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ABSTRACT

NUMERICAL SOLUTIONS AND BIFURCATION ANALYSIS OF THE
FUČIK SPECTRUM.

MICHAEL W. MCHENRY

We use a specialized Newton’s method to approximate the Fučik spectrum
solution curves of the negative Laplacian on a real Hilbert space. We include
results for the two parameter differential equation. After computing the
spectrum, we add a nonlinear term and compute bifurcation surfaces.
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4.8 Approximate solutions û are depicted at the points (10.7591, 6.2864)

and (−126.0975, 16.2805) from Figure 4.7, respectively. . . . . 22
4.9 Solution u to Equation (1.4) at the point (−300.1682, 24.5386)

on a bifurcation branch in Figure 4.7. . . . . . . . . . . . . . . 23
4.10 Bifurcation surfaces of Equation (1.4) for the Fučik spectrum
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5.4 The Fučik spectrum for Equation (1.1) whose solutions pass

through the points (λ1,2, λ1,2), (λ2,2, λ2,2), and (λ1,3, λ1,3). . . . 29
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Chapter 1

Introduction

We use previously studied numerical methods from [6] and [7] to the 0-
Dirichlet boundary value problems associated with the two-parameter equa-
tion as follows. Note that there will be 5 different families we will cite
throughout the paper. The first set are the 3 equations for which we study
the Fučik spectrum (∆ in the following denotes the Laplacian):

PDE :

−∆u = au+ + bu− on Ω (1.1)

u = 0 on ∂Ω,

where Ω ⊆ R2, u+ = max{u, 0} and u− = min{u, 0}.

ODE :

u′′ + au+ + bu− = 0 on (0, 1) (1.2)

u(0) = 0 = u(1),

where Ω ⊆ R, u+ = max{u, 0} and u− = min{u, 0}.

Matrix :

Ax = ax+ + bx− on RN , (1.3)

where x ∈ RN , A ⊆ RN×N , x+ = max{x, 0}, x− = min{x, 0}.
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We begin by finding solutions to the Fučik spectrum for Equations (1.1),
(1.2), and (1.3). This leads to the goal of the paper which is to analyze
the bifurcations of Equation (1.5) stated below. We use numerical methods
on the ODE version of Equation (1.5) (namely Equation (1.4)) to act as a
stepping stone to reach our final goal.

ODE with non-linear term :

u′′ + au+ + bu− + u3 = 0 on (0, 1) (1.4)

u(0) = 0 = u(1),

where Ω ⊆ R, u+ = max{u, 0} and u− = min{u, 0}.

PDE with non-linear term :

∆u+ au+ + bu− + u3 = 0 on Ω (1.5)

u = 0 on ∂Ω,

where Ω ⊆ R2, u+ = max{u, 0} and u− = min{u, 0}.

We choose this problem due to the work already done on related boundary
valued problems.

Chapter 2 discusses the numerical methods that we will be using through-
out this paper. We will start with Newton’s method, as well as related meth-
ods, until we build up to the definition of the Fučik spectrum. Finally we
discuss numerical methods used in [7] which relate directly to the methods
for our specific problem.

Chapter 3 includes results for a non-linear boundary-value problem that
has previously been studied in [6]. We used this example as a stepping stone
to result in a numerical approach to approximating solutions to Equations
(1.1) and (1.2) using Equation (1.3).

Chapter 4 includes results for Equation (1.2) and (1.4). Each Equation
requires a different objective function and Jacobian to approximate solutions.
We apply numerical methods described in Chapter 2 to follow bifurcation
branches of Equation (1.4).

Chapter 5 includes results for Equation (1.1) and (1.5). Again, each
equation requires a different objective function and Jacobian to approximate
solutions, only now we are on the square Ω = (0, 1)2 ⊆ R2. Again, we
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apply all the numerical methods described in Chapter 2 to follow bifurcation
branches of Equation (1.5).

Chapter 6 includes results for follow a particular bifurcation branch from
Equation (1.5) in which complications arise as you cross the a = b diagonal.
We call it a “cusp catastrophe”. Following the branch out of the trivial solu-
tion, a secondary bifurcation occurs. We ended our research looking at what
happens to this secondary bifurcation when following the Fučik spectrum
curve.

