
Exploring Wildlife Simulation
Models

by Marcus R. Szwankowski

A Thesis

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

in Mathematics

Northern Arizona University

May, 2005

Approved:

Terence R. Blows, Ph.D., Chair

Paul Beier, Ph.D.

Brent D. Burch, Ph.D.

Abstract

Exploring Wildlife Simulation Models

Marcus R. Szwankowski

We introduce a brief description of wildlife population simu-
lation modeling. This serves as a primer for those who are unfa-
miliar with the topic. We then describe, in detail, a simulation
model used to answer questions about modeling techniques. This
model considers each population member separately when deter-
mining the yearly population fluctuations of a species and allows
for dynamic density dependence effects.

The first question we answer is whether or not the inclusion
of males in the simulation effects the output. We compare a
female only model, which uses just the female population size to
determine the number of breeders, to a model which considers
male and female population sizes before determining the number
of breeders during a given time step. We find that female only
models provide output which is considerably higher than the male
and female model. We then discuss the ramifications of using a
female only model with respect to three specific papers which use
that type.

The second question deals with the introduction of density
dependence effects and which vital rate, birth or survival, is bet-
ter at creating the desired curve for a time vs. average popu-
lation graph. We want a curve which mimics a logistic equa-
tion’s curve. Both survival and birth rate driven models produced
graphs which behave similar to the logistic equation’s curve, al-
though the survival model performed marginally better in our
trials. We also explore the effect of introducing density depen-
dence effects at a lower intensity before the true carrying capacity
is reached. This produces results in which the carrying capacity
is never obtained by the average population size.

The third and final question explores the use of a uniform
distribution based catastrophe timing generator. We understand
that a Poisson based distribution should be better at predicting

ii

the catastrophe occurrence. We discover that the geometric and
exponential distributions are linked to the uniform and Poisson
distributions, respectively, and see that they make a better com-
parison. This is due to their ability to determine whether a catas-
trophe will occur in the next time step during the simulation. A
comparison of the means and variances of the distributions proves
that little practical difference exists between the two.

iii

Contents

List of Figures . 1

Chapter 1 Introduction 1
1.1 Overview of Wildlife Simulation Models 1

1.1.1 The Headcount Approach 2
1.1.2 Age Structure . 6
1.1.3 Other Possibilities . 8

1.2 Questions of Interest . 9

Chapter 2 The Cumulative Array Based Simulation Model 11
2.1 The Algorithm Used . 12
2.2 Cumulative Array Formation & Usage 14

2.2.1 The Cumulative Array 14
2.2.2 Environmental Effects 17
2.2.3 Eigenvalue Driven Density Dependence Adjustment . . 19
2.2.4 Metapopulation . 22

2.3 The Random Number Generator Used 23
2.4 Model Validation . 24

Chapter 3 Female Only Models vs. Female & Male Models 27
3.1 Background Information . 27
3.2 Method . 28
3.3 Results . 29
3.4 Conclusion . 32

Chapter 4 Density Dependence Exploration: Birth Rate Basis
vs. Survival Rate Basis 36
4.1 Background Information . 36
4.2 Method . 38

iv

4.3 Results . 38
4.4 Conclusion . 41

Chapter 5 The Uniform vs Poisson Probability Question 44
5.1 Background Information . 44

5.1.1 The Uniform Distribution 44
5.1.2 The Poisson Distribution 45

5.2 Method . 45
5.3 Results . 45
5.4 Conclusion . 46

Appendix A The Code 49

Bibliography 70

v

List of Figures

1.1 R = 0.00 . 3
1.2 r = 1.00 . 4
1.3 R = 0.25, K = 250 . 4
1.4 r = 1.25, K = 250 . 5
1.5 r = −0.25, K = 10000 . 5
1.6 r = 0.00, K = 10000 . 6
1.7 r = 0.25, K = 10000 . 6

2.1 In this three patch movement array, patch one would have
a 30% chance of moving to patch two and a 20% chance of
moving to patch three. Patch 2 would have a 20% chance of
moving to patch one and a 20% chance of moving to patch
three Patch 3 would have a 15% chance of moving to patch
one and a 45% chance of moving to patch two. 23

4.1 Initial Pop=200, Fecundity Based 39
4.2 Initial Pop=200, Survival Based 40
4.3 Birth rate based density dependence & 80% lower cap threshold. 41
4.4 Survival rate based density dependence & 80% lower cap thresh-

old. 42
4.5 Birth rate based density dependence & 100% lower cap thresh-

old. 43
4.6 Survival rate based density dependence & 100% lower cap

threshold. 43

5.1 Results from 1000 simulations, where the number of years to
an occurrence is tracked and recorded. 47

5.2 Results from 1000 simulations, where the number of years to
an occurrence is tracked and recorded. 48

vi

Chapter 1

Introduction

1.1 Overview of Wildlife Simulation Models

Wildlife Simulation Models are used extensively in wildlife population
management studies. A variety of functions, techniques and species specific
algorithms can be used to form the simulation models, which are implemented
on a computer based platform to help gain some understanding of a popula-
tion’s possible future growth. There are two main underlying approaches to
models that simulate population growth: deterministic and stochastic.

In a deterministic model the demographic, environmental and spatial
data values that are used to initiate the model are held constant throughout
the simulation process. The result of these fixed values is that subsequent
runs of the model always yields the same output. This approach is useful
when erratic yearly changes in the environment or spatial make-up are not
present. Deterministic models have an advantage in that they take less time
to develop, less computing power to run and, subsequently, less time to return
their output. In many cases, however, unpredictable yearly fluctuations in
the environment and spatial make-up do occur and a deterministic model’s
output is not representative enough of possible trends.

A stochastic model allows the demographic, environmental and/or spatial
data values to vary randomly throughout the simulation process. Typically,
in a stochastic model, a range of observed values are entered (demographic,
environmental and spatial data values). As the stochastic model runs, yearly
random changes of the values are allowed to occur. This approach does intro-
duce the inherent problem of multiple possible outcomes, so large numbers

1

2

of simulations are run in order to get a clearer picture of the distribution of
the most likely outcomes. Stochastic simulation models require more time
and computing power to implement and run, but their end results are pre-
ferred when fluctuations in demographic, environmental and/or spatial data
are observed.

Important measures of simulation models include the ending population
size and the extinction risk.

• Ending population size is the number of subjects present at the end of
one multi-year simulation (it should be noted that even though simu-
lations can give the expected population size for a future hundreds of
years from now, extrapolating more than fifty years is not recommended
due to the amount of predictive error that can occur). Running multi-
ple simulations in a stochastic model allows the average and variance
of the ending population size to be found and analyzed.

• The extinction risk can also be found when multiple simulations of a
stochastic model are run. Anytime the population goes to zero during
a simulation, it is counted as an extinction. Dividing the number of
extinctions by the total number of simulations will give the extinction
risk for the species in question.

These outcomes of importance are then analyzed in order to help make
decisions about wildlife population management. One such analysis is known
as Population Viability Analysis (PVA). Lacy writes that PVA’s are the
estimation of extinction probabilities by analysis that incorporate identifiable
threats to population survival into models of the extinction process [5].

In both the deterministic and stochastic models, there are choices for
the complexity of the functions, techniques and algorithms used to model
yearly growth. The following sections give a brief overview of some of the
possibilities, beginning with the simplest type.

1.1.1 The Headcount Approach

The simplest type of model only keeps track of an overall population total.
It is basically just a function that uses the empirically derived yearly growth
rate along with an initial population setting as input. The function’s output
is the next year’s population, which in turn is used as the input for the year

3

after that. This process is then continued for a pre-determined amount of
iterations.

The functions used are chosen for the shape that their population at time t
vs. population at time t+1 and time vs. population graphs produce, given the
value of other present parameters, and for how well they represent the species
in question. Note that many variations and types of these functions exist and
that only the basic shapes will be presented here. For further information on
wildlife simulation functions and their graphs, see “An Illustrative Guide to
Theoretical Ecology” by Case [3].

The following graphs illustrate some of the shapes for both population
at time t vs. population at time t+1 and time vs. population graphs. The
population at time t vs. population at time t+1 graphs are showing the input
of the model. That is, they show how the population changes with respect to
itself from year to year, and the numerical representations of these changes
are used to parameterize the model. Whereas, the time vs. population graphs
show the output of the model which results from the population at time t
vs. population at time t+1 input parameters that were used.

Figure 1.1 shows the population at time t vs. population at time t+1 graph
for uninhibited geometric growth, using Nt+1 = (R + 1)Nt, where R is the
yearly growth rate.

10000 20000 30000 40000 50000

10000

20000

30000

40000

50000

Figure 1.1: R = 0.00

And, figure 1.2 shows the related time vs. population output, or uninhib-
ited exponential growth, using the equation Nt = N0e

rt where r is the rate
of growth, t is the time of growth, N0 is the population size at time zero, and
Nt is the population at time t. It should be noted that r was set to 1.00 for
the figure, but all r > 0 produce roughly the same result, and most species
in fact have r < 0.10.

4

2 4 6 8

50

100

150

200

250

Figure 1.2: r = 1.00

Figure 1.3 shows the population at time t vs. population at time t+1 graph
for density dependent growth, using Beverton Holt equation Nt+1 = Nt(R+1)

1+ R

K
Nt

,

where the new variable K is the carrying capacity. Again, this is a visual
representation of the input parameters that would be used to initiate the
model.

