ R(wsi+1), and hence w has a reduced
expression that ends in sisi+1.
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Conversely, suppose that w has a reduced expression ending in sisi+1 where m(si, si+1) =
3. Then w(i + 2) < w(i + 1) and w(i) < w(i + 1). Since si ∈ R(wsi+1) we have w(i + 2) =
wsi+1(i + 1) < wsi+1(i) = w(i). Thus, we have that w(i + 1) > w(i) > w(i + 2). Hence w
contains one of the signed consecutive patterns from above. �

Proposition 5.2.3. An element w ∈ W (Bn) has a reduced expression ending in si+1si where
m(si, si+1) = 3 if and only if w contains one of the following consecutive patterns beginning
at position i:

312 312 321 321
231 231 132 132

Proof. Suppose that w contains one of the signed consecutive patterns seen above. Then
there is some i such that w(i) > w(i + 2) > w(i + 1). By Proposition 5.1.4 we see that
si ∈ R(w). Multiplying on the right by si we get wsi(i+1) = w(i) and wsi(i+2) = w(i+2).
By above w(i) > w(i+ 2), and by Proposition 5.1.4 si+1 ∈ R(wsi). This implies that w has
a reduced expression ending in si+1si.

Conversely suppose w ends in a reduced expression with si+1si where m(si, si+1) = 3.
Then wI = si+1si. We see that w(i) > w(i+1) and w(i+2) > w(i+1). Since si+1 ∈ R(wsi),
we have w(i + 2) = wsi(i + 2) < wsi(i + 1) = w(i). From this we have w(i) > w(i + 2), so
w(i) > w(i + 2) > w(i + 1). Hence, w contains one of the signed consecutive patterns seen
above. �

Proposition 5.2.4. Let w ∈ W (Bn). Then w has a reduced expression ending in s1s0 if
and only if w contains one of the signed consecutive patterns:

123 123 132 132 213 213 213 213
312 312 312 312 321 321 321 321

Proof. Suppose w ∈ W (Bn) such that w ends with s1s0. Then s0 ∈ R(w) and s1 ∈ R(ws0).
This implies that ws0(1) > ws0(2) by Proposition 5.1.4. We see that ws0(1) = w(−1) =
−w(1) and ws0(2) = 2. Hence −w(1) = ws0(1) > ws0(2) = w(2). Further, since s0 ∈ R(w),
we see that w(0) > w(1). Notice that in all of the above patterns w(0) > w(1) and −w(1) >
w(2).

Conversely, suppose w ∈ W (Bn) contains one of the above signed consecutive patterns.
Notice that in all of the above patterns w(0) > w(1) and −w(1) > w(2). Since w(0) > w(1),
we know that s0 ∈ R(w). Multiplying on the right by s0 we see that ws0(1) = −w(1) and
ws0(2) = w(2). Note that since ws0(1) = −w(1) > w(2) = ws0(2), s1 ∈ R(ws0). Thus, w
ends with s1s0. �

Proposition 5.2.5. Let w ∈ W (Bn). Then w has a reduced expression ending in s0s1 if
and only if w contains one of the following signed consecutive patterns:
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213 213 231 231 321 321 312 312
123 123 132 132 123 123 132 132

Proof. Suppose w ∈ W (Bn) such that w ends with s0s1. Then s1 ∈ R(w) and s0 ∈ R(ws1).
Then ws1(0) > ws1(1). We see that ws1(0) = 0 and ws1(1) = w(2). This implies that
0 = ws1(0) > ws1(1) = 2. Further, since s1 ∈ R(w) this implies that w(1) > w(2). Thus,
if w ends with s0s1, then w(1) > w(2) and w(0) > w(2). Notice that in the above signed
consecutive patterns, all of the patterns have w(0) > w(2) and w(1) > w(2).

Conversely, suppose w ∈ W (Bn) contains one of the above signed consecutive patterns.
Notice that in all of the above patterns w(1) > w(2) and w(0) > w(2). This implies that
s1 ∈ R(W ). Multiplying w on the right by s1 we see that ws1(0) = w(0) and ws1(1) = w(2).
Note that since ws1(0) = w(0) > w(2) = ws1(1), s0 ∈ R(ws1). Thus, w ends with s0s1. �

Remark 5.2.6. In Lemmas 5.2.1–5.2.5 we classified elements that end with a given structure.
For each there is a begins with analog that can be quickly computed through evaluating the
given signed consecutive patterns in w−1. Notice that some patterns appear in more than
one proposition. For example, the signed consecutive triple 312 appears in Proposition 5.2.2
and Proposition 5.2.5.

Proposition 5.2.7. Let w ∈ W (Bn) such that each entry for w in the signed permutation
notation is positive and both w and w−1 avoid the signed consecutive patterns 321, 231, and
312, or w(−1) = −1 and every other entry is positive in the signed permutation notation.
Then w is a product of commuting generators.

