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ABSTRACT

ON THE MAXIMUM CARDINALITY OF BRAID CLASSES

ZACHARY PARKER

A Coxeter group W is often thought of as a generalized reflection group gener-

ated by a set of elements of order two coupled with rules about when generators

commute and the so-called braid relations. Every element w of some Coxeter

group W can be written as an expression in these generators. When the number

of generators used is minimal (including multiplicity), the expression is reduced

and the number of generators is its length. Given some w ∈W , we can form an

equivalence relation on its set of reduced expressions: reduced expressions w and

w′ are braid equivalent if w′ is obtainable from w via a sequence of braid moves.

The corresponding equivalence classes are called braid classes. For each w ∈W ,

we can form its braid graph, which has the set of braid classes for its vertex set

and two braid classes are connected by an edge if a representative from one braid

class is related to a representative of the other class via a single commutation.

Moreover, the weight of each vertex is the cardinality of the corresponding braid

class. Unlike the analogous commutation classes and commutation graphs, braid

classes and braid graphs have received little attention in any context. In this

thesis, we investigate a concise way of encoding braid classes to obtain a sharp

upper bound on the cardinality of braid classes among all elements of a fixed

length. This upper bound corresponds to the largest possible weight of a vertex

in braid graphs for elements of a given length. This result previously appeared

in Zollinger’s thesis, but our proof is new.
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Chapter 1

Preliminaries

1.1 Introduction

Among the variety of interesting topics in group theory lies the study of symmetry. Reflec-
tion groups are used to understand the reflection and rotational symmetries of particular
objects. Coxeter groups can be thought of as generalized reflection groups with a fixed set
of generating involutions and a certain set of guiding interactions among these involutions.
The study of Coxeter groups looks to explain the intricacies of those interactions.

Every element of a Coxeter group can be written as an expression in the generators
and when the number of generators in an expression is minimal (counting multiplicity), the
expression is said to be reduced. It is likely that an element in a Coxeter group has many
different reduced expressions representing it. According to Matsumoto’s Theorem [5], any
two reduced expressions for a group element are related via commutations and the so-called
braid relations.

Following Stembridge [10], we define a relation ∼ on the set of reduced expressions for
w. Let w and w′ be two reduced expressions for w and define w ∼ w′ if we can obtain w′

from w by applying a single commutation. Now, define the equivalence relation ≈ by taking
the reflexive transitive closure of ∼. Each equivalence class under ≈ is called a commutation
class.

There are several open questions involving commutation classes. In particular, enumer-
ating the number of commutation classes for an arbitrary element is a long-standing open
problem. Even the case involving the longest element (in terms of Coxeter length) of the
symmetric group remains open.

Given a Coxeter system (W,S) and a fixed element w ∈ W , one can form the corre-
sponding commutation graph having the set of commutation classes as its vertices. There
is an edge from one commutation class to another if there exists a reduced expression of
one class that can be transformed into a reduced expression of the other class via a braid
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move. Commutation graphs have been studied in a variety of contexts, but answers to many
natural questions remain elusive.

Analogous to commutation classes and commutation graphs, one can define braid classes
and braid graphs. Fix an element w ∈W and consider the set of all reduced expressions for
w. Two reduced expressions w and w′ for w are in the same braid class if w′ can be obtained
from w via a sequence of braid moves. The corresponding braid graph for w has the braid
classes as its vertices and two braid classes are joined by an edge if there exists a reduced
expression of one class that can be transformed into a reduced expression of the other class
via a commutation move.

Comparable questions in the context of braid classes rather than commutation classes
remain relatively untouched. The focus of this thesis is clarifying some of the questions
concerning braid classes for elements in Coxeter systems of type A (i.e., the symmetric group)
as well as providing additional and potentially interesting open questions and conjectures.

This thesis is organized as follows. After introducing Coxeter systems, Matsumoto’s
Theorem, and the Matsumoto graph of a group element in Section 1.2, we define commutation
and braid equivalences and their respective graphs in Section 1.3. After that, in Section 1.4,
we establish a convenient visual representation for elements of Coxeter groups called heaps,
concluding Chapter 1. Chapter 2 introduces σ-strings and tracks, both particularly useful
for encoding information about braid equivalences, along with various, previously known
results corresponding to braid classes from [12]. In Section 3.1, we provide several lemmas
key to the proof of our main result (Theorem 3.2.1) contained in Section 3.2, which describes
a sharp upper bound on the cardinality of a braid class among all elements of a fixed length.
The upper bound corresponds to the largest possible weight of a vertex in braid graphs for
elements of a given length. This result previously appeared in [12], but the proof presented
here is new. We conclude with open problems in Section 3.3.

1.2 Coxeter Systems

A Coxeter system is a pair (W,S) consisting of a finite set S of generating involutions and
a group W, called a Coxeter group, with presentation

W = ⟨S ∣ (st)m(s,t) = e⟩,

where e is the identity element, m(s, t) = 1 if and only if s = t, and m(s, t) = m(t, s) ≥ 2 for
s ≠ t. If there is no relation between s, t ∈ S, then m(s, t) = ∞. It is worth noting that the
elements of S are distinct as group elements and m(s, t) is the order of st [6]. We refer to
m(s, t) as the bond strength between s and t.
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Since s and t are elements of order 2, the relation (st)m(s,t) = e can be rewritten as

sts⋯
´¸¶
m(s,t)

= tst⋯
´¸¶
m(s,t)

(1.2.1)

with m(s, t) ≥ 2 factors. When m(s, t) = 2, st = ts is called a commutation relation and when
m(s, t) ≥ 3, the relation in (1.2.1) is called a braid relation. The replacement

sts⋯
´¸¶
m(s,t)

z→ tst⋯
´¸¶
m(s,t)

will be referred to as a commutation move if m(s, t) = 2 and a braid move if m(s, t) ≥ 3.
We can represent a Coxeter system (W,S) with a Coxeter graph Γ having vertex set S

and edges {s, t} for each m(s, t) ≥ 3. Each edge {s, t} is labeled with its corresponding bond
strength. Since m(s, t) = 3 occurs frequently, we omit this label. Note that s and t are not
connected by a single edge in the graph if and only if m(s, t) = 2. Given a Coxeter graph Γ,
we can easily reconstruct the corresponding Coxeter system. If (W,S) is a Coxeter system
with corresponding Coxeter graph Γ, we may denote the Coxeter group as W (Γ) and the
generating set as S(Γ). A Coxeter system (W,S) is said to be irreducible if and only if the
corresponding Coxeter graph Γ is connected.