200 400 600 800 1000

50

100

150

200

250

300

350

Figure 1.3: R = 0.25, K = 250

Figure 1.4 shows the graph for the time vs. population output, using the
logistic equation, Nt = K

1+(
K−N0

N0
)e−rt

, which results from figure 1.3’s input.

5

5 10 15 20

50

100

150

200

250

Figure 1.4: r = 1.25, K = 250

Figures 1.5-1.7 show the population at time t vs. population at time t+1
input graphs for three parameter variations of density dependent growth,

using the Ricker equation Nt+1 = Nte
(r(1−

Nt

K
)).

250005000075000100000125000150000175000

2·106

4·106

6·106

8·106

1·107

Figure 1.5: r = −0.25, K = 10000

The related time vs. population output for the Ricker equation input can
vary from exponential curves to periodic curves to chaotic curves, depending
on the input values.

All of the previous examples have been deterministic in nature. If the
user wanted to, they could vary the yearly growth for each time step using a
stochastic process. This would change the look of both the input and output
graphs. The graphs would tend to be less smooth and, in cases where the
growth rate was allowed to vary greatly from time step to time step, may
look very little like the examples presented above.

6

250005000075000100000125000150000175000

25000

50000

75000

100000

125000

150000

175000

Figure 1.6: r = 0.00, K = 10000

250005000075000100000125000150000175000

2500

5000

7500

10000

12500

15000

17500

Figure 1.7: r = 0.25, K = 10000

1.1.2 Age Structure

Usually, a population will have different survival and fecundity rates for
different age groups, as opposed to one simple growth rate value, and the
combination of these rates determines the overall growth rate. Transition
matrix techniques are commonly used to facilitate populations with these
more complicated dynamics. So, instead of a single value representing a
population’s growth rate, transition matrices use multiple values for each of
the age classes’ survival and fecundity rates in order to produce yearly popu-
lation change. An initial population vector is loaded from top to bottom with
the size of each age group from juveniles to adults and is then multiplied by
the transition matrix to determine the next year’s population. The result-
ing vector is then multiplied by the transition matrix to get the population
for the year after that, and the process is continued for the predetermined
amount of iterations. Typically, only the female side of the population is

7

tracked when using transition matrices.
There are two main types of transition matrix setup: the pre-breeding

and the post-breeding. A pre-breeding setup, as described by Case [3], has
each year, t, beginning before the birth pulse. Post-breeding has each year,
t, beginning after the birth pulse [3]. Examples of each type, along with two
different approaches for handling age classes follow.

Pre-Breeding:
Leslie style matrices (see equation 1.1) are used when all of the age class

populations (nx) have different survival (sx) and fecundity (fx) rates.





n0

n1

n2



 (t + 1) =





f0s0 f1s0 f2s0

s1 0 0
0 s2 0



 ·





n0

n1

n2



 (t) (1.1)

Lefkovich style matrices (see equation 1.2) are used when certain age
classes exhibit nearly equal survival and fecundity rates. The idea is to lump
segments of the population together into what’s called a stage class (in this
example na replaces the age classes n1 & n2).

[

n0

na

]

(t + 1) =

[

f0s0 fas0

sa sa

]

·

[

n0

na

]

(t) (1.2)

Post-Breeding:
Equation 1.3 shows a post-breeding Leslie style matrix.





n0

n1

n2



 (t + 1) =





f0s0 f1s1 f2s2

s0 0 0
0 s1 s2



 ·





n0

n1

n2



 (t) (1.3)

And equation 1.4 shows a post-breeding Lefkovich style matrix.

[

n0

na

]

(t + 1) =

[

fas0 fasa

s0 sa

]

·

[

n0

na

]

(t) (1.4)

These matrices serve as the input for the model and are the counterpart
to the population at time t vs. population at time t+1 graphs from simple
headcount approach from before. The output of these matrices is dependent
on the dominant eigenvalue, or Perron root, of each matrix. In order for the
population to have positive growth, the Peron root must be greater than 1.
This will then give a time vs. population graph that is exponential in nature,
even though there may be some early transition.

8

The transition matrix can be adjusted before time steps to mimic environ-
mental and spatial effects, and the Perron root, as well as the yearly growth
rate, will subsequently be affected. One adjustment would be to introduce a
carrying capacity element to some (or all) of the terms. Another adjustment
would be the introduction of a stochastic process which would allow the vital
rates to change from time step to time step. These adjustments allow the
other non-linear types of time vs. population output graphs to be possible.

1.1.3 Other Possibilities

Available demographic, environmental & spacial data drives the choice
and complexity of the model used for the study. The more detailed the data,
the more intricate a model can be, in terms of input parameters. The most
basic deterministic model uses only the species’ yearly growth rate for the
region being studied.

If data collected on a species provides more specific information for other
parameters which influence the yearly growth rate, such as, female/male ra-
tio, litter sizes per breeding pair, yearly survival rates, age class divisions
in survival and breeding performance, environmentally motivated fluctua-
tions in the vital rates (i.e. birth and survival),and/or density dependence
motivated fluctuations in the vital rates, then more intricate models can be
used.

Also, if the species interacts between two or more patches of habitats, it
is called a metapopulation. Metapopulations will have patch-to-patch move-
ment within them as a species searches for food, shelter and/or a mate(s).
Patch-to-patch movement is sometimes an important factor in the survival
of a species, and models can be created which incorporate this movement.

At some point the decision must be made between using either a deter-
ministic or a stochastic approach, with respect to the various parameters
used. When yearly fluctuations are observed in the vital rates, a stochastic
approach should be considered.

Often, the biggest problem faced by the people who do wildlife simulation
modeling is the lack of pertinent data. Wildlife studies in the wild are not
abundant or in-depth enough for many species. So, the empirical data, which
parameters are based on, may be incomplete or from a small time frame.
This leads to uncertainty about the results produced by the model, and,
more specifically, the importance of different parameters in relation to their
effect on the overall outcome.

9

To give insight into the parameters which have the most affect on a pop-
ulation’s growth rate, systematic “tweaking” of the parameters is performed
as a sensitivity analysis. Sensitivity analysis can be performed in the deter-
ministic setting as well, without the need of multiple simulations to invoke
statistic’s law of large numbers.

1.2 Questions of Interest

As one can imagine, the topic of wildlife population modeling is often
debated due to the sheer volume of modeling options that are available, the
dearth of reliable data for many species, and the difficulty of predicting the
trends of mother nature. Questions were raised as we explored some of the
modeling options, and wildlife population simulation modeling in general.
Being motivated by these questions, we decided to create, or at least attempt
to create, a “better mousetrap”. The model’s code, to be detailed later,
was created from scratch. It builds on the ideas and techniques of wildlife
modeling that have been developed previously by others, but it varies from
the mainstream codes that we saw (i.e. RAMAS/metapop [1], VORTEX [5],
and ALEX [9]) in that it handles each creature’s life “independently” through
a stochastic process and allows for dynamic density dependence effects. After
working out many bugs, we used the code to answer three main questions of
interest:

1. Does a model which considers both male and female parts of a popu-
lation when determining the number of breeding pairs exhibit signifi-
cantly different outcomes than a model which just considers the female
part of the population? The motivation for this question comes directly
from some of the papers we read. Some models [8], [9] chose to ignore
the male parts of the population while determining population growth.
We felt this could lead to misleading results, especially in monogamous
breeding populations. A female only model would not be able to factor
in the possibility that male breeding partners may not be available for
all the females.

2. Does the use of different vital rates, different timing for the introduction
of density dependence effects (i.e. will the effects be felt only when the
population is at 100% of the carrying capacity, or earlier), and different
equations to handle the logistics of the effects greatly affect the outcome

10

when density dependence effects are used? Motivation for this question
came when we were incorporating density dependence into our model.
Due to the model’s make-up (which will be discussed in chapter two),
we had to make choices, such as which vital rate and which equation
to use as a basis. This led us to question whether or not a fecundity
based or a survival based density dependence model (or both) would
produce results where the average population size grows to its carrying
capacity, then flat-lines there until the end of the simulation run.

3. Does a Poisson distribution based counter produce more accurate spac-
ing between catastrophes during a simulation than the more commonly
used uniform distribution based method? This question was motivated
by the stat and probability courses that I took in college. I was al-
ways taught that the best way to predict the occurrence of naturally
occurring events was to use an Poisson distribution. So, when I read
that VORTEX and RAMAS/metapop didn’t determine spacing be-
tween events with a Poisson distribution, but instead used a Uniform
distribution to determine whether or not a catastrophe happened each
time step [5] [1], I wondered if a Poisson approach would be better.

The simulation model that was used to answer the posed questions differs
from most of the other common, readily available simulation models in that
it uses cumulative arrays instead of transition matrices to determine the year
to year population changes, and it allows for density dependence effects to
be applied in a manner other than just truncating the population.

Chapter 2

The Cumulative Array Based
Simulation Model

A common approach to simulation modeling is to determine the yearly
changes of the whole population of subjects, gender groups, and/or age
classes en masse. For example, if a stochastic process produces an adult sur-
vival rate of 70% for a particular time-step, then exactly 70% of the adults
will survive that time-step, no more, no less.

Two models in particular, RAMAS/metapop [1] and ALEX [9], used the
en masse approach. RAMAS/metapop uses a Leslie matrix based to deter-
mine yearly population change, which as discussed in chapter one, applies
one set of vital rates to the entire population at each time step. The nature
of this approach is that the individuals are not treated independently.