3



Chapter 2

Preliminaries

2.1 Newton’s Method

Our numerical approximations for this paper rely heavily on the use of New-
ton’s Method. Newton’s Method is a zero-finding algorithm. For the one-
dimensional case Newton’s method is as follows: Let f : [a, b] ⊂ R → R be
a twice continuously differentiable function on [a, b]. Starting with an initial
guess x0 ∈ [a, b], iterate through the following

xn+1 = xn −
f(xn)

f ′(xn)
.

If limn→∞ xn = p, then f(p) = 0 (a root of f). Under certain hypothesis,
Newton’s Method is guaranteed to converge to a zero of f as described in
[1]. This algorithm can be applied to systems of non-linear equations as
well. The idea of the algorithm remains unchanged, but we now have an
object function G : Rn → Rn for which we wish to find the zeros of G. The
object function G takes as input a vector x ∈ Rn and outputs the vector
(G1(x), G2(x), ..., Gm(x)), where Gi : Rm → R are the component functions
of G. Then we calculate the Jacobian of our object function. The Jacobian
matrix JG is the matrix of all first-order partial derivatives of the vector
valued function G. More precisely, J : Rn → Rm+n is defined as

J =
[
∂Gi

∂xj

]
=


∂G1

∂x1

∂G1

∂x2
. . . ∂G1

∂xn
...

...
. . .

...
∂Gm

∂x1

∂Gm

∂x2
. . . ∂Gm

∂xn

 .
4



The algorithm above then becomes:

xn+1 = xn − J−1(xn)G(xn),

where J−1 is the inverse of the matrix J given above. In practice, we will be
solving the linear system Jχ = G for χ. When using MatLab to solve this
system we will use the “mldivide” operator, i.e., χ = J\G.

2.2 Tangent Newton’s method

The method to discuss next is an augmented Newton’s method. Consider an
object function which depends on some real parameter s, ie, G = G(x, s).
To achieve an algorithm which can find successive roots on our object func-
tion, we will use the tangent Gradient Newton Galerkin Augmented Method
discussed in [6], only implemented in function space rather than eigenfunc-
tion expansion coefficient space. All algorithms in this paper make use of
the fact that our vectors represent function values over a discretized set of
space-coordinates (which will be helpful when we change to a two-parameter
family).

The tangent augmented Newton’s method requires the object function G :
Rn+1 → Rn+1 and its Jacobian JG. With the introduction of the parameter s,
we now have n+ 1 unknowns (n from EQ (1.3) and s), but only n equations.
In order to solve this system we append a constraint equation to the objective
function (thus changing the Jacobian). We add a constraint κ(x, s) = 0. Our
augmented object function G̃ : Rn+1 → Rn+1 is defined by:

G̃ =

(
Gs(x)
κ(x, s)

)
.

Using G̃ in Newton’s method forces each term to be 0, hence approximating
a zero to the previously mentioned G(x, s) that also satisfies the constraint.

For the tangent Newton’s method, the constraint κ(x, s) : Rn+1 → R is
defined as

κ(x, s) = vt(x− xg, s− sg),
where the guess vector is defined by xg = xold+δvx and sg = sold+δvs. When
appended to our object function, iterations are restricted to the orthogonal
hyperplane to v. The vector v is an approximate tangent direction. For
each approximate point along a given solution curve, one calculates a new
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Figure 2.1: One iteration of the tangent Newton’s Method.

tangent direction. This tangent direction is computed and normalized every
time we converge to a solution pair (u, s), i.e.,

vnew =
(xnew − xold, snew − sold)
||(xnew − xold, snew − sold)||

,

where xnew is the current approximate point on a solution curve, and xold is
from the previous iteration.

2.3 Fučik Spectrum

Let L : V → V be a self-adjoint operator where V is a real Hilbert space.
Consider the equation:

Lu = au+ + bu−, (2.1)

where u+ = max{u, 0} and u− = min{u, 0}.

Definition 2.3.1 The Fučik spectrum of L is the set of points (a, b) such
that Equation (2.1) has a non-trivial solution, called an eigenvector (see [2]).
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Theorem 2.3.1 If u is an eigenvector with parameters (a, b), then −u is an
eigenvector with parameters (b, a).