4
⋯

s1 s2 s3 s4 sn−1 sn

(a) An

4 4
⋯

s0 s1 s2 s3 sn−2 sn−1

(b) Bn

⋯
44

s0 s1 s2 s3 sn−1 sn

(c) C̃n

Figure 1.1: Examples of common Coxeter graphs

Example 1.2.1. The Coxeter graphs given in Figure 1.1 correspond to common Coxeter
systems.

(a) The Coxeter system of type An is given by the graph in Figure 1.1(a). The correspond-
ing Coxeter group W (An) has generating set S(An) = {s1, s2, . . . , sn} and defining
relations
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(1) s2i = e for all i;

(2) sisj = sjsi when ∣i − j∣ > 1;

(3) sisjsi = sjsisj when ∣i − j∣ = 1.

The Coxeter group W (An) is isomorphic to the symmetric group Sn+1 under the cor-
respondence si ↦ (i, i + 1), where (i, i + 1) is the adjacent transposition that swaps i
and i + 1. This particular Coxeter group is the main focus of this thesis.

(b) The Coxeter system of type Bn is given by the graph in Figure 1.1(b). The Coxeter
group W (Bn) has generating set S(Bn) = {s0, s1, . . . , sn−1} and defining relations

(1) s2i = e for all i;

(2) sisj = sjsi when ∣i − j∣ > 1;

(3) sisjsi = sjsisj when ∣i − j∣ = 1 for i, j ∈ {1,2, . . . , n − 1};

(4) s0s1s0s1 = s1s0s1s0.

The Coxeter group W (Bn) is isomorphic to SBn , the group of signed permutations on
the set {1,2, . . . , n}.

(c) The Coxeter system of type C̃n is given by the graph in Figure 1.1(c). The Coxeter
group W (C̃n) has generating set S(C̃n) = {s0, s1, . . . , sn} and defining relations

(1) s2i = e for all i;

(2) sisj = sjsi when ∣i − j∣ > 1;

(3) sisjsi = sjsisj when ∣i − j∣ = 1 for i ∈ {1,2, . . . , n − 1};

(4) s0s1s0s1 = s1s0s1s0;
(5) snsn−1snsn−1 = sn−1snsn−1sn.

Observe that W (C̃n) has n + 1 generators. It is worth noting that, unlike W (An) and
W (Bn), W (C̃n) is an infinite group [6].

Given a Coxeter system (W,S), a word sx1sx2⋯sxm in the free monoid S∗ on the alphabet
S is called an expression for w ∈W if it is equal to w when considered as a group element.
If m is minimal among all expressions for w, the corresponding word is called a reduced
expression for w and the length of w, denoted `(w), is m. Each element w ∈ W may have
multiple reduced expressions that represent it. A specific, possibly reduced, expression for
w ∈W is represented (using sans serif font) as w = sx1sx2⋯sxm . A product of group elements
w1w2...wr with wi ∈W is called reduced if `(w1w2 ⋅ ⋅ ⋅wr) = ∑ri=1 `(wi).

4



According to [6], every finite Coxeter group contains a unique element of maximal length,
which we refer to as the longest element and denote by w0. It is well known that the longest
element in W (An) is given in 1-line notation by

w0 = [n + 1, n, . . . ,2,1]
and that `(w0) = (n+1

2
). One possible reduced expression for w0 is given by

s1s2s1s3s2s1⋯snsn−1⋯s3s2s1.
A formula for the number of reduced expressions for w0 ∈W (An) is given in [9].

The following theorem, called Matsumoto’s Theorem [5], illuminates how reduced ex-
pressions for a given group element are related.

Proposition 1.2.2. In a Coxeter system (W,S) any two reduced expressions for the same
group element differ by a sequence of commutations and braid moves. ◻

In light of Matsumoto’s Theorem, we can define a graph on the set of reduced expressions
for a fixed group element w ∈W . Formally, for w ∈W , define the Matsumoto graph, M(w),
to be the graph having vertex set equal to the set of reduced expressions for w, where
two reduced expressions w1 and w2 are connected by an edge if and only if w1 and w2 are
related via a single commutation or braid move. In type An, colored edges are used to
distinguish between commutation and braid moves. An edge is colored red if it corresponds
a commutation move and colored green if it corresponds to a braid move. Matsumoto’s
Theorem implies that M(w) is connected.

Example 1.2.3. The Matsumoto graph for w0 ∈W (A3) is given in Figure 1.2. The sixteen
reduced expressions for w0 are the vertices of M(w0). The edges of M(w0) show how pairs
of reduced expressions are related via commutation or braid moves. For sake of brevity, i
is written in place of si, a convention used throughout the remainder of this paper. The
Matsumoto graph for w0 ∈ W (A4) is given in Figure 1.3. Because of its size, the vertex
labels have been omitted.

For w ∈ W define the support of w, denoted supp(w), to be the set of generators that
appear in any reduced expression for w. Note that Matsumoto’s Theorem guarantees that
supp(w) is well-defined. Given w ∈ W and a fixed reduced expression w for w, any subse-
quence of w is called a subexpression of w. We will refer to a subexpression consisting of a
consecutive subsequence of w as a subword of w.

Example 1.2.4. Let w = s5s4s3s2s4s2 be an expression for some w ∈W (A5). Then we have

s5s4s3s2s4s2 = s5s4s3s4s2s2 (via the commutativity of s2 and s4)

= s5s4s3s4 (because the order of s2 is 2)

= s5s3s4s3 (via the braid relation s4s3s4 = s3s4s3).

5



121321 123121

212321 123212

213231 132312

231231 213213 312312 132132

231213 312132

232123 321232

323123 321323

Figure 1.2: Matsumoto graph for w0 ∈W (A3)
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Figure 1.3: Matsumoto graph for w0 ∈W (A4)
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This shows that the original expression w is not reduced. However, one can check that
s5s3s4s3 and s5s4s3s4 are reduced, so `(w) = 4 and supp(w) = {s3, s4, s5}.

1.3 Elementary Commutation and Braid Equivalences

Let (W,S) be a Coxeter system of type Γ and let w ∈W (Γ). As in [10], define the relation ∼c
on the set of reduced expressions for w as follows: if w1 and w2 are two reduced expressions
for w, then w1 ∼c w2 if and only if we can obtain w2 from w1 using a single commutation move.
The reflexive transitive closure of ∼c is defined to be the equivalence relation ≈c. Equivalence
classes under ≈c are called commutation classes, denoted [w]c, and two elements in the same
commutation class are said to be commutation equivalent. The number of commutation
classes for w ∈ W is denoted c(w). When the set of reduced expressions for w has only a
single commutation class, then w is said to be fully commutative (FC).