ALEX is also based on a matrix. A matrix based approach was taken
because it “significantly increases the speed at which the model runs, par-
ticularly where the population size is large because pseudo-random numbers
are not being generated for each individual” [9]. This indicates that ALEX’s
matrices do not treat the population as independent individuals in the code
make-up. We did not use these models because we desired a model which
used an independent approach to determine the yearly population fluctua-
tions.

Another model, VORTEX, uses an independent approach and treats
members of the population separately [5]. That is, if the adult survival
is 70%, then each subject within the population has an independent 70%
chance of surviving. The end result of an “independent” simulation model
may not be exactly 70% adult survival for the time-step. We would have used

11

12

VORTEX to answer our questions, but it does not use a dynamic method
to control density dependence effects. Instead, VORTEX just truncates the
population if it goes over the maximum carrying capacity. RAMAS/metapop
uses a method that is based on eigenvalues of the transition matrix it does not
treat the members of the population independently. A model that treated the
population independently, while also controlling density dependence effects
in a more dynamic manner was desired.

One difficulty in choosing a model of this type was the void of available
shareware software downloads which implement these techniques. As a result,
the code had to be written from scratch. We chose the C++ programming
language to write the code for our cumulative array based simulation model.

2.1 The Algorithm Used

The first step was to develop an algorithm for the code that would be
implemented in C++. We decided to incorporate a multitude of options in
the algorithm that would handle 1) independent input probabilities for every
possible litter size, 2) a multi-age class structure in which the last, or oldest,
age class will be the only breeders, 3) environmental stochasticity, including
rarer catastrophe occurrences, in the demographic values, 4) metapopulation
dynamics for cases where the species interacts between two or more disjoint
patches & 5) density dependence effects, with the ability to hamper growth if
the population is approaching, but not yet at maximum population density.

Input values for the algorithm consist of the following items. Demo-
graphic data values, i.e. the max litter size, litter size probabilities, the
number of age classes, the male/female birth ratio, and survival probabili-
ties. Environmental probabilities and their effects on vital rates. The number
of patches and the probability of moving between patches (if more than one
patch is used), which allow for metapopulation dynamics. Catastrophe prob-
abilities and their effects on vital rates. Density dependence factors, i.e. a
value for maximum population capacity, which will trigger the full amount of
user defined density dependence effects, and a lower threshold value, which
will trigger muted effects of density dependence before the maximum capac-
ity is reached. Note that the lower threshold and maximum capacity can
be the same value, in essence bringing on the full effect without ramping up
to it. And finally, initial population sizes, the number of independent sim-
ulations to be run, and the number of years to be extrapolated during each

13

simulation.

Cumulative Array Simulation Model Algorithm1

• Input: the number of patches

Then for each patch:

• Input: patch to patch movement (yes or no), max litter size, the number
of age classes, litter size probabilities, M/F birth ratio, survival probabili-
ties, environmental probabilities and their effects on vital rates (optional),
catastrophe probabilities and their effects on vital rates (optional), density
dependence cap and lower threshold (optional), patch to patch movement
information (optional), and initial population sizes.

• Initialize the density dependence modifiers.

• Create birth, mortality, environmental, catastrophe, and patch to patch
movement pdf and/or cumulative arrays.

• Initialize the number of independent simulations to be run.

• Initialize the number of years to be extrapolated during each simulation.

• While simulation counter ≥ number of simulations . . .

1. While yearly counter ≥ number of years . . .

i) Update population of age groups.

ii) If the density dependence option is on, then determine density
dependence effects, if any.

iii) Determine the amount of breeders.

iv) Use pseudo-randomly generated numbers to determine the envi-
ronment type (good, normal, bad, or catastrophe) for the current
time step.

v) Determine the number of newborns by using the relevant birth
cumulative arrays in conjunction with pseudo-randomly generated
numbers.

vi) Determine the number of survivors by using the relevant mortality
cumulative arrays in conjunction with pseudo-randomly generated
numbers.

1The exact process of how the pseudo-random numbers determine the simulated life
cycle of a species will be developed in the next section.

14

vii) Check to see if species has gone extinct.

viii) If there is more than one patch being modeled, determine creature
movement from patch to patch using the movement cumulative
array and pseudo-randomly generated numbers.

ix) Update yearly counter.

2. Update simulation counter.

• Output: average ending population size, standard deviation and variation of
ending population size, extinction risk percentage, the pdf and cumulative
arrays which were created and used by the program to generate the results.

2.2 Cumulative Array Formation & Usage

2.2.1 The Cumulative Array

The main feature of this model is its use of cumulative arrays and pseudo-
randomly generated numbers. This section is devoted to an example of how
the different cumulative arrays are created and used by the program during
the simulation process.

For this example, the fictional No-No Bird is being used. The only age-
class which breeds is adults. There are four yearly environment types built
into the code: Good, Normal, Bad, and Catastrophe. Normal environmental
years use the vital rates as entered by the user, without modification. First,
we will demonstrate how the normal environmental year birth array is formed.

Table 2.1 shows the relative parameters that are used as input for the
example.

15

Litter Size Probability
0 .2
1 .3
2 .5

Female/Male Birth Ratio
55/45

Survival Rates
Newborn 0.5
Juvenile 0.7
Adult 0.8

Table 2.1: No-No Bird vital rates.

With the information from Table 2.1 the birth pdf is formed . . .

P (0 newborns) = 0.2

P (1 female newborn) = 0.3 ·

[(

1

1

)

· 0.551
· 0.450

]

= 0.165

P (1 male newborn) = 0.3 ·

[(

1

0

)

· 0.550
· 0.451

]

= 0.135

P (2 female newborns) = 0.5 ·

[(

2

2

)

· 0.552
· 0.450

]

= 0.15125

P (1 female & 1 male newborn) = 0.5 ·

[(

2

1

)

· 0.551
· 0.451

]

= 0.2475

P (2 male newborns) = 0.5 ·

[(

2

0

)

· 0.550
· 0.452

]

= 0.10125

Then, bins in a new array are formed with the pdf information, using a

16

cumulative approach. . .

0 ≤ P (0 newborns) ≤ 0.2

0.2 < P (1 female newborn) ≤ 0.365

0.365 < P (1 male newborn) ≤ 0.5

0.5 < P (2 female newborns) ≤ 0.65125

0.65125 < P (1 female & 1 male newborn) ≤ 0.89875

0.89875 < P (2 male newborns) ≤ 1

The result is an array where the first entry is always greater than or equal
to zero (in this case 0.2) and the last entry is always one. . .

[0.2, 0.365, 0.5, 0.65125, 0.89875, 1]

The Cumulative Birth Array

Once the birth array is created, it is used each time-step, with each breed-
ing pair in conjunction with pseudo-randomly generated numbers (uniform
on [0, 1)) to determine how many newborns should be added to the popula-
tion. The code will first initialize a loop counter with the number of breeding
pairs (in the case of the model which considers both female and male pop-
ulation sizes before determining the number of breeders, the minimum of
breeding age males or females is used, whereas the female only approach will
always use the number of breeding age females). Then, each time through
the loop, a pseudo-random number is generated. The pseudo-random num-
ber is systematically checked against each element of the array, starting with
the first entry. If the pseudo-random number is less than or equal to the
array element, then the population is adjusted accordingly. For the No-No
Bird example, a value of 0.65 would mean that two female newborns would
be added to the total newborn population. This loop is repeated until the
breeding pair counter is decremented to zero.

The normal environmental year survival array uses a similar technique,
except that each element of the array represents the probability of survival
for its respective age-class2...

2The model also allows for gender specific rates so a survival array is created for both
genders during parameterization, and each gender’s population is subjected to the survival
process.

17

[0.5, 0.7, 0.8]

The Survival Array

To determine the number of survivors for the first age class, a loop counter
is initialized with the number of individuals currently “alive” in the first age
class, then, each time through the loop, a pseudo-random number is gener-
ated and checked against the age class’s parameter value. A pseudo-random
number larger than the parameter value indicates a failure to survive to the
next time-step, and the population is then decremented by one. In this ex-
ample, if 0.612 is the first pseudo-random number generated for the newborn
population, then the newborn population is decremented by one. The pro-
cess repeats until the loop counter of the particular age class decrements to
zero; the model performs the same procedure for each age class present in
the array.

2.2.2 Environmental Effects

Three separately initialized environmental condition arrays (denoted as
Good (g), Normal (n), and Bad (b)) as well as a separately initialized Catas-
trophe (c) array are allowed for in the code (more arrays could be added
easily to the code, if necessary). The g, b, & c arrays start out equal to the
user-initialized birth and survival normal year arrays (as detailed above).
Non-negative “environmental effect” multiplicative scalars that are input by
the user are then applied to the birth pdf and survival arrays. In the g, b, &
c survival arrays, if the multiplicative scalars are less than 1, then they will
reduce the age class’s survival probability value and if the scalars are greater
than 1, then the age class’s probability value will increase. For example,
assume the user entered the survival array:

[0.5, 0.7, 0.8]

Then, assume that the user decided that, in a good year, the 1st age class
survives at a rate that’s 120% of the normal rate, the 2nd age class survives
at a rate that’s 130% of the normal rate, and the 3rd age class survives at a
rate that’s 120% of the normal rate. The user would enter 1.2, 1.3 and 1.2
for the respective age class survival modifiers, and the resulting good year
survival array would be...

18

[0.5 · 1.2, 0.7 · 1.3, 0.8 · 1.2]

or, after simplifying...