Proof: Let u be a solution to Equation (2.1) with parameters (a, b). Note
that (−u)+ = −u− and similarly, (−u)− = −u+ for any u. Then for −u:

L(−u) = a(−u+) + b(−u−)

= a(−u)− + b(−u)+

= b(−u)+ + a(−u)−.

Therefore by Definition 2.3.1, −u is an eigenvector with parameters (b, a). �

2.3.1 A 2x2 Example

Consider L : R2 → R2 defined by L(x) = Ax, where A =

[
2 −1
−1 2

]
,

which has eigenvalues λ1 = 1 and λ2 = 3, with corresponding eigenvectors

x1 =

[
1
1

]
, x2 =

[
1
−1

]
, respectively. For λ1 = 1: The eigenvector x1 has no

change in sign. Equation (1.3) becomes

Ax = ax (2.2)

since x+ = x and x− = 0. It is easy to see that a = 1 and b ∈ R is a solution
to Equation (2.2). Similar reasoning will show that a ∈ R and b = 1 is also in
the Fučik spectrum of A. The plotted solutions are a horizontal and vertical
line through the point (1, 1).

For λ2 = 3: The eigenvector, x2, has a change in sign, so x+2 =

[
1
0

]
and

x−2 =

[
0
−1

]
. Rearranging Equation (2.1) we have

Ax− ax+ − bx− = 0.

Another way to visualize this is by the matrix[
2− a −1
−1 2− b

]
. (2.3)

7



To find non-trivial solutions we need to find where det(A) = 0, i.e., solve∣∣∣∣2− a −1
−1 2− b

∣∣∣∣ = 0

for a, obtaining the curve defined by

(2− a)(2− b) = 1, (2.4)

which is in the Fučik spectrum of A. This curve is a hyperbola that passes
through (3, 3) with asymptotes a = 2 and b = 2. The eigenvalue pairs are
depicted in Fig. 2.2.

To verify that we have found all the curves in the Fučik spectrum of A, we
start by solving Equation (2.4) for b. Now substitute b = 2a−3

a−2 into Equation
(2.3), which results in the matrix[

2− a −1
−1 1

2−a

]
.

This results in the eigenvector
[

1
2−a
]
. For a > 2, clearly 2− a < 0. It can be

easily verified that[
2 −1
−1 2

] [
1

2− a

]
= a

[
1
0

]
+

2a− 3

a− 2

[
0

2− a

]
.

For a < 2, notice that the eigenvector
[

1
2−a
]

contains positive, real numbers.
Therefore this is an eigenvector to Equation (2.2) and hence a = 1 which
implies b = 1. So while there is a piece of the hyperbola defined in Equation
(2.4) that intersects the point (1, 1), only the point (1, 1) is in the Fučik
spectrum of A. This example is also worked out in [5].

2.4 Solving Elliptical Differential Equations

using Numerical Methods

In order to numerically approximate solutions to Equation (1.2) we use the
3-point central second difference to approximate the second derivative. First
divide the interval of interest, [0, 1] for the ODE, into n + 1 equal distant
meshpoints. For the ODE let xi = ih with x0 = 0, xn+1 = 1, and h =

8



Figure 2.2: Fučik Spectrum of A.

xi+1 − xi. We truncate the endpoints to make calculations easier since we
have 0-Dirichlet boundary conditions. A regular discretization of a vector
û = (u(xi))

n−1
i=1 ∈ Rn−1 , where u : [0, 1] → R for the ODE, will have an

approximate second derivative defined by

u′′(xi) ≈
ui−1 − 2ui + ui+1

h2
,

as described in [1].
We define the second order central second difference tridiagonal matrix D̃2

by

D̃2 =



−2 1 0 . . . 0

1 −2 1 0
...

0 1 −2 1
. . .

...
. . . . . . . . . . . . 0

0 1 −2 1
0 . . . 0 1 −2


.
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Finally, we define

D2 =
1

h2
D̃2. (2.5)

The (n − 1) × (n − 1) matrix D2 enforces 0-Dirichlet boundary conditions.
Thus, for û = (g(xi))

n−1
i=1 , D2û ∈ Rn−1 is a vector consisting of approximate

second derivatives of û for use in Equation (1.2).