The set of FC elements of W (Γ) is denoted by FC(Γ). It follows from the definition
that, given some w ∈ FC(Γ) and some starting reduced expression for w, all other reduced
expressions can be obtained via commutations. The following result, due to Stembridge [10],
states that when w is FC, performing commutations is the only possible method for obtaining
other reduced expressions for w.

Proposition 1.3.1. Let (W,S) be a Coxeter system of type Γ. Then w ∈ W (Γ) is FC if
and only if no reduced expression for w contains sts⋯

´¸¶
m(s,t)

as a subword for all m(s, t) ≥ 3. ◻

Said differently, w is FC if and only if no reduced expression allows a braid move. For
example, in a type An Coxeter system, an element is FC when no reduced expression contains
sksk+1sk or sk+1sksk+1 as a subword.

Similarly, define w1 ∼b w2 if and only if w2 can be obtained from w1 via a single braid
move. The equivalence relation ≈b is defined by taking the reflexive transitive closure of
∼b. The equivalence classes under ≈b are called braid classes, denoted [w]b, and two reduced
expressions are braid equivalent if they are in the same braid class. The number of braid
classes for w ∈W is denoted b(w). If w is a reduced expression for w ∈W , define

★(w) ∶= card([w]b).

For a group element w ∈W , we define

⍟(w) ∶= max ({★(w) ∣ w is a reduced expression for w ∈W}).

8



Example 1.3.2. Consider the sixteen reduced expressions for w0 ∈ W (A3) depicted in
Figure 1.2. Applying all possible commutation moves, there are eight commutation classes:

[232123]c = {232123}
[231213]c = {231213,213213,213231,231231}
[321323]c = {321323,323123}
[212321]c = {212321}
[321232]c = {321232}
[123123]c = {123121,121321}
[132312]c = {132312,132132,312132,312312}
[123212]c = {123212}

So c(w0) = 8. Similarly, applying all possible braid moves gives eight braid classes:

[123121]b = {123121,123212,132312}
[312312]b = {312312}
[312132]b = {312132,321232,321323}
[132132]b = {132132}
[121321]b = {121321,212321,213231}
[213213]b = {213213}
[231213]b = {231213,232123,323123}
[231231]b = {231231}

Thus, b(w0) = 8 and ⍟(w0) = 3. Also, we see that ★(123121) = 3 and ★(312321) = 1, for
example. In general, it is not the case that the number of commutation classes for a fixed
w ∈W is equal to the number of braid classes.

For w ∈W , define the commutation graph (respectively, braid graph), denoted C(w) (re-
spectively, B(w)), to be the graph with vertex set equal to the set of commutation classes
(respectively, braid classes) of w where two vertices are connected by an edge if some rep-
resentative of one commutation class is related to a representative of another commutation
class via a braid move (respectively, some representative of a braid class is related to a
representative of another braid class via a commutation move). Note that we can obtain
C(w) (respectively, B(w)), from M(w) by contracting edges corresponding to braid moves
(respectively, commutation moves). The weight of a vertex in the braid graph is defined to
be the cardinality of the corresponding braid class. Note that b(w) is the number of vertices
in B(w) while ⍟(w) is the maximum weight of a vertex.

9



[123121]c

[123212]c

[132312]c

[321232]c

[321323]c

[232123]c

[231213]c

[212321]c

Figure 1.4: Commutation graph for w0 ∈W (A3)

[312132]b [231213]b

[312312]b [132132]b [213213]b [231231]b

[123121]b [121321]b

Figure 1.5: Braid graph for w0 ∈W (A3)

Example 1.3.3. The commutation graphs for the longest element in W (A3) and W (A4) are
given in Figure 1.4 and Figure 1.6, respectively, and the braid graphs are given in Figure 1.5
and Figure 1.7, respectively.

Determining the number of commutation classes for the longest element in W (An) re-
mains an open problem [2]. That is, the number of vertices in C(w0) is unknown for an
arbitrary W (An). To our knowledge, this problem was first introduced in 1992 by Knuth in
Section 9 of [8] using different terminology. A more general version of the problem appears
in Section 5.2 of [7]. In the paragraph following the proof of Proposition 4.4 of [11], Tenner
explicitly states the open problem in terms of commutation classes. The best known bound
appears in [4]: for sufficiently large n corresponding to w0 ∈ W (An−1), c(w0) ≤ 20.6571n2

.
Even less is known about he number of commutation classes of the longest elements in other

10



Figure 1.6: Commutation graph for w0 ∈W (A4)
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Figure 1.7: Braid graph for w0 ∈W (A4)
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Coxeter systems.
According to [2] the set of commutation classes for w0 ∈ W (An) is in bijection with

various surprising (and interesting) sets of objects, including:

(1) heaps (defined in the following section) for w0 in An;

(2) primitive sorting networks on n elements;

(3) rhombic tilings of a regular n-gon;

(4) uniform oriented matroids of rank 3 on n elements;

(5) arrangements of n pseudolines.

Unlike commutation classes and commutation graphs, braid classes and braid graphs have
received very little attention in any context. It is unknown when B(w) is a tree or path and
what kinds of degrees can appear among the vertices. Moreover, very little is known about
the upper and lower bounds on the value of b(w) (i.e., the number of vertices in B(W )) for
elements with fixed length. We address questions concerning
ostar(w) (i.e., the maximum weight of a vertex in B(w)) in Chapter 3.

1.4 Heaps

Every reduced expression can be associated with a labeled poset called a heap. Heaps
provide a visual representation of a reduced expression while preserving the relations among
the generators. We follow the development of heaps for straight-line Coxeter groups found
in [1], [3], and [10].

Given a Coxeter system (W,S) of type Γ, let w = sx1sx2⋯sxr be a fixed reduced expression
for w ∈W (Γ). As in [10], define a partial ordering on the indices {1,2, . . . , r} of w to be the
transitive closure of the relation ⋖ defined by j ⋖ i if i < j and m(sxi , sxj) > 2. In particular,
since w is reduced, j ⋖ i whenever sxi = sxj and i < j. This partial order is referred to as
the heap of w, where i is labeled by sxi . For simplicity, we omit the labels of the underlying
poset yet retain the labels of the corresponding generators.