[0.6, 0.91, 0.96]

Birth pdf arrays, excluding the first element, are affected similarly by the
scalars, with the difference being how the first element is handled. The first
element of the birth pdf array is adjusted separately, so that the sum of all
the elements in the pdf array will equal 1, and it is found by summing the
elements 2,. . . ,n, n ∈ N and then subtracting the sum from one. Clearly,
a scalar greater than 1 could produce a negative value for the first element
of the birth array. For this reason, the code will stop and present the prob-
lematic array3 when this scenario is encountered. Assume the user entered
a Female to Male ratio of 55:45 and the following probabilities for births:
P (0) = 0.2, P (1) = 0.3, & P (2) = 0.5. This gives the birth array:

[0.2, 0.365, 0.5, 0.65125, 0.89875, 1]

Then, assume the user decided that in a good year the probability of a litter
size of 1 is 110% of the normal rate and the probability of a litter size of 2 is
105% of the normal rate. The user would enter 1.1 and 1.05 as the respective
litter size modifiers, and the resulting good year birth probabilities would be
P (1) = 0.3 · 1.1 = 0.33, & P (2) = 0.5 · 1.05 = 0.525. The good year birth pdf
is formed...

3A list of all the arrays used is included in the output for each simulation so that the
user can check for any potential input errors and be made aware of all numbers being used

19

P (1 female newborn) = 0.33 ·

[(

1

1

)

· 0.551
· 0.450

]

= 0.1815

P (1 male newborn) = 0.33 ·

[(

1

0

)

· 0.550
· 0.451

]

= 0.1485

P (2 female newborns) = 0.525 ·

[(

2

2

)

· 0.552
· 0.450

]

= 0.1588125

P (1 female & 1 male newborn) = 0.525 ·

[(

2

1

)

· 0.551
· 0.451

]

= 0.259875

P (2 male newborns) = 0.525 ·

[(

2

0

)

· 0.550
· 0.452

]

= 0.1063125

P (0) = 1 − 0.855 = 0.145

And then the cumulative good year birth array is formed:

[0.145, 0.3265, 0.475, 0.6338125, 0.8936875, 1]

2.2.3 Eigenvalue Driven Density Dependence Adjust-

ment

The goal of our density dependence effect was to have a time vs. population
curve representative of a logistic equation’s, where the population grows to
maximum density and remains there for the duration of the simulation. A
stable growth rate at maximum density with logistic equations is obtained
because a population equal to the carrying capacity effectively cancels out the
growth term in the equation. Due to the array based nature of our model,
and the presence of multiple variables which could not easily be squeezed
into a normal logistic equation, we had to approach the concept of density
dependence differently.

After some trial (and much error), we chose to use the fact that “the dom-
inant eigenvalue of the (deterministic) Leslie matrix yields an age-structured
population’s ultimate geometric growth rate” [3] as a basis for our design.
And we knew that if we could adjust vital rates as the simulation ran so
that the dominant eigenvalue would equal 1 at carrying capacity, the pop-
ulation would maintain stable growth. We had to find a way to have the

20

code use this information to inact density dependence effects. Two different
approaches were designed: birth rate driven and survival rate driven. In the
birth rate driven approach, only the birth rates were modified to enact den-
sity dependence. The survival rate approach calls for only the survival rates
to be modified to enact density dependence.

Birth (or fecundity) Driven Model

The first step in the process was transforming the user defined values
for birth and survival into Leslie matrix entries. Survival rates required no
change in order to be useful, but the code had to be modified in order to
allow it to take individual litter sizes and their respective probabilities and
transform the information into a general fecundity rate. Once this was done,
we applied a scalar, m, to the fecundity values in the matrix. After finding the
characteristic equation of the matrix, we set λ = 1, where λ is an eigenvalue,
and solved for m. This process was done for square Post-Breeding Leslie
matrices of size 2, 3, 4, 5, & 6 4. A square matrix of size 2 has a unique
equation (2.1) for a scalar m, where s is the survival rate and b represents
the simplified fnsn terms.

m =
s1 − 1

−bs0
(2.1)

Square matrices of size 3 through 6 produced equations for m which can
be described by the general form of equation 2.2

m =
sn−1 − 1

s0s1 · · · sn−3b(−1 − sn−2 + sn−1)
(2.2)

For example, the fictional No-No Bird’s Post-Breeding Leslie matrix would
be...





0 1.3 1.3
0.5 0 0
0 0.7 0.8





where b = 1.3, s0 = 0.5, s1 = 0.7, s2 = 0.8, & λ ≈ 1.26. Using the above
equation, the scalar m needed for the birth elements in order to give λ = 1
would be...

4For future work, we’d like to prove the conjecture that the formulas work for n > 6,
where n ∈ N .

21

0.8−1
0.5·1.3(−1−0.7+0.8)

≈ 0.3419

Each b in the Leslie matrix would then be multiplied by m, and the new
Leslie matrix with λ = 1 would be...





0 0.44447 0.44447
0.5 0 0
0 0.7 0.8





Survival Driven Model

Determining scalar values for survival followed a similar approach, with
the scalar m applied to all of the survival entries in the matrix instead of the
fecundity values. And again, a special case was found for a square matrix of
size 2 (2.3).

m =
1

s1 + s0b
(2.3)

It also became clear that square matrices of even and odd sizes had dif-
ferent general forms.

Odd sizes (beginning at size 3) had the form of equation 2.4.

mn−1(s0 · · ·sn−2b−s0 · · ·sn−3sn−1b)+mn−2(s0 · · ·sn−3b)+msn−1−1 = 0 (2.4)

Whereas even sizes (beginning at 4) had the form of equation 2.5.

mn−1(s0 · · ·sn−3sn−1b−s0 · · ·sn−2b)−mn−2(s0 · · ·sn−3b)−msn−1+1 = 0 (2.5)

The fact that polynomials greater than degree 1 were represented left us
with the problem of solving for multiple m values. We knew that m needed
to lie between 0 and 1 to be effective. After plugging 0 and 1 into equations
2.4 & 2.5 for m, we found that the signs for the two bounds were opposite in
both equations. This knowledge, along with a conjecture that only one real
root would exist between 0 and 1, allowed us to use the bisection method of
finding roots and subsequently find scalars m for the survival rates.

For example, again using the No-No Bird information, we would use the
equation for odd sizes...

22

m2(0.5·0.7·1.3−0.5·0.8·1.3)+m(0.5·1.3)+0.8m−1 = −0.065m2+1.45m−1

After using the bisection method, the scalar m ≈ 0.717 is obtained and
multiplied by all of the survival elements. This then produces the modified
survival array:

[0.3585, 0.5019, 0.5736]

The Density Dependence Survival Array

Implementation

Algorithms were then created and implemented into the code which would
use the equations (2.1-2.5) along with user defined data to find the appro-
priate scalar m necessary for reducing the fecundity or survival rate to a
level which stops population growth at carrying capacity. The code was
also modified to allow the user the option of using a lower cap threshold,
in order to enact carrying capacity effects in a gradual manner as the pop-
ulation grows towards maximum density. Linear interpolation was used to
scale m appropriately, depending on where the population lies between the
lower threshold value and the maximum capacity value. Both approaches
produced time vs. population graphs that grow towards maximum density
at an exponential rate and then flatline at maximum density. If a lower
cap threshold is used, then the graph experienced a concavity change from
up to down before flatlining at maximum density. As mentioned earlier, we
questioned the difference in approaching density dependence from a birth or
survival perspective. The results of the testing of the two approaches, as well
as other remarks, is saved for chapter 5.

2.2.4 Metapopulation

The code also allows for multiple population patches. Each patch is al-
lowed to have separate vital rates, environmental effects and density depen-
dence effects. Movement is facilitated between the patches by way of arrays.
For example, in a three patch system, the user would enter the probability of
moving from patch one to patches two and three, the probability of moving
from patch two to patches one and three, and the probability of moving from

23





− 0.3 0.5
0.2 − 0.4
0.15 0.6 −





Figure 2.1: In this three patch movement array, patch one would have a 30%
chance of moving to patch two and a 20% chance of moving to patch three.
Patch 2 would have a 20% chance of moving to patch one and a 20% chance
of moving to patch three Patch 3 would have a 15% chance of moving to
patch one and a 45% chance of moving to patch two.

patch three to patches one and two. The probability of moving from a patch
to itself is always 0. Then a cumulative array is formed, as in figure 2.1.

Finally, pseudo-random numbers are generated and compared to the array
to determine patch to patch movement. For example, if a pseudo-randomly
generated number for patch 1 was 0.55, then it would be checked against the
0.3 in row 1 first. The first element is skipped because the code is designed
to skip entries in which the departure patch number equals the arrival patch
number. Since 0.55 is greater than 0.3, the creature does not move to patch
2. Then, 0.55 is checked against 0.5, and since it is greater, the creature does
not move to patch 3 either. Instead, the creature remains in patch 1 as a
result.

2.3 The Random Number Generator Used

This simulation model relies heavily on the generation of pseudo-random
numbers. The generation of pseudo-random numbers in this model com-
plies with the ANSI C standards for “randomness” and uses a method pro-
posed by Lehmer in 1949 [7] known as the Linear Congruence Generator
(L.C.G.). Common notation for L.C.G.’s is LCG(m, a, c, Z0). The parame-
ters m, a, c, & Z0 are used to parameterize an iterative process that uses
equation 2.6 to produce a range of n numbers, [0, m−1), or, as in our model,
each Zi can be divided by m to produce a range of uniformly distributed
values on [0, 1).