For Equation (1.1), with Ω = (0, 1)2, D2PDE
is a block tridiagonal matrix

which approximates the Laplacian by taking x differences within each block
and y differences across each block. We discretize the square (0, 1)2 into (n+
1)2 equally distant gridpoints denoted (xi, yj) where xi = ih and yj = jh for
h as described above. Then for u : [0, 1]2 → R2, let the regular discretization
be defined by uij = u(xi, yj). First we reshape û into a (n− 1)2 × 1 column
vector:

û =



u11
...

u1n−1
u21
...

un−1,n−1


.

We define the (n− 1)× (n− 1) matrix T by:

T =



−4 1 0 . . . 0

1 −4 1 0
...

0 1 −4 1
. . .

...
. . . . . . . . . . . . 0

0 1 −4 1
0 . . . 0 1 −4


.

Let I be the (n− 1)× (n− 1) identity matrix. Our new (n− 1)2 × (n− 1)2

10



matrix D2 for the PDE is:

D̃2PDE
=



T I 0 . . . 0

I T I 0
...

0 I T I
. . .

...
. . . . . . . . . . . . 0

0 I T I
0 . . . 0 I T


,

where D2PDE
is again given by D2PDE

= 1
h2 D̃2PDE

. That is,

(∆u)(xi, yj) ≈
ui−1,j
h2
− 2ui,j

h2
+
ui+1,j

h2
+
ui,j−1
h2
− 2ui,j

h2
+
ui,j+1

h2
.

Simplifying results in the vector D2û ∈ R(n−1)2 .

2.5 Basis of eigenfunctions

Recall that the negative Laplacian has eigenvalues satisfying

0 < λ1 < λ2 ≤ λ3 ≤ . . .→∞,

with corresponding eigenfunctions Ψj satisfying −∆Ψi = λiΨi.
For the ODE, Equation (1.2), the single-indexed eigenvalues and correspond-
ing eigenfunctions of the negative second derivative are

λj = j2π2,
Ψj(x) = sin(jπx).

(2.6)

For Equation (1.1) the doubly indexed eigenvalues and corresponding eigen-
vectors of −∆ are

λj,k = (j2 + k2)π2,
Ψj,k(x, y) = sin(jπx)sin(kπx).

(2.7)

2.6 Following a bifurcation branch

When following a bifurcation branch using Equation (1.4) or (1.5) we need
a convenient way to plot since u ∈ Rn−1. We need an alternate way of

11



representing its value by a single, real number. Any function, h : Rn−1 → R,
is what we call a schematic function. Our choice for this paper is the∞-norm
of u. Since the function u is a discretized, i.e., u = (u1, u2, ..., un−1):

||û||∞ = max{|u1|, |u2|, ..., |un−1|}.

Refer to Figure 3.1 as an example of plotting bifurcation branches using the
∞-norm.

12



Chapter 3

Example

3.1 Non-linear BVP

We begin by presenting the numerical methods of [7] which are used to
find solutions to a single parameter ODE with 0 Dirichlet boundary condi-
tions. Adaptations of these methods will apply to the two-parameter Equa-
tion (1.1). Consider these numerical methods to the family of BVP

y′′ + sy + y3 = 0 on (0, 1) (3.1)

y = 0 on ∂(0, 1).

Here, s is a single, real-valued bifurcation parameter.
When |y| � 1, the equation is dominated by the linear eigenvalue equa-

tion y′′ + sy = 0 with 0-Dirichlet boundary conditions. The non-trivial
solutions take the form Ψk(x) = sin(kπx) with corresponding eigenvalues
sk = k2π2. At each point sk along the trivial branch, the Jacobian of G is
non-invertible. This tells us that there is a 0 eigenvalue. The Implicit Func-
tion Theorem tells us that these are the points at which bifurcation can occur.
At these points, k2π2, we “look” in the eigenvector direction corresponding
to the 0 eigenvalue, i.e.,

v = Ψk,

and then run tangent Newton’s method. First discretize x into n+1 equidis-
tant gridpoints Ω = (0, 1), as in Section 2.4, and let ŷ = y(xi)

n−1
i=1 . Our object

function G ∈ RN for tangent Newton’s method is

G =
[
D2ŷ + sŷ + ŷ3

]
.