It follows from [10] that heaps are well-defined up to commutation class. That is, if
w1 and w2 are two reduced expressions for w ∈ W that are commutation equivalent, the
heaps for w1 and w2 qre equal. In particular, when w ∈ FC(Γ), then w has a unique heap.
Alternatively, if w1 and w2 are in different commutation classes, the heap of w1 is distinct
from the heap of w2.

13



● s1

● s2

● s3

● s4
●s1

●s2

Figure 1.8: Labeled Hasse diagram for the heap of a reduced expression for an element in
W (A4)

Example 1.4.1. Consider the reduced expression w = s2s1s4s3s2s1 for w ∈W (A4). Then w
is indexed by {1,2,3,4,5,6}. As an example, 6 ⋖ 5 since 5 < 6 and s2 and s1 do not commute.
The labeled Hasse diagram for the corresponding heap poset is seen in Figure 1.8.

Let w be a reduced expression for an element w ∈ W (An). As in [1] and [3] we can
represent a heap for w as a set of lattice points embedded in {1,2, . . . , n} × N. To do so,
we assign coordinates (not necessarily unique) (x, y) ∈ {1,2, . . . , n} ×N to each entry of the
labeled Hasse diagram for the heap for w in such a way that:

(1) An entry with coordinates (x, y) is labeled si (or i) in the heap if and only if
x = i;

(2) If an entry with coordinates (x, y) is greater than an entry with coordinates
(x′, y′) in the heap, then y > y′.

Although the above is specific to W (An), the same construction works for any straight-
line Coxeter graph with appropriate adjustments made to the label set and assignment of
coordinates. For example, for type Bn, the label set is {0,1, . . . , n − 1} and for type C̃n, the
label set is {0,1, . . . , n}.

For any straight-line Coxeter graph, it follows that (x, y) covers (x′, y′) in the heap if and
only if x = x′±1, y′ < y, and there are no entries (x′′, y′′) such that x′′ ∈ {x,x′} and y′ < y′′ < y.
This implies we can entirely reconstruct the edges of the Hasse diagram and corresponding
heap poset from a lattice point configuration. This lattice point configuration allows us to
visualize words and the relations therein. Further, the visualization can potentially give
intuition into a seemingly complex argument.

We denote the lattice point configuration of the heap poset in {1,2, . . . , n}×N described
in the preceding paragraphs via H(w) where w is a reduced expression for w ∈W (An). If w
is FC, then the choice of the reduced expression for w is irrelevant and we refer to H(w) as
the heap of w.

Let w = sx1sx2⋯sxr be a reduced expression for w ∈W (An). When sxi and sxj are adjacent
generators in the Coxeter graph with i < j, the point labeled by sxi must be placed above
the level of the point labeled by sxj . Because non-adjacent generators in a Coxeter graph
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commute, points whose x-coordinates differ by more than one can “slide” past each other in
the configuration, possibly existing on the same level (i.e., the points can potentially have
equal y-coordinates). To emphasize the covering relations of the lattice point configuration,
each entry in the heap will be enclosed by a square with rounded corners, called a block,
such that the blocks overlap halfway if one entry covers the other. Additionally, each block
for si will be labelled by i.

Via this convention, there are potentially many ways to illustrate a heap of an arbitrary
reduced expression by differing the vertical placement of blocks. For example, we can place
blocks in vertical positions as high as possible, as low as possible, or in some combination.
We often choose what we view as the best representation of the heap of each example (nearly
always, this defaults to placing blocks as low as possible). When illustrating the heaps of
arbitrary reduced expressions, the relative position of the entries are discussed but never
absolute coordinates.

Notice blocks appearing on the bottom (respectively, top) of a heap correspond to gener-
ators that can potentially appear on the right (respectively, left) of the reduced expressions
corresponding to that heap.

Example 1.4.2. Let w1 = s7s5s3s6s4s2s5s1s2 be a reduced expression for w ∈ W (A7). Ap-
plying the commutation move s2s5 ↦ s5s2, we can obtain another reduced expression for w,
namely w2 = s7s5s3s6s4s5s2s1s2, which is in the same commutation class as w1, and hence
has the same heap. However, applying the braid move s2s1s2 ↦ s1s2s1, we obtain another
reduced expression w3 = s7s5s3s6s4s5s1s2s1. Since w3 differed from w2 by a braid move,
w3 is in a different commutation class than w1 and w2, and hence the heaps are different.
Representations of H(w1),H(w2), and H(w3) are seen in Figure 1.9, where the subword cor-
responding to the braid move is colored in green. The lone 3-block moves from the “fourth
level” in Figure 1.9(a) to the “third” in Figure 1.9(b) via the braid move.

2

51

4 62

3 5 7

(a) H(w1) and H(w2).

1 5

2 4 6

1 3 5 7

(b) H(w3)

Figure 1.9: Two heaps for the same element in W (A7)
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Chapter 2

Encoding Braid Classes

Before the main topic of this thesis is discussed, we must first introduce notation (mimicking
Zollinger in [12]) to write a particular family of reduced expressions for a given w ∈W (An)
that accurately and concisely captures information about the braid classes of w.

2.1 σ-strings and Tracks

We begin with an example to motivate our notation.

Example 2.1.1. Consider the reduced expression 54656768798 for an element in W (A9)
(where i corresponds to si). There are two opportunities to apply a braid move, namely
using the subwords 656 and 676, where the boldfaced generator contributes in both cases.
The left braid move is depicted in blue while the right braid move is depicted in magenta:

54656768798←→ 54565768798

54656768798←→ 54657678798

Now, each braid move creates opportunities for additional braid moves. The entire braid
class corresponding to the original reduced expression is given below with a specific generator
of interest boldfaced in each expression:

45465768798 54565768798 54656768798
54657678798 54657687898 54657687989

Note that we have exactly two opportunities to apply a braid move if and only if the boldfaced
letter is not the leftmost or rightmost letter in the word, and aside from these cases, the
boldfaced letter is involved in both braid moves. The heap for each word in the braid class is
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given in Figure 2.1. The corresponding boldfaced generator is given in orange, the subword
corresponding to the left braid move in blue, the subword corresponding to the right braid
move in magenta, and the remainder of the heap blocks in purple.