Zi = (a · Zi−1 + c) mod m (2.6)

The choice of m, a, & c determine whether every possible number in the

24

range 0 & m− 1 (a full period) will be generated. Theorem 2.3.1, proven by
Hull and Dobell in 1966 [4], lists conditions which guarantee a full period.

Theorem 2.3.1 (Hull & Dobell) Zi = (aZi−1 + c) mod m has a full period
iff:

i) m & c are relatively prime

ii) if q is a prime number which divides m, then q divides a-1

iii) if 4 divides m, then 4 divides a-1

The period length is one result of the choice of m, a, & c. The choice of
m, a, & c also determines whether the generation of pseudo-random num-
bers falls into a certain pattern. That is, sequences of numbers may repeat
themselves often, which could taint stochastically driven results, and yet the
overall distribution would appear to be uniform.

2.4 Model Validation

Once the code was implemented in C++, we compared its performance
to that of a deterministic probability model implemented in Microsoft Excel.
A deterministic model was used for comparison because we felt that running
1000 simulations of 50 years each in our stochastic model would invoke the
law of large numbers necessary to allow the average ending population size
to approach the expected value produced by the deterministic model. The
stochastic model was run without any environmental, density dependence,
or metapopulation effects. No-No bird (pg. 15) birth & survival rates were
used, in conjunction with four initial population sizes.

Table 2.2 shows the effect of different initial population sizes on the
stochastic and deterministic ending population size ratio. Note that each
population size uses three trials.

The first item to note is that with smaller population sizes there is a
greater discrepancy between the stochastic output and the deterministic out-
put. This is to be expected as the stochastic output mimics the idea that
smaller populations will have a harder time growing and flourishing.

Another item which arose with this type of model was the effect of differ-
ent survival rates on the correlation between the stochastic and deterministic
model’s resultant ending population size. Data from a study on Northern

25

Initial Population Stochastically Obtained Stochastic/Deterministic
Size Average & Standard Deviation Ratio
120 135.352 61.347 0.8154

143.299 63.797 0.8632
142.274 64.777 0.8571

600 823.967 166.846 0.9909
815.740 163.168 0.9810
827.630 168.221 0.9953

1200 1645.110 234.430 0.9892
1656.670 234.640 0.9962
1653.890 249.234 0.9945

6000 8277.210 528.141 0.9955
8217.790 558.170 0.9883
8265.350 543.774 0.9940

Table 2.2: Average & standard deviation of ending population sizes and their
respective stochastic/deterministic ratios using No-No bird data.

Spotted Owls [6] indicated that the newborn survival rate was a low 0.159
(the juvenile and adult rates were 0.83 & 0.84, respectively). And when out-
put from the stochastic and deterministic models was compared, using what
was thought to be a sufficiently high initial population size (5000 subjects), it
was observed that the stochastic model’s ending population size was roughly
70% of the deterministic ending population size. This was not in the 90%
range that was expected.

We theorized that the low survival rate was the cause of such a low
percentage. In order to test this, we ran the simulation with higher values of
newborn survival. Once we set newborn survival at 40%, we observed that
the stochastic model’s ending population size was 80% of the deterministic
ending population size. And when we set the newborn survival at 49%, we
observed that the stochastic model’s ending population size was 90% of the
deterministic ending population size.

Clearly, different newborn survival rates affect the stochastic results’ re-
lation to their deterministic counterparts. The reasoning for the discrepancy
is that, at low rates of newborn survival, the stochastic process is not given
a chance to “rebound” from a string of failures.

26

So, the model does have its deficiencies. It needs larger initial popula-
tions to avoid ending population sizes that are below those predicted by a
deterministic model. The ability for only one age class to be the breeding
class may not fit well with some species5. And, the patch to patch movement
process only allows for adults to travel from patch to patch, which again,
may not fit well with some species6.

All-in-all, we felt confident in using the CDF model approach to answer
the our first two questions of interest.

5The code can be modified to allow breeding for other age classes.
6The code can also be modified to allow for more, or different, age classes to move.

Chapter 3

Female Only Models vs.
Female & Male Models

3.1 Background Information

The question as to whether there is a difference between “female only”
and “female & male” models, in terms of ending population size, was borne
out of a concern that population predictions could be adversely affected if
the male population was ignored. We felt “female only” models could affect
monogamous species the most, because a shortage of male partners means
that not all of the females would be able to mate and produce offspring.

The models in three of the papers we read did not track the male popu-
lation during simulation runs. In a paper written by H.P. Possingham & I.
Davies [9], the ALEX model is a model which tracks only one gender. The
authors did consider this trait to be a weakness of the model, and states
that “species in which both sexes can limit population growth rate are not
modeled accurately”. Some mention is also made about the scenario where
there are no breeding males for any of the females, and how this might affect
the results.

Another paper, written by R.H. Lamberson, et al [6], also uses a female
only model. In this paper, no defense or explanation, whether explicit or
implicit, is given for choosing this approach.

Finally, a third paper, written by M.T. Murphy [8], also describes a model
that ignores the male population. In this paper, the author only implicitly
suggests that the approach is acceptable when he states “I am confident

27

28

that my 11 year demographic study provides reliable estimates of Sa (Adult
Survival), F/2 (female offspring per year), and dispersal behavior”. No ex-
plicit statements are given about why the male population numbers and their
potential affects on population growth were ignored.

These three papers in particular drove our desire to determine the affect
(if any) of using a “female only” model for simulating a species’ population
growth.

3.2 Method

We compared the ending population size of a “female only” model to
a model designed to use both female and male population numbers, effec-
tively simulating a monogamous species. In order to simulate monogamy,
the model considers both female and male population sizes when determin-
ing the number of breeding pairs. Specifically, the number of breeding age
females or males, whichever is less, is used as the number of breeding pairs
for each breeding cycle. The “female only” model just uses the number of
breeding age females as the number of breeding pairs.

Data from Lamberson, et al.’s paper on Northern Spotted Owls was used.
The parameters used included a female/male ratio of 50/50 & 1.42 offspring
per breeding pair 1. Subadult and adult survival rates were set at 0.83 and
0.84 respectively. We used three juvenile survival rates (0.159, 0.509, &
0.735) in order to obtain decreasing, stable, and increasing yearly growth
rates. Several different population sizes were chosen for each of the three
scenarios.

The focus was on the mean and standard deviation of the ending popu-
lation size. We ran trials incorporating 1000 independent simulation runs of
50 years apiece.

Some of the models in question, namely the ones in Murphy’s and Lam-
berson’s papers, were female based and included metapopulation dynamics.
To determine if the discrepancy in the ending population sizes for single patch
environments also carried over to multiple patch environments, we ran multi-
ple patch simulations using two and three patch metapopulations. Again, we
ran 1000 simulations of 50 years each for the female only and male & female
based models. All of the patches used the same vital rates. The survival rate
of 0.509 was used for the juveniles, because the output in the single patch

1individual litter probabilities of 0.37, 0.5, 0.13 were used as input for the program

29

scenario produced more reasonable numbers for a comparison. The other
vital rates were kept the same as in the single patch situation.

Both the two patch and three patch metapopulations were run with four
different movement scenarios. For the two patch metapopulation, the move-
ment scenarios used were:

1) A 24% chance of moving from patch 1 to patch 2, and a 24% chance
of moving from patch 2 to patch 1.

2) A 50% chance of moving from patch 1 to patch 2, and a 24% chance
of moving from patch 2 to patch 1.

3) A 24% chance of moving from patch 1 to patch 2, and a 50% chance
of moving from patch 2 to patch 1.

4) a 50% chance of moving from patch 1 to patch 2, and a 50% chance of
moving from patch 2 to patch 1.

For the three patch metapopulation, the movement scenarios used were:

1) A 24% chance of moving from patch 1 to patch 2 and 3, a 24% chance
of moving from patch 2 to patch 1 and 3, and a 24% chance of moving from
patch 3 to patch 1 and 2.

2) A 24% chance of moving from patch 1 to patch 2, a 50% chance of
moving from patch 1 to patch 3, a 24% chance of moving from patch 2 to
patch 1, a 50% chance of moving from patch 2 to patch 3,and a 24% chance
of moving from patch 3 to patch 1 and 2.

3) a 50% chance of moving from patch 1 to patch 2, a 24% chance of
moving from patch 1 to patch 3, a 24% chance of moving from patch 2 to
patch 1 and 3, a 24% chance of moving from patch 3 to patch 1, and a 50%
chance of moving from patch 3 to patch 2.

4) a 12% chance of moving from patch 1 to patch 2 and 3, a 12% chance
of moving from patch 2 to patch 1 and 3, and a 12% chance of moving from
patch 3 to patch 1 and 2.

3.3 Results

The results from our single patch trials are shown in table 3.1.