Proof. When all entries are positive this from an appropriate translation of [7, Lemma 2.2.9].
It quickly follows that if w(1) = −1, then w = s0u (reduced) where u is a product of
commuting generators coming from �

Proposition 5.2.8. Let w ∈ W (Bn) such that w contains the signed consecutive pattern
231 and does not contain the signed consecutive pattern 231. Then w has Property T.

Proof. Let w ∈ W (Bn) such that w contains the signed consecutive pattern 231 and does
not contain the signed consecutive pattern 231.

Case (1): Suppose w has the signed permutation notation w = [2, 3, 1]. This implies
that w = s1s0s2. Some reduced expression for w begins with a product of non-commuting
generators. Thus, w has Property T.

Case (2): Suppose that w has the signed permutation notation w = [a, b, c, ∗, . . . , ∗] where
abc corresponds to the signed consecutive pattern 231, and ∗ indicates unknown values for
w(i) for i = 4, 5, . . . , n. We now consider the possible signed consecutive pattern bc∗. The
possibilities are: 312, 312, 321, 321, 213, or 213. We know that b and c must be positive
since they are positive in w and we also know that b > c by the original signed consecutive
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pattern. Note that by Propositions 5.2.1,and 5.2.3 all of these patterns imply that w has a
reduced expression that begins or ends with a product of non-commuting generators. Thus,
w has Property T.

Case (3): Suppose that w has the signed permutation notation

w = [∗, . . . , ∗, a, b, c, ∗, . . . , ∗]

where abc corresponds to the signed consecutive pattern 231, and ∗ indicates unknown
values for w(i) for |w(i)| 6= a, b, c. We now consider the possible signed consecutive pattern
∗ab. The possibilities are: 123, 123, 213, 213, 231, 231, 312, 312, 312, or 312. Note that
by Propositions 5.2.3, 5.2.4, and 5.2.5 all of these patterns imply that w has a reduced
expression that begins or ends with a product of non-commuting generators. Thus, w has
Property T. �

Proposition 5.2.9. Let w ∈ W (Bn) such that w contains the signed consecutive pattern
231. Then w has Property T.

Proof. Let w ∈ W (Bn) such that w contains the signed consecutive pattern 231.
Case (1): Suppose w has the signed permutation notation w = [2, 3, 1]. This implies

that w = s0s1s0s2. Some reduced expression for w begins with a product of non-commuting
generators. Thus, w has Property T.

Case (2): Suppose that w has the signed permutation notation w = [a, b, c, ∗, . . . , ∗] where
abc corresponds to the signed consecutive pattern 231, and ∗ indicates unknown values for
w(i) for i = 4, 5, . . . n. We now consider the possible signed consecutive pattern bc∗. The
possibilities are: 312, 312, 321, 321, 213, 213, 231, or 231. We know that b must be positive
since it is positive in w, c must be negative since it is negative in w, and we also know that
|b| > |c| by the original signed consecutive pattern. Note that by Proposition 5.2.2 all of
these patterns imply that w has a reduced expression that begins or ends with a product of
non-commuting generators. Thus, w has Property T.

Case (3): Suppose that w has the signed permutation notation

w = [∗, . . . , ∗, a, b, c, ∗, . . . , ∗]

where abc corresponds to the signed consecutive pattern 231, and ∗ indicates unknown values
for w(i) for |w(i)| 6= a, b, c. We now consider the possible signed consecutive pattern ∗ab.
The possibilities are: 123, 123, 132, 132, 213, 213, 231, 231, 312, 312, 321, or 321. We know
that a must be negative, b must be positive and |a| < |b| by the original signed permutation.
Note that by Propositions 5.2.3, 5.2.4, and 5.2.5 all of these patterns imply that w has a
reduced expression that begins or ends with a product of non-commuting generators. Thus,
w has Property T. �
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Proposition 5.2.10. Let w ∈ W (Bn) such that w contains the signed consecutive pattern
123 and does not contain the signed consecutive patterns 132 or 123. Then w has Property
T unless n = 3 in which case, w is T1-avoiding.

Proof. Let w ∈ W (Bn) such that w contains the signed consecutive pattern 123 and does
not contain the signed consecutive patterns 132 or 123.

Case (1): Suppose w has the signed permutation notation w = [123]. This implies that
w = s0. Clearly, w is a T1-avoiding element as it is a single generator.

Case (2): Suppose that w has the signed permutation notation w = [a, b, c, ∗, . . . , ∗]
where abc corresponds to the signed consecutive pattern 123, and ∗ indicates unknown
values for w(i) for i = 4, 5, . . . n. We now consider the possible signed consecutive patterns
bc∗. The possibilities are: 231, 231, 132, 132, 123, 123. We know that b and c are positive,
and we also know that |b| < |c| by the original signed consecutive pattern. Note that by
Propositions 5.2.2, and 5.2.5 all of these patterns imply that w has a reduced expression that
begins or ends with a product of non-commuting generators. Thus, w has Property T.