13



Figure 3.1: Bifurcation branches from the first 5 bifurcation points.

Note that ŷ3 is evaluated component-wise, that is (ŷ3)i = ŷ3i .
Figure 3.1 depicts our approximations of the bifurcation branches out of

the points sk for k ∈ {1, ..., 5}. We will use these points as initial values for
our approximations to the Fučik spectrum.

14



Chapter 4

Fučik Spectrum for the ODE.

4.1 Approximating the Fučik spectrum for

the ODE.

Consider Equation (1.2). When a = b, this is the eigenvalue problem with
solutions given in Equation (2.6). We know that the bifurcation points that
lie on the a = b diagonal for the trivial solution occur at k2π2 for k ∈ N, with
corresponding eigenvectors Ψk = sin(kπx). Our object function is

G̃ =

D2û+ aû+ + bû−

(1− û · û)/2
κ(û, a, b)

 .
The first equation, D2û + aû+ + bû− = 0, is a discretized version of

Equation (1.3). We introduced tangent Newton’s method in Chapter 2, but
we only had one variable. To account for the second variable we add another
equation to solve the system. The second equation is to assure us that our
eigenvector û maintains a norm of 1. Notice that any positive multiple of
an eigenfunction solution will still satisfy Equation (1.3). The constant 1 in
(1− û · û) here is an arbitrary choice. We use a similar concept for κ(û, a, b)
as discussed in Section 2.2, i.e.,

κ(û, a, b) = vt(û− ûg, a− ag, b− bg).
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Figure 4.1: The approximate solutions to the Fučik spectrum through the
points (λ1, λ1), (λ2, λ2), (λ3, λ3) and (λ4, λ4).

The Jacobian of G̃ is

JG =

D2 + diag(aχ{x|x>0} + bχ{x|x<0}) û+ û−

−ût 0 0
vt

 .
Finally we define our initial guess point as (± sin(kπx), k2π2, k2π2) and

the initial search direction as

v̂ = ±


0
...
0
1
−1

 .

The approximate solutions to the Fučik spectrum for Equation (1.2)
through the points (λ1, λ1), (λ2, λ2), (λ3, λ3) and (λ4, λ4) are plotted in
Figure 4.1.
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Figure 4.2: Fučik spectrum for Equation (1.2) that passes the point (λ2, λ2).

4.2 How does the solution change along the

Fučik spectrum?

Consider the solution curve in the spectrum that intersects (λ2, λ2), which
has the corresponding eigenvector Ψ2. Figure 4.3 depicts how the solution,
û, changes along the Fučik spectrum which pass through the point λ2 in
Figure 4.2.

As the parameter a increases, parameter b decreases to satisfy Equation
(1.2). We also look at how solutions change along the Fučik spectrum which
passes through the point λ3 depicted in Figures 4.4 and 4.5.

4.2.1 Multiple solution curves through a single eigen-
value

Symmetry of the eigenfunctions allow for multiple solution curves through
a known bifurcation value, i.e., λk = k2π2. It is only the solution curves
through the eigenvalues λ2k−1 for all k ∈ N that have two curves you can see
with our choice of schematic function h.
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Figure 4.3: Approximate solution û are depicted at the points
(14.7404, 297.9179), (4π2, 4π2), and (297.9179, 14.7407) from Figure 4.2 re-
spectively.

Consider the Fučik spectrum that curves through λ3 = 9π2, plotted in
Figure 4.4.

Notice how the left eigenvector solution in Figure 4.5 is approaching what
looks like |sin(2πx)| as b→∞ which corresponds to a vertical asymptote at
a = 4π2, i.e., the value of λ2 which has corresponding eigenfunction sin(2πx).
The right eigenvector solution indicates that as a → ∞ the solution ap-
proaches − sin(πx). Again, this appears to have a horizontal asymptote at
b = π2 which should also look familiar (it is the value of λ1 which has corre-
sponding eigenfunction sin(πx)).