30

Initial Female Female and
Population Size Only Male

Juvenile Survival=0.159
x s x s

100 0.423 0.977 0.136 .0440
250 0.999 1.546 0.445 0.862
500 1.977 2.113 1.108 1.426
1000 4.115 3.034 2.726 2.277
2000 8.196 4.549 6.056 3.566

Juvenile Survival=0.509
x s x s

100 101.408 50.950 54.448 27.696
250 258.561 77.053 174.418 50.866
500 513.981 113.296 393.763 77.097
1000 1028.150 157.796 854.516 113.432
2000 2059.320 220.751 1806.400 169.278

Juvenile Survival=0.735
x s x s

100 1797.040 519.216 1173.390 334.126
250 4466.450 864.825 3476.530 578.927
500 8910.890 1123.980 7474.130 864.913
1000 17900.600 1683.130 15826.500 1224.490
2000 35601.800 2328.460 32678.200 1711.420

Table 3.1: Female only vs. Female & Male based average ending population
and standard deviation results

The data from table 3.1 was used to create 95% conficence intervals for
µFemale Only-µFemale and Male in the single patch scenario. If 0 is in the confi-
dence interval, then we would have evidence that the two models produced
essentially the same output. Formula 3.1 was used to create the confidence
intervals, with xi and si from table 3.1 and ni = 1000 (note that subscripts
1 and 2 refer to the female only and female & male models, respectively).

(x1 − x2) ± 1.96 ·

√

s2
1

n1
+

s2
2

n2
(3.1)

31

The resulting confidence intervals for the single patch trials are given in
table 3.2. Because, in each case, 0 lies outside the confidence interval, we
conclude that the female only model produces ending population size results
that are greater than the model that includes the male population.

Population Size 95% Confidence Interval

Juvenile Survival=0.159
100 (0.226, 0.348)
250 (0.444, 0.664)
500 (0.711, 1.027)
1000 (1.154, 1.624)
2000 (1.782, 2.498)

Juvenile Survival=0.509
100 (43.366, 50.554)
250 (78.420, 89.866)
500 (111.724, 128.712)
1000 (161.589, 185.679)
2000 (235.678, 270.162)

Juvenile Survival=0.735
100 (585.381, 661.919)
250 (925.416,1054.424)
500 (1348.857, 1524.663)
1000 (1945.092, 2203.108)
2000 (2744.491, 3102.709)

Table 3.2: Female only vs. Female & Male based 95% confidence intervals

For the metapopulations, the total average ending population size across
all patches was found by summing the individual average ending population
sizes for each patch. The standard deviation of the total ending population
size was found by taking the square root of the combined variance of the in-
dividual patches. Before we combined the variances, we determined if there
was a correlation between the individual patches’ outcomes by performing a
multivariate analysis on the ending population sizes of the individual patch
outcomes. We used the statistical software package JMP to plot the ending
population sizes in the two patch model for patch 1 vs patch 2 for the 1000
simulations and discovered a correlation existed between them. Using JMP,

32

we found that there was also a correlation between the ending population
sizes for the three patch model. So, in order to take into account the corre-
lation and combine the variances properly, we included covariance terms in
the combined variance formulas.

For two patches we used formula 3.2, and for three patches we used for-
mula 3.3. In both formulas, the subscripts refer to the patch number, the xi’s
are the average ending population sizes for the individual patches, the s2

i ’s
are the variances of the ending population size for the individual patches, the
sij’s are the estimated covariance terms and n is the number of simulations.
JMP was used to determine the estimated covariance values from the raw
data for the metapopulation scenarios.

ˆvar(x1 + x2) =
1

n
· (s2

1 + s2
2 + 2 · s12) (3.2)

ˆvar(x1 + x2 + x3) =
1

n
· (s2

1 + s2
2 + s2

3 + 2 · (s12 + s13 + s23)) (3.3)

The results for the combined mean and standard deviation of the two and
three patch models are shown in table 3.3 on page 33.

The table values were used to create 95% confidence intervals for µFemale Only-
µFemale and Male using formula 3.4, where y1 and y2 are the summed patch
means and s2

1 & s2
2 are the combined patch variances for each model, and n

is the number of simulations.

(y1 − y2) ± 1.96 ·

√

s2
1

n1

+
s2
2

n2

(3.4)

Table 3.4 on page 34 shows the resulting confidence intervals for the
metapopulation scenarios.

Again, 0 does not lie in the confidence interval, so we conclude that the
female only model produces higher values than the male & female based
model.

3.4 Conclusion

Overall, the consistent and relatively large discrepancy between the two
models’ ending population sizes makes a strong argument that tracking the

33

Initial Female Female and
Movement Population Only Male
Scenario Size combined x combined s combined x combined s

Two Patches with Juvenile Survival=0.509
1 250 252.251 2.378 140.863 1.391
2 250 259.257 2.426 142.123 1.373
3 250 259.034 2.391 148.028 1.418
4 250 257.449 2.396 143.541 1.347

1 1000 1032.696 4.869 783.921 3.196
2 1000 1034.664 4.975 784.350 3.401
3 1000 1030.597 4.885 793.604 3.163
4 1000 1019.992 4.532 778.539 3.328

Three Patches with Juvenile Survival=0.509
1 250 253.343 2.357 123.756 1.297
2 250 251.758 2.378 122.213 1.311
3 250 253.768 3.457 127.415 1.079
4 250 255.251 2.466 123.932 1.264

1 1000 1019.989 4.738 738.162 3.103
2 1000 1030.606 4.930 743.663 3.313
3 1000 1028.808 4.638 745.203 3.197
4 1000 1033.118 5.011 738.396 3.274

Table 3.3: Female only vs. Female & Male based combined means and
standard deviations

male population during simulation modeling could be of vital importance.
This is especially true for monogamous species where there may not be
enough males to breed with all of the present females, but it could also
be important in smaller polygynous populations where extremely low male
population numbers would still leave some females without a breeding part-
ner.

Notice in the two and three patch models that the confidence intervals
indicate an even larger discrepancy between the two approaches.

In the case of the ALEX model, the authors claim that the strengths
of the model are related to its multiple patch capability, while at the same
time, listing the single sex approach as a weakness. However, as seen in

34

Movement Scenario Population Size 95% Confidence Interval

Two Patches
1 250 (111.217, 111.559)
2 250 (116.961, 117.307)
3 250 (110.834, 111.178)
4 250 (113.738, 114.078)

1 1000 (248.414, 249.136)
2 1000 (249.940, 250.688)
3 1000 (236.632, 237.354)
4 1000 (241.105, 241.801)

Three Patches
1 250 (129.420, 129.754)
2 250 (129.377, 129.713)
3 250 (127.415, 127.747)
4 250 (131.147, 131.491)

1 1000 (281.476, 282.178)
2 1000 (286.575, 287.311)
3 1000 (283.256, 283.954)
4 1000 (294.351, 295.093)

Table 3.4: Female only vs. Female & Male based test statistics and related
P-values

our metapopulation results, single sex, multiple patch models could produce
results that are even more disparate than the single patch model. It is es-
pecially important then to only use ALEX when the user is sure that there
will be enough males present in the population to ensure that the females
can produce offspring.

Lamberson’s paper “conclude(d) that a conservation plan that provides
for clusters of territories above some minimal size should greatly increase
the persistence likelihood of Spotted Owls”[6]. But, as our results show, the
female only model can produce overly optimistic results, and the minimal size
determined by the simulation may not be enough to truly ensure persistence.

In Murphy’s paper, “population size after 10 years was predicted accu-
rately when (he) used the empirically observed, habitat-specific rates of adult
survival, productivity, and adult dispersal among habitats, and assumed a

35

5% rate of immigration into the upland”[8]. In this case, it would seem that
ignoring the females was acceptable. So, the results of our exploration should
not be looked at as the be all, end all of what can happen when males are ig-
nored, but based on our results, careful consideration should be given before
choosing to ignore the male population in a simulation model.

Chapter 4

Density Dependence
Exploration: Birth Rate Basis
vs. Survival Rate Basis

4.1 Background Information

The next question of interest to be explored deals with density depen-
dence. Density dependence is the idea that as a population grows, available
resources necessary for survival remain constant or decline, and, as a result,
the population’s size will plateau, or peak, after time. Different approaches
exist to inact this effect during simulation. RAMAS/metapop [1], VORTEX
[5], and the method used in a model developed by Beier [2] illustrate the
range of approaches taken to inact density dependence effects in simulation
models.

RAMAS/metapop is a matrix based simulation model that uses an ap-
proach similar to our model. The model allows for three basic types of density
dependence: 1) Scramble (based on the Ricker or logistic model), 2) Contest
(based on the Beverton-Holt model), 3) Ceiling (a truncation approach), and
allows for an Allee effect 1 on each of the basic types if the user desires. For
scramble and contest density dependence, with or without Allee effects, the

1An Allee effect is a formula adjustment that causes the population to decline if the
population is too high, and if it is too low. This effectively models the situation where,
with relatively small population numbers over a vast territory, potential mates may not
find each other and produce offspring.

36

37

RAMAS/metapop model modifies matrix elements by way of a scalar, m,
which is calculated from functions based on the population size. These func-
tions are pre-determined by the model at the start of the simulation. When
m is found, the model adjusts the matrix so that a target eigenvalue is ob-
tained. The target eigenvalue is designed to match the growth rate predicted
by a Ricker equation equivalent or a Beverton-Holt equation equivalent. This
causes the population growth to follow the curve predicted by the Ricker and
Beverton-Holt based equations. Ceiling density dependence, with or without
Allee effects, just returns the population level to the carrying capacity set
by the user if the population exceeds the maximum. So, as far as density
dependence choices, the RAMAS/metapop model is extremely versatile.

In the VORTEX model, the population is allowed to grow normally until
the carrying capacity is reached. After the carrying capacity is exceeded, the
model truncates the population so that it is equal to the carrying capacity 2.
So, even though VORTEX allows for independence in the simulation, it does
not give nearly the same amount of choices for inacting density dependence
as RAMAS/metapop.