8

97

86

75

64

5

4

(a) 45465768798

8

97

86

75

6

5

4

5

(b) 54565768798

8

97

86

7

6

5

64

5

(c) 54656768798

8

97

8

7

6

75

64

5

(d) 54657678798

8

9

8

7

86

75

64

5

(e) 54657687898

9

8

97

86

75

64

5

(f) 54657687989

Figure 2.1: A collection of heaps for six reduced expressions corresponding to a single braid
class of a group element in W (A9)

We note some observations about Figure 2.1. In Figures 2.1(b) through 2.1(e), the
subword corresponding to the left braid move, the orange generator, and the subword corre-
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sponding to the right braid move make an “S” shape, where Figures 2.1(a) and 2.1(f) have
this shape truncated. Further, as the heaps progress from Figure 2.1(a) to Figure 2.1(f), the
label of the orange block increases by one along with the number of pairs in front (i.e., top)
of that element while the number of pairs behind (i.e., below) it decreases by one. Finally,
all purple blocks come in pairs.

The previous example motivates the next definition, appearing in [12]. Let (l, k, n, ε) be
a quadruple satisfying:

(1) l is a positive integer;

(2) k is a nonnegative integer less than or equal to l − 1;

(3) n is a positive integer (not necessarily distinct from l or k) and;

(4) ε is one of {+,−,0};

where ε = 0 only when l ≤ 2. From this quadruple, define σl,k,n,ε with ε ∈ {+,0} to be the
word, called a σ-string, satisfying:

(1) when l = 1, then σ1,0,n,0 = n (see Figure 2.2(a));

(2) when l = 2, then n, n + 1, n and σ2,1,n,0 = n + 1, n,n + 1 (see Figure 2.2(b) and Fig-
ure 2.2(c), respectively);

(3) when l ≥ 3, then σl,k,n,+ is the first 2l − 1 letters from the following list:

n + 1, n, n + 2, n + 1, n + 3, . . . , n + k,n + k − 1,
n + k, n + k + 1, n + k,

n + k + 2, n + k + 1, n + k + 3, n + k + 2, . . .

where the element in bold is called the core. We define σl,k,n,− to be the reverse (i.e., inverse)
of σl,l−1−k,n,+.

It turns out that every σ-string is a reduced expression. When convenient, we will consider
a σ-string to be both a reduced expression and a group element. This will allow us to avoid
cumbersome notation. Observe that σl,k,n,+ has length 2l − 1.

Example 2.1.2. The six reduced expressions from Example 2.1.1 are identified as σ-strings
below:

σ6,0,4,+ = 45465768798 σ6,1,4,+ = 54565768798 σ6,2,4,+ = 54656768798
σ6,3,4,+ = 54657678798 σ6,4,4,+ = 54657687898 σ6,5,4,+ = 54657687989
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There are a few points to note following the definition of σ-strings. First, k is called
the pairing number because k signifies the number of pairs preceding the core. Second, ε is
referred to as the pairing order. If ε = +, then pairs come in the form i+1, i and if ε = −, pairs
come as i, i + 1. Certainly there are no pairs with l = 1, ε = 0, but the cases l = 2, k = 0, ε = 0
and l = 2, k = 1, ε = 0 pair like ε = + which is clear by Figures 2.2(b) and 2.2(c).

Because every σ-string can be thought of as another σ-string’s reverse, and because an
element and its inverse have the same number of braid classes with the same cardinalities,
we need to only consider σ-strings where ε = 0 or ε = + and do so for the remainder of this
paper.

Recall that each heap corresponds to a single commutation class. A heap is largely used
as a tool for studying commutation classes within a Coxeter system but a certain ambiguity
occurs when observing braid classes since two braid equivalent reduced expressions have
different heaps. This lead us to define a track. A track is a lattice point representation
of the heap of a σ-string where we canonically place each block in the “heap” as high as
possible and we unambiguously read the rows in the “heap” left to right and top to bottom.
We warn here that a track technically is not a heap since we forbid commutations. Tracks
are simply visual aids for understanding σ-strings. We typically color the core orange and
the left and right braids are the left and right switches, respectively. The left (respectively,
right) switch corresponds to the blocks involved in the left (respectively, right) braid move.
We have colored the non-core blocks blue and magenta, respectively. The tracks for σ1,0,n,0,
σ2,0,n,0, and σ2,1,n,0 are given in Figure 2.2 and the track for σl,k,n,+ for l ≥ 3 is depicted in
Figure 2.3 with corresponding colors.

n

(a) σ1,0,n,0

n

n + 1

n

(b) σ2,0,n,0

n + 1

n

n + 1

(c) σ2,1,n,0

Figure 2.2: Tracks for the first three defined σ-strings

We examine the role k plays between σ-strings that are related via a braid move (or a
sequence thereof) through an example.

Example 2.1.3. Consider the first two σ-strings from Example 2.1.2, namely σ6,0,4,+ =
45465768798 and σ6,1,4,+ = 54565768798, whose tracks are depicted in Figures 2.1(a) and
2.1(b), respectively. Notice that σ6,0,4,+ and σ6,1,4,+ differ by a single braid move, namely
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45465768798←→ 54565768798.

After the braid move is applied, the core moves from the first position down to the third
position in the reduced expression and increases in value by one. We observe two effects:
first, the change in value of k from 0 to 1 and second in the tracks. We see the same sort
of relationship is preserved: the core moves two more spots down and its index increases in
value by one. In fact, from track to track in Figure 2.1, the same observations hold (mirrored
by the changes to k). It is readily seen that all possible braid moves have been accounted
for. The upshot is that ★(σ6,0,4,+) = 6.

The phenomenon illustrated in the previous example holds in general. The following
lemma is proved in [12].

Lemma 2.1.4. If σl,n,k,ε is a σ-string, then [σl,n,k,ε]b = {σl,n,k,ε}k∈[0,l−1] and ★(σl,n,k,ε) = l.
Said differently, Lemma 2.1.4 gives the braid class of σl,n,k,ε by ranging k over [0, l − 1].

We note that when k = 0, the string σl,n,0,ε begins with n and for all other k, the σ-string
begins with n+1. Due to this construction and the braid equivalences among σ-strings with
the same l, n, and ε values, our canonical choice for the representative of the braid class will
be σl,0,n,+ (and σ1,0,n,0 and σ2,0,n,0 when appropriate). Viewing the track with k = 0 provides
a visualization for the entire braid class of a σ-string.

2.2 Maximal σ-string Decompositions and Codes

In a fixed reduced word, a subword is called a maximal σ-string if it is a σ-string that
is contained, with respect to position, in no other σ-string in that word. We note that a
σ-string may be maximal in one reduced expression but not in another. Given a reduced
expression, a factorization into maximal σ-strings is called a maximal string decomposition.
This leads us to the following lemma from [12].

Lemma 2.2.1. Every reduced word has a unique maximal string decomposition.