4.3 Bifurcation analysis for the ODE

Consider Equation (1.4). We have seen how to follow the solution curves
in the (a, b) plane, we turn our focus towards adding a non-linear term. It
can be shown that along the curve in Figure (4.1) the Jacobian of G̃ is non-
invertible. As stated before, theory tells us that bifurcation is a possible
reason why our Jacobian of G̃ is non-invertible [6].

In order to follow a bifurcation surface, we no longer use the constraint
(1− û · û)/2. After removing this constraint, we have n equations and n+ 1
unknowns. To resolve this we came up with a scheme to follow a segment
of the surface (we call it a bifurcation branch) which is restricted to lines
parallel to the a = b diagonal line. This allows the parameter a to be treated
as a variable, as before, and now the parameter b depends on a. Namely we
follow bifurcation branches along the b = a+ c line.
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Figure 4.4: Fučik spectrum for Equation (1.2) that passes through the point
(λ3, λ3). The solid curve corresponds to û = sin(3πx) and the dashed lined
corresponds to û = −sin(3πx). Horizontal asymptotes at b = π2, 4π2 and
veritcal asymptotes at a = π2, 4π2 are also depicted.

19



Figure 4.5: Approximate solution û is depicted at the points
(56.0144, 382.6823), (9π2, 9π2), and (382.7491, 21.4084) along the solid curve
in Figure 4.4 respectively.

Our new object function becomes

G̃ =

[
D2û+ aû+ + (a+ c)û− + û3

κ(û, a)

]
,

with Jacobian

JG =

[
−D2 + diag(aχ{x|x>0} + (a+ c)χ{x|x<0}) + diag(3û2) û

vt

]
.

Our search direction v̂ changes now that we have one less variable. We
use the eigenvector at the current bifurcation point as our search direction,
i.e.,

v̂ =

[
û
0

]
∈ Rn.

We start at the point (a, a+ c) and û = 0 in the Fučik spectrum. The guess

for the next point for tangent Newton’s method is

[
0
a

]
+ δ

[
û
0

]
.

4.4 How do solutions change along bifurca-

tion branches?

Again, let’s consider the solution to Equation (1.2) whose Fučik spectrum
passes through the point (λ2,λ2). Since Equation (1.4) has a superlinear
term, we know our positive and negative components will be “stretched” in
their respective directions. Intuition tells us that the parameters a and b
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Figure 4.6: To follow a branch on the bifurcation surface we restrict our
solutions to Equation (1.4) to lines of the form b = a + c which are parallel
to a = b.

must be a lot smaller in order for Equation (1.4) to be satisfied. Let’s look at
what happens to solution u as we follow one of these branches (specifically
the one out of the point (λ2,λ2) in Figure 4.7).

The branch bifurcating from the point (4π2, 4π2) using Equation (1.4) is
depicted in Figure (4.7).

If we continued to follow this branch, our solutions would start to “spike”.
Graphically, if we continued along the branch in Figure 4.7 our solutions start
to look like that in Figure 4.9.

Once we have crafted a branch along each diagonal as in Figure 4.6, we
combine all the branches together to get one cohesive graphic that represents
the bifurcation surface for each curve in the Fučik spectrum. Figure 4.10
depicts the bifurcation curves for the solutions whose Fučik spectrum curves
pass through the points (λ2,λ2) and (λ3,λ3).
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Figure 4.7: A sample branch from the point (4π2,4π2) for Equation (1.4).

Figure 4.8: Approximate solutions û are depicted at the points
(10.7591, 6.2864) and (−126.0975, 16.2805) from Figure 4.7, respectively.
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Figure 4.9: Solution u to Equation (1.4) at the point (−300.1682, 24.5386)
on a bifurcation branch in Figure 4.7.
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Figure 4.10: Bifurcation surfaces of Equation (1.4) for the Fučik spectrum
curves which pass through the points (λ2,λ2) and (λ3,λ3).
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Chapter 5

The Fučik Spectrum for the
PDE.

Now we consider Equation (1.1). Our approximated solution vector û will
now be an (n− 1)× (n− 1) matrix instead of an (n− 1)× 1 vector as was
the case for the ODE. In order for the tangent Newton’s method to function
properly we need to resize û to a (n − 1)2 × 1 column vector. We use the
“reshape” command in MatLab to accomplish this.