The model described in Beier’s paper on cougar conservation was built
from scratch to be used specifically for the purpose of doing a population
viability analysis. It uses separate carrying capacities for the female and
male populations and includes “subroutines to simulate density dependence,
including an Allee effect, inhibition of reproduction for the youngest females
when the population exceeded carrying capacity, enhancement of survival
rates at low density and decline in survival rates (especially for juveniles and
dispersers) at high density” [2]. The subroutines lowered survival rates by
multiplying the survival rates by a scalar. The breeding probabilities were
adjusted by assigning the youngest females to a non-breeding status and
only allowing 20% of the females in excess of the female carrying capacity to
breed when the female carrying capacity is exceeded. When the male popu-
lation was below the male carrying capacity, an Allee effect was introduced,
reflecting the difficulty that some females may have in finding mates.

As detailed in chapter 2, our model uses an eigenvalue based system. In
effect, our model is a hybrid of Vortex and RAMAS/metapop with respect to
the use of independence and eigenvalues, respectively. Our model does not
have an Allee effect built into it but considering the question we were trying

2This approach is equivalent to RAMAS/metapop’s ceiling density dependence ap-
proach.

38

to answer, its inclusion in our code seemed unnecessary.
We used our model to answer the question as to whether a fecundity based

or a survival based density dependence model (or both) would produce results
where qualitative differences in behavior between the two approaches could
be observed.

4.2 Method

We used Northern Spotted Owl data, with juvenile survival set at 0.735
to ensure strong positive growth. One thousand simulations of 50 years each
were run for each of 6 different starting population sizes, with the carrying
capacity for each of the six populations set at twice the initial population size,
and with 5 different lower cap threshold values: 100%, 95%, 90%, 85%, &
80% of maximum carrying capacity. We used the 1000 simulated population
values to obtain end of year average population sizes for each of the years 1
through 50. The averaged yearly population sizes were used to create figures
4.1 & 4.2 on pages 39 and 40, respectively. These figures show the overlay
of the different outcomes for each of the 5 threshold values, for a starting
population size of 200. They shape of these graphs are indicative of what
the other initial population sizes produce.

4.3 Results

The main reason for allowing for lower cap thresholds, where linearly
interpolated m values were applied to the appropriate fecundity or survival
value, was the desire to closely mimic a logistic graph’s tendencies. That is,
we wanted the time vs. population graphs to have a smooth transition from
the normal growth rate to the stable carrying capacity population level. This
is opposed to the sharp transition produced by a deterministic ceiling model.
We still expected the average ending population size in the simulations with
lower cap thresholds set below 80% to reach the carrying capacity level. But,
as the results show, the lower cap thresholds produce average population sizes
that stay below the carrying capacity during all time steps.

We investigated this phenomena by looking at the yearly range of popu-
lation sizes for 30 simulations of 50 years each for both the survival and birth
model, for both 80% and 100% lower cap thresholds. The initial population

39

Figure 4.1: Initial Pop=200, Fecundity Based

sizes were 100 and the carrying capacity equaled 200. As seen in figures 4.3
and 4.4 (pages 41 and 42), the ranges for the 80% lower cap threshold indi-
cated that the population can climb to the maximum carrying capacity, and
in some cases exceed it.

However, the 80% lower threshold slowed the growth early enough so
that population size did not exceed the cap often, or by much. Therefore,
the largest population sizes in the simulations, when balanced out with the
smaller simulated population size values, produced averages which were less
than the maximum carrying capacity. The 100% lower threshold setting, on
the other hand, did not slow down the population growth quick enough to
keep the population size from going over the carrying capacity more often,
and to a larger value than the 80% setting. As figures 4.5 and 4.6 (page 43)
show, the range of the 100% lower threshold yearly population sizes is higher
and thus average population size values for multiple simulations are higher,
and subsequently closer to the desired preset maximum carrying capacity
level.

One thing that stood out in the graphs was the smoothness and stability
of the average population size curves. It was surprising how well the graphs

40

Figure 4.2: Initial Pop=200, Survival Based

maintained an almost level average population size once carrying capacity
was reached. Also of interest was the change in concavity that the graphs
exhibit. Logistic graphs have this property, but we had expected a much more
rigid change from exponential growth to no growth for lower cap thresholds
set at 100% of the carrying capacity. This expectation was based on the
fact that the density dependence effects are not in effect until the maximum
carrying capacity is reached. Once it is reached, the effects turn on and the
population is instantly regulated so that its growth is stopped. However, our
graphs show that even for lower cap thresholds set at 100% of the carrying
capacity, the transition from exponential growth to no growth is smooth and
gradual. This is caused by the averaging of values; individual simulations
produce more pronounced fluctuations from year to year. The stochastic
nature causes the population size to grow slower in some years, faster in
others, and this variance allows for average population sizes which produce
the curvature that is evident in the graphs.

41

Figure 4.3: Birth rate based density dependence & 80% lower cap threshold.

4.4 Conclusion

We investigated whether a birth rate based or survival rate based method
was better at keeping the average population size stable at the user defined
carrying capacity. In order to determine this, we looked at the model’s ability
to produce average population sizes which, when plotted, tended to grow to
the exact carrying capacity, without exceeding it, and stay there with little
fluctuation. We also investigated whether or not lower cap thresholds were
useful in respect to providing smooth graphs which also meet the aforemen-
tioned criteria.

Survival based models run with lower thresholds set at 100% of the max-
imum capacity generally produced superior results for populations greater
than 26 in terms of allowing the average population size to grow to close to
the carrying capacity, without exceeding it. Both models produced average
population sizes which grew to within ±3% of the carrying capacity in this
scenario. However, the survival based model’s average ending population size
never exceeded the carrying capacity as the fecundity based model’s did, and
this was one of the main concerns. So, the fecundity based model’s perfor-
mance for larger populations was considered slightly worse than the survival
based model.

The fecundity based model did perform marginally better than the sur-

42

Figure 4.4: Survival rate based density dependence & 80% lower cap thresh-
old.

vival based model with the initial population size of 26. It allowed the average
population to grow to 92% of the maximum carrying capacity, whereas the
survival based model reached a slightly smaller 88%.

Overall, the survival driven models seemed to be the best choice for sim-
ulating populations with density dependence issues in our model.

We investigated simulated output from the two models’ with lower cap
thresholds set less than and equal to 100%. Those which were less than 100%
generally produced less superior results. The introduction of the lower cap
threshold scalar before the carrying capacity is reached seems unnecessary.
That is, the lower cap threshold kept the average population size from ever
equaling the preset carrying capacity. As seen before in the 80% lower cap
threshold setting (figures 4.3 & 4.4), individual simulations did go over the
carrying capacity in some years. However, the average ending population size
is used in our simulation model because of the underlying stochastic process.
And, the 100% lower cap threshold produces average ending population size
values more in line with is expected from a simulation model; the carrying
capacity is eventually reached and maintained by a species with positive
population growth. Therefore, a lower cap threshold which inacts density
dependence effects earlier is not recommended in models like ours.

43

Figure 4.5: Birth rate based density dependence & 100% lower cap threshold.

Figure 4.6: Survival rate based density dependence & 100% lower cap thresh-
old.

Chapter 5

The Uniform vs Poisson
Probability Question

5.1 Background Information

We had a question about the method used to determine catastrophe oc-
currence in some of the PVA packages. The question was why VORTEX
and RAMAS/metapop used a uniform distribution based technique [5], [1].
The literature indicates that, in VORTEX and RAMAS/metapop, a uni-
form random variable is chosen at each time step to determine whether the
time step will have a catastrophe. However, the Poisson distribution is used
for determining the occurrence and frequency of naturally occurring events
in queuing theory and statistical process control [11]. In order to address
this difference, we looked at the underlying principles of the distributions
themselves.

5.1.1 The Uniform Distribution

In determining when a catastrophe will occur, a uniform random variable
is chosen stochastically and compared against the yearly probability of a
catastrophe occurrence at each time step during the simulation. This yearly
probability is given the value 1/c, where c the average number of years be-
tween catastrophes. This ensures that, on average, a catastrophe will occur
once every c years.

44

45

5.1.2 The Poisson Distribution

The formula for Poisson is Pn(t) = (λt)n · e−λt/n!, which determines the
number, n, occurrences of some event during time, t, at a rate of λ. In the
catastrophe occurrence context, the formula would be used to determine the
number of catastrophes in a given length of time. The desire was to use
the formula to determine the probability of at least one occurrence in the
next time step. By setting n = 0 & t = 1 in Pn(t), the probability of no
occurrences in the next time step is e−λ, and the complement, 1− e−λ, gives
the desired probability of at least one occurrence in the next time step. So,
with λ = 1/c, we obtain a yearly probability value of occurrence of 1− e−1/c.

5.2 Method

We chose to compare the uniform and Poisson derived probabilities in the
context of catastrophe occurrences using the value c to denote the average
number of years between catastrophes. We used a range of c values from 5
to 100, incremented by 5’s. Ratios of uniform to Poisson were formed once
the probabilities were found. After comparing the yearly probability values,
we will look at simulations run in Mathematica with the value of c set at 25.
Each simulation will record the time to an occurrence based on the yearly
probabilities for 1000 simulations. The results are then used to infer why the
uniform model is chosen over the Poisson in simulation modeling.

5.3 Results

The values obtained for the yearly uniform and Poisson based probabili-
ties, as well as for the relative relation between them is shown in table 5.1.