Therefore, we can accurately capture all the information for a particular reduced expres-
sion by giving it as a product of maximal σ-strings. This leads us to define the code for a
reduced expression w of a group element in W (An) to be the r-tuple

((l1, n1, ε1), . . . , (lr, nr, εr))

where w = σl1,k1,n1,ε1⋯σlr,kr,nr,εr and the product on the right is a maximal σ-string decom-
position. If w = σ1⋯σk is a maximal σ-string decomposition, then the string structure of w
is the multiset consisting of {`(σ1), . . . , `(σk)}. Note that, if

code(w) = ((l1, n1, ε1), . . . , (lr, nr, εr)),
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then Struct(w) = {2l1 − 1, . . . ,2lr − 1}.

Example 2.2.2. Consider the reduced expression w = 3121434546576 for an element in
W (A7). Then its maximal σ-string decomposition is

3∣121∣434546576 = σ1,0,3,0 ⋅ σ2,0,1,0 ⋅ σ5,1,3,+
where we use vertical bars to designate the factorization into maximal σ-strings. Its code is

((1,3,0), (2,1,0), (5,3,+))
and Figure 2.4 depicts this decomposition as a product of tracks, where the horizontal lines
correspond to the vertical bars from the reduced expression. Also, Struct(w) = {1,3,9}.

It is easy to verify that every braid equivalent reduced expression has the same code.
This is true in general, as the next theorem from [12] states.

Theorem 2.2.3. If w and w′ are two reduced words for w ∈W (An), then [w]b = [w′]b if and
only if code(w) = code(w′).
Sketch of Proof. We start with the converse implication. Consider the maximal σ-string
decompositions w = σ1 ⋅σ2⋯σr and w′ = σ′1 ⋅σ′2⋯σ′s with σi = σli1 ,ki1 ,ni1

,εi1
and σ′i = σli2 ,ki2 ,ni2

,εi2
,

respectively. Since code(w) = code(w′), r = s, li1 = li2 , ni1 = ni2 , and εi1 = εi2 for all i. Then
[w]b = [w′]b by Lemma 2.1.4.

For the forward direction, assume [w]b = [w′]b and proceed by contradiction. Without
loss of generality, we can assume that w and w′ differ by a single braid equivalence, say in
the pth component, σp, in w and the qth component, σq, of w′. The work comes in showing
that either the pth string of w or the qth string of w′ is not maximal. Once that is shown, we
have that the code of each component is equal and so code(w) = code(w′). ◻

The next corollary follows immediately from Lemma 2.1.4 and Theorem 2.2.3 (and ap-
pears as Corollary 6 in [12]).

Corollary 2.2.4. If w is a reduced expression for w ∈W (An) such that

code(w) = ((l1, n1, ε1), . . . , (lr, nr, εr)),
then

[w]b = {σl1,k2,n1,ε1⋯σlr,kr,nr,εr ∣ ki over 0 to li − 1 for each i}
and

★(w) =
r

∏
i=1

li.

The final result of this chapter is an immediate consequence of Theorem 2.2.3.

Corollary 2.2.5. If two reduced expressions w and w′ have the same string structure, then
★(w) = ★(w′).
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⋱
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n + k n + k + 2

n + k + 1 n + k + 3
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⋱

n + l + 1

n + l

k pairs

l + 1 − k pairs

Figure 2.3: The track for σl,k,n,+ with l ≥ 3
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Figure 2.4: Product of tracks corresponding to the maximal σ-string decomposition given in
Example 2.2.2
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Chapter 3

Cardinality of Braid Classes

This chapter begins with a few lemmas in Section 3.1 that are used to prove our main result,
namely Theorem 3.2.1. We conclude with several open problems in Section 3.3.

3.1 Preparatory Lemmas

First, we establish some notation. We use τ or τi to denote a σ-string of length 3 and α or
αi to denote a σ-string of length 5. Throughout this chapter, we assume that the number of
generators of W (An) is sufficiently large. That is, we assume that each group has enough
generators for any of our constructions.

Our first lemma concerns a single σ-string, which necessarily has odd length.

Lemma 3.1.1. Let w1 and w2 be reduced expressions for w1,w2 ∈ W (An) such that w1

is equal to a single σ-string with length greater than or equal to 9 and w2 is a reduced
expression such that

Struct(w2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{3, . . . ,3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j

} if `(w1) = 3j ≥ 9 with j odd

{5,5,3, . . . ,3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j−3

} if `(w1) = 3j + 1 ≥ 13 with j even

{5,3, . . . ,3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j−1

} if `(w1) = 3j + 2 ≥ 11 with j odd.

Then ★(w1) < ★(w2).
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Proof. First, we see that `(w1) = `(w2). Note, since w1 is a single string, the length of w1,
and hence w2, must be odd. By Lemma 2.1.4, we see that

★(w1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3j + 1

2
if `(w1) = 3j ≥ 9 with j odd

3j + 2

2
if `(w1) = 3j + 1 ≥ 13 with j even

3j + 3

2
if `(w1) = 3j + 2 ≥ 11 with j odd.

But, by Corollary 2.2.4,

★(w2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2j if `(w1) = 3j ≥ 9 with j odd

32 ⋅ 2j−3 if `(w1) = 3j + 1 ≥ 13 with j even

3 ⋅ 2j−1 if `(w1) = 3j + 2 ≥ 11 with j odd,

and since 3j+1
2 < 2j for all odd j > 1, 3j+2

2 < 32 ⋅ 2j−3 for all even j > 2, and 3j+3
2 < 3 ⋅ 2j−1 for all

odd j > 1, then ★(w1) < ★(w2). ◻

We see that Lemma 3.1.1 fails to handle strings of certain small odd lengths, specifically
the lengths 1,3,5, and 7. However, due to the nature of their construction and small size,
these lengths can be dealt with via brute force, which is done in what follows. Although the
statement of Lemma 3.1.1 could potentially be modified to accommodate these particular
hitches, it is our belief that Lemma 3.1.1 is more intuitive as stated. Because we will need
to handle both even and odd lengths, the next lemma handles a few small, special cases
involving both even and odd lengths.

Lemma 3.1.2. If w ∈W (An), then

⍟(w) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if `(w) ∈ {1,2}
2 if `(w) ∈ {3,4}
3 if `(w) = 5

4 if `(w) ∈ {6,7}
6 if `(w) = 8

9 if `(w) = 10,

and in each case, there exists a w attaining the upper bound.