Case (3): Suppose that w has the signed permutation notation

w = [∗, . . . , ∗, a, b, c, ∗, . . . , ∗]

where abc corresponds to the signed consecutive pattern 123, and ∗ indicates unknown values
for w(i) for |w(i)| 6= a, b, c. We now consider the possible signed consecutive patterns ∗ab.
The possibilities are: 123, 123, 132, 132, 213, 213, 231, 231, 312, 312, 321, or 321. We know
that a must be negative, b must be positive and |a| < |b| by the original signed permutation.
Note that by Propositions 5.2.3, 5.2.4, and 5.2.5 all of these patterns imply that w has a
reduced expression that begins or ends with a product of non-commuting generators. Thus,
w has Property T. �

Proposition 5.2.11. Let w ∈ W (Bn) such that w contains the signed consecutive pattern
132 and does not contain the signed consecutive pattern 213. Then w has Property T unless
n = 3 in which case, w is T1-avoiding..

Proof. Let w ∈ W (Bn) such that w contains the signed consecutive pattern 132 and does
not contain the signed consecutive pattern 213.

Case (1): Suppose w has the signed permutation notation w = [132]. This implies that
w = s0s2. Clearly, w is a T1-avoiding element as it is a product of commuting generators.

Case (2): Suppose that w has the signed permutation notation w = [a, b, c, ∗, . . . , ∗] where
abc corresponds to the signed consecutive pattern 132, and ∗ indicates unknown values for
w(i) for i = 4, 5, . . . n. We now consider the possible signed consecutive pattern bc∗. The
possibilities are: 231, 231, 132, 132, 123, or 123. We know that b and c are positive,
and we also know that |b| < |c| by the original signed consecutive pattern. Note that by
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Propositions 5.2.1, 5.2.3, and 5.2.7 all of these patterns imply that w has a reduced expression
that begins or ends with a product of non-commuting generators. Thus, w has Property T.

Case (3): Suppose that w has the signed permutation notation

w = [∗, . . . , ∗, a, b, c, ∗, . . . , ∗]

where abc corresponds to the signed consecutive pattern 132, and ∗ indicates unknown values
for w(i) for w(i) 6= a, b, c. We now consider the possible signed consecutive pattern ∗ab. The
possibilities are: 312, 312, 213, 213, 321, 321, 123, 123, 132, 132, 231, or 231. We know
that a must be negative, b must be positive and |a| < |b| by the original signed permutation.
Note that by Propositions 5.2.3, 5.2.4, and 5.2.5 all of these patterns imply that w has a
reduced expression that begins or ends with a product of non-commuting generators. Thus,
w has Property T. �

Remark 5.2.12. Notice that in Propositions 5.2.8, 5.2.10 and 5.2.11 Suppose that w =
[a, b, c, d, ∗, . . . , ∗] where ∗ indicates unknown values for w(i) for i = 5, 6, . . . , n. When abc is
the signed consecutive pattern 231 and bcd is the signed consecutive pattern 213, we know
that w does not have Property T on the right. However, by Theorem 4.2.1, we know that w
must then have Property T on the left. The same goes for when abc is the signed consecutive
pattern 123 and bcd is either the signed consecutive pattern 123 or the signed consecutive
pattern 132. Also when abc is the signed consecutive pattern 132 and bcd is the signed
consecutive pattern 213.

5.3 Future Work

In Sections 3.1–3.4, we relayed the known results involving T-avoiding elements in types
Ãn, An, Dn, F4, and F5, and proved results involving T-avoiding elements in type I2(m). It
remains to be shown that the conjecture in Section 3.1 regarding the classification of the
T2-avoiding elements in type Ãn holds. The classification of T2-avoiding elements in Coxeter
systems of type Fn for n ≥ 6 also remains open.

We also portrayed several other Coxeter systems in Figures 1.2 and 1.3. The classifica-
tion of T2-avoiding elements in the Coxeter systems of type En remains an open problem.
However, we do know that these groups have T2-avoiding elements as W (Dn) (which has
T2-avoiding elements) is a parabolic subgroup of W (En). The classification of T2-avoiding
elements in the Coxeter systems of type Hn is also an open problem.

A majority of the irreducible affine Coxeter systems currently do not have a classification
of the T-avoiding elements. Specifically, Coxeter systems of type B̃n, D̃n, Ẽ6, Ẽ7, Ẽ8, and G̃4

do not have a classification. Future work could include classifying the T-avoiding elements
of the Coxeter systems mentioned above.
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