5.1 The symmetries of eigenfunctions for the

PDE

Let D4 be the symmetry of the square Ω = (0, 1)× (0, 1), which is generated
by 2 involutions:

µ · (x, y) = (1− x, y) and δ · (x, y) = (y, x).

If u(x, y) is a solution to Equation(1.1), then so is γ · u(x, y) for any γ ∈
D4 = 〈µ, δ〉. More detail can be found in [7]. Therefore, at every λj,k = λk,j
there are up to 5 possible eigenfunctions we need to consider:

i. Ψj,k and Ψk,j

ii. Ψj,k + Ψk,j

iii. Ψj,k −Ψk,j and Ψk,j −Ψj,k
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Figures 5.10, 5.2, and 5.3 are depictions of the eigenfunctions for −∆
on (0, 1)2 with 0 Dirichlet boundary conditions. For the first three doubly
indexed eigenvalues of −∆ we will list the distinct symmetries.

• For λ1,2 = λ2,1: There are only two distinct symmetries in this subspace.
They are depicted in Figure 5.10.

i. Ψ1,2 and Ψ1,2 + Ψ2,1.

Figure 5.1: Two eigenfunctions of −∆ on (0, 1)2: Ψ1,2 and Ψ1,2 + Ψ2,1.

• λ2,2 is a simple eigenvalue so there is only one distinct symmetry:

i. Ψ2,2 is depicted in Figure 5.2.

• For λ1,3 = λ3,1:
There are three distinct symmetries in this subspace. They are depicted
in Figure 5.3.

i. Ψ1,3, Ψ1,3 + Ψ3,1, and Ψ1,3 −Ψ3,1 are depicted in Figures 5.3.
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Figure 5.2: The Ψ2,2 eigenfunction of −∆ on (0, 1)2.

5.2 Approximating the Fučik spectrum for

the PDE.

With our resized vector u as mentioned at the beginning of the chapter,
we apply the same method as discussed in Section 4.1. Only now we are
using D2PDE

to approximate the Laplacian. That is, our object function,
G̃ ∈ R(n−1)2+2, is

G̃ =

−D2PDE
û+ aû+ + bû−

(1− û · û)/2
κ(a, b, û)

 ,
with Jacobian JG ∈ R(n−1)2+2 × R(n−1)2+2, where

JG =

−D2PDE
+ diag(aχ{x|x>0} + bχ{x|x<0}) û+ û−

−ût 0 0
vt

 .
Figure 5.4 shows the Fučik spectrum for the first 3 sign changing solutions
which pass through the points (λ1,2, λ1,2), (λ2,2, λ2,2) and (λ1,3, λ1,3) (refer to
Section 2.5). We used all symmetries for each subspace to find the Fučik
spectrum which passes through each of the aforementioned points.
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Figure 5.3: Three eigenfunction of −∆ on (0, 1)2: Ψ1,3, Ψ1,3+Ψ3,1, Ψ1,3−Ψ3,1

respectively.

5.3 How do solutions change along the Fučik

spectrum?

Figure 5.5 is the Fučik spectrum for Equation (1.1) corresponding to Ψ1,2

which pass through the point (λ1,2, λ1,2). As with the ODE, as the param-
eter a increases, the parameter b decreases to satisfy Equation (1.1). The
approximate solution û at each point is depicted in Figure 5.6.

We also plot the Fučik spectrum for Equation (1.1) whose curves that
pass through the points (λ2,2, λ2,2) and (λ1,3, λ1,3) in Figures 5.7 and 5.9
respectively.

5.4 Bifurcation analysis of the PDE

We used the same method for finding and plotting the bifurcation planes for
the PDE as we did for the ODE in Section 4.3 after reshaping our vector û.
We restrict our solutions to lines parallel to the a = b diagonal as depicted
in Figure 4.6. Again, we follow a single branch at a time and then mesh the
branches together to create the bifurcation surface.