Proof. Let w be a reduced expression for w ∈ W (An). We consider several cases, and only
those constructions for which ★(w) > 1 when `(w) ≥ 3. In the proof of this lemma, we use
string instead of maximal σ-string.
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Case 1: If `(w) ∈ {1,2}, then it is clear that no reduced expression can contain a braid.
Case 2: Assume `(w) = 3. There are two possible decompositions. First, w is a product

of three strings with length 1. Since w is reduced, then w would contain no braids (this
construction occurs in the remainder of cases and is not considered for the reason above).
Second, w may be one string with length 3, in which case ⍟(w) = 2 by Corollary 2.2.4.

Case 3: Assume `(w) = 4. There is only one nontrivial construction (that is, a construc-
tion with ★(w) > 1), which is the product of one string of length 3 and one string of length
1. Then ⍟(w) = 2.

Case 4: Assume `(w) = 5. There are two nontrivial constructions. First, w may be the
product of two strings of length 1 and one of length 3. Then ⍟(w) = 2. Alternatively, w may
be be constructed with one string of length 5, which means ⍟(w) = 3.

Case 5: Assume `(w) = 6. There are three possible constructions: one string of length 3
and three strings of length 1, one string of length 5 and one string of length 1, or two strings
of length 3. Then ⍟(w) is 2,3, and 4, respectively.

Case 6: Assume `(w) = 7. There are four possible constructions: one string of length 3
and four strings of length 1, one string of length 5 and two strings of length 1, one string of
length 7, and two strings of length 3 and one string of length 1. Then ★(w) is 2,3,4, and 4,
respectively. This case is particularly interesting and will be discussed later.

Case 7: Assume `(w) = 8. There are five possible constructions: one string of length 3
and five strings of length 1, one string of length 5 and three strings of length 1, one string of
length 7 and one string of length 1, two strings of length 3 and two strings of length 1, and
one string of length 5 and one string of length 3. Then ⍟(w) is 2,3,4,4, and 6, respectively.

Case 8: Assume `(w) = 10. There are four possible constructions involving three or more
strings of length 1 and will not be considered as they are addressed above. There are five
remaining constructions: three strings of length 3 and one string of length 1, one string of
length 3, one string of length 5, and two strings of length 1, one string of length 7 and one
string of length 3, one string of length 9 and one string of length 1, and two strings of length
5. Then ⍟(w) is 8,6,8,5, and 9, respectively. ◻

As mentioned above, Case 6 is special. This is because a single σ-string of length seven
belongs to a braid class of size 4, as does the product of two σ-strings of length three with
an additional generator preceding the strings, sandwiched in the middle of the σ-strings, or
ending the expression. This issue arises later.

The next lemma of this section provides an algorithm for obtaining a reduced expression
that belongs to a braid class that is at least as large as the braid class for a given reduced
expression of any length by reconstituting maximal σ-strings of the lengths from Lemma 3.1.1
or the exceptions from Lemma 3.1.2. That is, given a maximal σ-string decomposition, we
will potentially replace it by systematically swapping out larger σ-strings with products of
smaller σ-strings. This likely involves utilizing additional Coxeter generators.
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Lemma 3.1.3. Let w1 and w2 be reduced expressions for w1,w2 ∈W (An) such that σ1σ2⋯σm
is a maximal σ-string decomposition for w1 where each `(σi) = ki and w2 = σ̂1σ̂2⋯σ̂m where
each σ̂i is a reduced expression with maximal σ-string decomposition satisfying

Struct(σ̂i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{3, . . . ,3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j

} if ki = 3j and ki ≥ 3 with j odd

{5,5,3, . . . ,3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j−3

} if ki = 3j + 1 and ki ≥ 9 with j even

{5,3, . . . ,3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

j−1

} if ki = 3j + 2 and ki ≥ 5 with j odd

{1,3,3} if ki = 7

If σ̂1σ̂2⋯σ̂m results in a maximal σ-string decomposition for w2, then ★(w1) < ★(w2) when at
least one ki ≥ 9 and ★(w1) = ★(w2), otherwise.

Proof. First, observe that we can guarantee the existence of such a w2 if n is sufficiently
large. Second, σ̂i is not necessarily a σ-string; rather, it is a product of σ-strings. The result
now follows from Corollary 2.2.4, Lemma 3.1.1, and Lemma 3.1.2. ◻

If w is a reduced expression for w ∈ W (An), let µk(w) denote the number of times a
k appears in Struct(w). This definition is used in the next three lemmas, which all follow
immediately from Corollary 2.2.4. The next lemma demonstrates that having too many
σ-strings of length one does not maximize ★.

Lemma 3.1.4. Let w1 and w2 be reduced expressions for w1,w2 ∈W (An) with `(w1) = `(w2).
If µ1(w1) = 3k+r with k > 0 and r ∈ {0,1,2} and Struct(w2) is identical to Struct(w1) except
µ1(w2) = r and µ3(w2) = µ3(w1) + k, then ★(w1) < ★(w2). In particular, ⍟(w1) is increased
by a factor of 2k.

The following lemma shows that ★ is not maximized in the presence of either one or two
σ-strings of length one and sufficiently many σ-strings of length 3.

Lemma 3.1.5. Let w1 and w2 be reduced expressions for w1,w2 ∈ W (An). If µ3(w1) ≥ 3,
µ1(w1) = 1, and Struct(w1) is identical to Struct(w2) except µ5(w2) = µ5(w1)+2, µ1(w2) = 0,
and µ3(w2) = µ3(w1) − 3, then ★(w1) < ★(w2). Further, if µ3(w1) ≥ 1, µ1(w1) = 2, and
Struct(w1) is identical to Struct(w2) except µ5(w2) = µ5(w1) + 1, µ1(w2) = 0, and µ3(w2) =
µ3(w1) − 1, then ★(w1) < ★(w2).
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The final lemma plays an important role in increasing ★ in Theorem 3.2.1. In particular,
★ of a maximal string decomposition containing five σ-strings of length 3 is greater than ★
of a maximal string decomposition containing three σ-strings of length 5 where the string
structures are otherwise the same.

Lemma 3.1.6. Let w1 and w2 be reduced expressions for w1,w2 ∈W (An). If µ5(w1) ≥ 3 and
Struct(w1) is identical to Struct(w2) except µ5(w2) = µ5(w1) − 3 and µ3(w2) = µ3(w1) + 5,
then ★(w1) < ★(w2).

3.2 Main Result

In this section, we let n be a natural number and define m(n) = max (⍟ (w)) and w ranges
over all permutations of length n. The following theorem is Corollary 7 from [12], but with
a new proof that pieces together the new lemmas given in Section 3.1. In the proof of the
following theorem, we refer to the replacement of generators, where this replacement may
involve generators yet to appear.