Recall that our object function remains the same as in Section 4.3, only
now G̃ ∈ R(n−1)2+1. That is,

G̃ =

[
−D2PDE

û+ aû+ + (a+ c)û− + û3

κ(û, a)

]
,
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Figure 5.4: The Fučik spectrum for Equation (1.1) whose solutions pass
through the points (λ1,2, λ1,2), (λ2,2, λ2,2), and (λ1,3, λ1,3).

with Jacobian

JG =

[
−D2PDE

+ diag(aχ{x|x>0} + (a+ c)χ{x|x<0}) + diag(3û2) û
vt

]
.

Figure 5.11 depicts the first 3 sign-changing solutions through (λ1,2, λ1,2),
(λ2,2, λ2,2), and (λ1,3, λ1,3).

5.5 How do solutions change along a bifurca-

tion branch?

Solutions follow a similar pattern as seen in Section 4.4. The approximated
solution û stretches as you follow along the bifurcation surface. We will
follow the bifurcation branch out of the point (λ1,2, λ1,2) using the eigenvector
û = Ψ2,1 along the a = b diagonal.

The solution which passes through (λ1,2, λ1,2) along the a = b diagonal
is already depicted in Figure 5.10. Figure 5.13 depicts how the approximate
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Figure 5.5: The Fučik spectrum for Equation (1.1) corresponding to Ψ1,2

which passes through the point (λ1,2, λ1,2). Asymptotes a = 2π2 and b = 2π2

are also included.

solution û changes as you follow the bifurcation branch out of the point
(λ1,2, λ1,2).
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Figure 5.6: Approximate solutions corresponding to Ψ1,2 at the points
(26, 214) and (214, 26) in Figure 5.5 respectively.

Figure 5.7: The Fučik spectrum for Equation (1.1) which passes through the
point (λ2,2, λ2,2). Asymptotes a = 2π2 and b = 2π2 are also included.
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Figure 5.8: Approximate solutions corresponding to Ψ2,2 at the points
(25, 234) and (234, 23) in Figure 5.7 respectively.

Figure 5.9: The Fučik spectrum for Equation (1.1) which pass through the
point (λ1,3, λ1,3). Horizontal asymptotes at b = π2, 5π2 and veritcal asymp-
totes at a = π2, 5π2 are also depicted.
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Figure 5.10: Approximate solutions at selected points in the Fučik spectrum
labeled in Figure 5.9.
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Figure 5.11: Bifurcation surfaces through the first 3 sign-changing solutions
for Equation (1.5).

Figure 5.12: A branch out of the point (λ1,2, λ1,2) using Ψ1,2 for Equation
(1.5).
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Figure 5.13: How the approximate solution û changes as you follow the
branch out of the point (λ1,2, λ1,2). They are the solutions at the points
(23.8245, 7.2927) and (−54.0454, 17.7282) in Figure 5.12 respectively.
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Chapter 6

Current and Future Research

6.1 A cusp catastrophe

We are currently investigating the secondary bifurcations of the Ψ1,3 branch
out of the point (λ1,3, λ1,3). We know how this bifurcation diagram looks
along the a = b diagonal but an interesting thing occur we small perturba-
tions to the left and right. Recall in Chapter 4 that we parameterized b to
reduce by one variable. We follow bifurcation branches along the b = a + c
lines (Figure 4.6). We have evidence suggesting that a cusp catastrophe is
occurring as you move across the a = b diagonal.

Secondary bifurcation depicted in Figure 6.1, 6.2, and 6.3 occur at a point
where there is a change in the Morse index of the Hessian, i.e., one of our
eigenvalues hit 0. Due to the nature of all this branch splitting, we have had
difficulty rendering a smooth bifurcation surface that includes the secondary
bifurcations.

6.2 Future Research

We are interested in finding alternative approaches for rendering these bi-
furcation surfaces. Figures 6.1, 6.2, and 6.3 occur out of one of the 4 Fučik
spectrum curves which pass through the point (λ1,3, λ1,3). We suspect a lot
more intricacies will occur as we attempt to render multiple branches from
different curves out of the a, b-plane.
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Figure 6.1: Following the Ψ1,3 bifurcation branch along the line b = a− 0.7.

Figure 6.2: Following the Ψ1,3 bifurcation branch along the line a = b.
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Figure 6.3: Following the Ψ1,3 bifurcation branch along the line b = a+ 0.5.
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