Theorem 3.2.1. Let n be a natural number. Then

m(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if n ∈ {1,2}
2j if n = 3j with j ≥ 1 or n = 3j + 1 with j ≤ 2

2j−3 ⋅ 32 if n = 3j + 1 with j ≥ 3

2j−1 ⋅ 3 if n = 3j + 2 with j ≥ 1.

Proof. The proof of Lemma 3.1.2 shows how to maximize ⍟ for group elements with lengths
less than 9.

For the remainder of the proof, suppose w = σ1⋯σr is a maximal σ-string decomposition
for a reduced expression for w ∈W (An) and let `(w) = n ≥ 9. The proof is handled in steps
that will systemically replace w with new reduced expressions that increase ★ and eventually
guarantees that ★ achieves the maximum. If a step requires no action, we simply relabel
accordingly. Also, note that, when doing replacements, we may have to replace generators
in surrounding σ-strings to maintain the original length.

Step 1: First, we utilize Lemma 3.1.2 for each σi with length in {1,3,5,7} and Lemma 3.1.3
for each σi with length greater than or equal to 9 to replace each σi with some new σ-string
that potentially increases ★. That is, for each σi with relatively small length, σi is replaced
by the maximizing constructions given in Lemma 3.1.2, and for each σ1 with relatively large
length, σi is replaced by a product of σ-strings (the σ̂’s appearing in the lemma) that indi-
vidually increase ★. This replacement likely involves generators not appearing in supp(w).
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We call this reduced expression w1 and it is made up entirely of σ-strings of lengths 1, 3,
and 5 and ★(w) ≤ ★(w1) with equality if and only if each `(σi) ≤ 7.

Step 2: We now examine w1 in the context of Lemma 3.1.4. Step 1 potentially leaves
many σ-strings of length one. We collect these particular σ-strings and form a new reduced
expression w2 via replacement by the maximizing construction from the lemma. Again, we
likely do this swap with generators yet to appear. This process will leave 0, 1, or 2 σ-strings
of length 1. That is, µ1(w2) ∈ {0,1,2}. Also, ★(w1) < ★(w2)

Step 3: Now that w2 is made up entirely of σ-strings of lengths 3 and 5 with up to two
σ-strings of length 1, we create some w3 according to Lemma 3.1.5. If µ1(w2) = 1, then
µ5(w3) is increased by two while µ3(w3) is decreased by 3 and µ1(w3) is decreased by 1,
both relative to those measures for w2. If µ1(w2) = 2, then µ5(w3) is increased by 1 while
µ3(w3) is decreased by 1 and µ1(w3) is decreased by 2, both relative to those measures of w2.
The new reduced expression w3 contains only σ-strings of length 3 and 5 and ★(w2) < ★(w3).
Note, if Step 2 created w2 such that µ1(w2) = 0, no change is made to w3.

Step 4: Finally, we create w4 from w3 by iteratively replacing three σ-strings of length 5
with five σ-strings of length 3. This process will terminate with µ5(w4) ∈ {0,1,2}.

Let w4 be the group element that corresponds to w4. If `(w4) = 3j, µ5(w4) = 0 and
★(w4) = 2j. Alternatively, if `(w4) = 3j+1, µ5(w4) = 2 and ★(w4) = 2j−3 ⋅32 or if `(w4) = 3j+2,
µ5(w4) = 1 and ★(w4) = 2j−1 ⋅ 3.

We claim that w4 maximizes ⍟ for length n. Lemmas 3.1.3, 3.1.4, and 3.1.5 guarantee that
for elements with length at length nine, the string structure for an element that maximizes
⍟ will not contain a 1 nor a number larger than 5. This implies that the string structure
for any element with length at least nine that maximizes ⍟ will consist solely of 3’s and 5’s.
Lemma 3.1.6 confirms that the structure of w4 optimizes our use of 3’s and 5’s. ◻

We note here that this result corresponds to the maximum weight of a vertex in all
possible braid graphs for elements with length n.

3.3 Open Problems

Theorem 3.2.1 leads naturally to the following open problem: what is the smallest possible
group for which m(n) is achieved? For example, to maximize ⍟(w) for all w with length 11, a
maximal σ-string decomposition for a reduced expression for such a w is made of 2 σ-strings
of length 3 and 1 σ-string of length 5 via Theorem 3.2.1. One possible reduced expression is
121∣343∣56576, which corresponds to a group element in at least W (A7). However, it may be
the case that there exist elements in smaller groups with braid classes that attain the same
cardinality.
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For a brief period at the beginning of our research, we tried to investigate the so-called
evolution of commutation/braid/Matsumoto graphs in relation to a left (or right) Bruhat
ordering. That is, we created graphs, called the expanded Bruhat graph, via the left (or
right) Bruhat ordering with the vertex set as the collection of all commutation (or braid or
Matsumoto) graphs where a vertex is connected to another via the corresponding Bruhat
ordering. While these graphs are easily obtainable by brute force for small examples, due
to the immense number of elements in groups like W (A10), we hoped to be able to pre-
dict the commutation/braid/Matsumoto graph for a certain element by inspecting the com-
mutation/braid/Matsumoto’s graphs below it in the Bruhat ordering. However, we were
unsuccessful and hope this idea can be looked into further.

In Section 1.3, fully commutative (FC) elements were defined to be those elements with
a unique commutation class. Recall that an element w ∈W is FC if and only if no reduced
expression contains a braid. We analogously define commutation free (CF) elements: when
the set of reduced expressions for w ∈W has only a single braid class, then w is said to be
commutation free. Similarly, an element w ∈ W is CF if and only if no reduced expression
gives way to a commutation move. Unlike the FC property, the CF property has received
little to no attention. For instance, it is known that an element is FC if and only if it is
321-avoiding. Does any such pattern avoidance classify CF elements, or, in general, what is
the classification of CF elements? This opens many other potential problems. For example,
we believe classifying the left (or right) Bruhat graphs with nontrivial CF elements would
be interesting. Additionally, if one were given a Coxeter graph with some quality (such as a
3-cycle), what do CF elements look like and what are their possible lengths? Work has been
done investigating FC finite Coxeter groups (that is, Coxeter groups with a finite number
of FC elements) and FC infinite Coxeter groups (Coxeter groups with an infinite number of
FC elements). The analogous question concerning CF finite and CF infinite is potentially
interesting. That is, what Coxeter groups are CF infinite versus CF finite?
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