46

c uniform Poisson uniform
Poisson

5 0.2000 0.1813 1.1033
10 0.1000 0.0952 1.0508
15 0.0667 0.0645 1.0337
20 0.0500 0.0488 1.0252
25 0.0400 0.0392 1.0201
30 0.0333 0.0328 1.0168
35 0.0286 0.0282 1.0144
40 0.0250 0.0247 1.0126
45 0.0222 0.0220 1.0112
50 0.0200 0.0198 1.0100
55 0.0182 0.0180 1.0091
60 0.0167 0.0165 1.0084
65 0.0154 0.0153 1.0077
70 0.0143 0.0142 1.0072
75 0.0133 0.0132 1.0067
80 0.0125 0.0124 1.0063
85 0.0118 0.0117 1.0059
90 0.0111 0.0110 1.0056
95 0.0105 0.0105 1.0053
100 0.0100 0.0100 1.0050

Table 5.1: Uniform and Poisson based yearly occurrence probabilities, with
their relative relation.

The results from the Mathematica simulations for c = 25 are typical of
the results for the other values of c and are given in the figures 5.1 and 5.2.

5.4 Conclusion

The results in table 5.1 show that the values for the two approaches are
nearly identical. The relative difference for values of c that were chosen
starts at 10.33% and decreases rapidly to less than 2% when c is greater
than 25. In fact, as the value of c approaches infinity, the relative difference
will decrease to 0%. So, the relative difference between the two approaches’
yearly probabilities indicates that their performance in a simulation model

47

Figure 5.1: Results from 1000 simulations of the Poisson approach, where
the number of years to an occurrence is tracked and recorded.

should not differ that much. Especially as typical values for c are 50 or 100.
The simulations support this conclusion. As seen in the figures, there

is little practical difference between the two distributions. The means &
standard deviations of the uniform and Poisson distributions were reported
to be 25.59 & 24.58 and 25.18 & 24.41, respectively. Both of the values are
close to the expected value of 25 years before an occurrence, and the standard
deviations are also nearly identical. The results from the other values of c
also show little difference in their shape, means, or standard deviations. So,
as expected, the performance was not notably different.

From a programming perspective the uniform based model is simpler, if
only in that the programmer needs to type 1/c instead of 1− e−1/c as in the
Poisson case. And, in terms of computing power, 1/c is less demanding than
1 − e−1/c. Overall, it is now understood why the uniform distribution ap-
proach is used in simulation modeling over the Poisson distribution approach
to determine catastrophe spacing.

48

Figure 5.2: Results from 1000 simulations of the uniform approach, where
the number of years to an occurrence is tracked and recorded.

Appendix A

The Code

The implementation code that was used to answer the questions is given
below in the C++ programming language. In an effort to use less paper, the
smallest script was used. A larger font version of the code is available upon
request.

#include <iostream>

#include <math.h>

#include <stdlib.h>

#include <time.h>

using namespace std;

int C(int n, int r);

float R();

int Poisson(int t, float lambda, float CatRnd);

double fimod(int, int);

main() {

//seed random number generator

srand(time(NULL));

int ENV = 0;

cout << "Will you use environmental effects? (Enter 1 for yes, 0 for no): ";

cin >> ENV;

cout << ENV << endl;

int CATAS = 0;

cout << "Will you include catastrophe effects? (Enter 1 for yes, 0 for no): ";

cin >> CATAS;

cout << CATAS << endl;

int DEN = 0;

cout << "Will you include density dependence effects? (Enter 1 for yes, 0 for no): ";

cin >> DEN;

cout << DEN << endl;

int DENTYPE = 0;

if(DEN == 1)

{

cout << "Will you use the birth or survival rate as a basis of density dependent adjustment?";

cout << "(enter 0 for births or 1 for survival): ";

cin >> DENTYPE;

cout << DENTYPE << endl;

}

//initialize breeding approach

//initialize the choice of breeding options

int BREEDINGTYPE = 1;

cout << "Do you want the model to use female population numbers only as the basis for determining " << endl;

cout << "the number of breeders each year (enter 0), or do you want the model to base the number " << endl;

cout << "of breeders on the minimum of the male and female population numbers (enter 1)?: ";

49

50

cin >> BREEDINGTYPE;

cout << BREEDINGTYPE << endl;

//random number counter

int RandomCount=0;

//initialize the number of patches

int PATCH = 0;

cout << "Enter the number of patches: ";

cin >> PATCH;

cout << PATCH << endl;

int PATCHMOVE = 0;

if(PATCH > 1)

{

cout << "Will you include patch to patch movement? (Enter 1 for yes, 0 for no): ";

cin >> PATCHMOVE;

cout << PATCHMOVE << endl;

}

//initialize maximum litter size

int ML = 0;

cout << "Enter the maximum litter size over all patches: ";

cin >> ML;

cout << ML << endl;

//determine size for litter arrays

int LS = ML+1;

//determine birth pdf & cdf array size

int AS = 0;

for(int i = LS; i > 0; i--)

{

AS = AS + i;

}

//intitialize the size of the survival arrays

int AC = 0;

cout << "Enter the number of age classes (incl. newborns and breeding adults): ";

cin >> AC;

cout << AC << endl;

//patch specific initialization for litter size probabilities, male/female ratio, & environment

//initialize the temporary probabilities of each litter size array

float TEMPNYPL[PATCH][LS];

float TEMPNYBPDF[PATCH][AS];

float TEMPNYBCDF[PATCH][AS];

float TEMPGYPL[PATCH][LS];

float TEMPGYBPDF[PATCH][AS];

float TEMPGYBCDF[PATCH][AS];

float TEMPBYPL[PATCH][LS];

float TEMPBYBPDF[PATCH][AS];

float TEMPBYBCDF[PATCH][AS];

float TEMPCYPL[PATCH][LS];

float TEMPCYBPDF[PATCH][AS];

float TEMPCYBCDF[PATCH][AS];

//initialize the temporary survival probabilities

float TEMPNYFS[PATCH][AC];

float TEMPNYMS[PATCH][AC];

float TEMPGYFS[PATCH][AC];

float TEMPGYMS[PATCH][AC];

float TEMPBYFS[PATCH][AC];

float TEMPBYMS[PATCH][AC];

float TEMPCYFS[PATCH][AC];

float TEMPCYMS[PATCH][AC];

//initialize the temporary expected birth rate

float TEMPEXPBIRTH[PATCH];

//initialize the temporary female and male survival

float TEMPFS[PATCH][AC];

float TEMPMS[PATCH][AC];

//initialize the normal year probability of each litter size array

float NYPL[PATCH][LS];

float EXPBIRTH[PATCH];

float VARBIRTH[PATCH];

//initialize the chance of being born female

float FR[PATCH];

//initialize the chance of being born male

float MR[PATCH];

//initialize the environmental effect pdf and cdf for good, normal, and bad years

float EEPDF[PATCH][3];

float EECDF[PATCH][3];

//initialize good year effects for litter sizes other than zero

float GYBE[PATCH][ML];

//initialize bad year effects for litter sizes other than zero

float BYBE[PATCH][ML];

51

//initialize the normal year survival for each age class arrays

float NYFS[PATCH][AC];

float NYMS[PATCH][AC];

//initialize the good year survival for each age class arrays

float GYFS[PATCH][AC];

float GYMS[PATCH][AC];

float GYPL[PATCH][LS];

float GYBPDF[PATCH][AS];

float GYBCDF[PATCH][AS];

//initialize the effects of a good year on survival for each age class arrays

float GYFSE[PATCH][AC];

float GYMSE[PATCH][AC];

//initialize the bad year survival for each age class arrays

float BYFS[PATCH][AC];

float BYMS[PATCH][AC];

float BYPL[PATCH][LS];

float BYBPDF[PATCH][AS];

float BYBCDF[PATCH][AS];

//initialize the effects of a bad year on survival for each age class arrays

float BYFSE[PATCH][AC];

float BYMSE[PATCH][AC];

//Catastrophe occurrance

float CAT[PATCH];

//initialize catastrophe year effects for litter sizes other than zero

float CYBE[PATCH][ML];

float CYPL[PATCH][LS];

//initialize the catastrophe year survival for each age class arrays

float CYFS[PATCH][AC];

float CYMS[PATCH][AC];

//initialize the effects of a catastrophe year on survival for each age class arrays

float CYFSE[PATCH][AC];

float CYMSE[PATCH][AC];

float CYBCDF[PATCH][AS];

float CYBPDF[PATCH][AS];

//initialize capacity variables

int CAPHIGH[PATCH];

int CAPLOW[PATCH];

int FLOATERS[PATCH];

float CARCAPBE[PATCH];

float CARCAPFS[PATCH][AC];

float CARCAPMS[PATCH][AC];

float CARCAPMOD[PATCH];

float TEMPONE = 0;

float TEMPTWO = 1;

float TEMPTHREE = 1;

float POLYONE = 0;

float POLYTWO = 0;

float POLYTHREE = 0;

float BEG = 0;

float MID = 0;

float END = 0;

float CAREXPBIRTH[PATCH];

float CARCAPFSE[PATCH][AC];

//initialize movement variables

int TESTM[PATCH];

int TESTF[PATCH];

float PATCHMOVEMENTPDF[PATCH][PATCH];

float PATCHMOVEMENTCDF[PATCH][PATCH];

int e = AC-2;

float MOVEMENT[PATCH];

//create array of litter probabilities

for(int k = 0; k < PATCH; k++)

{

for (int i = 0; i <= ML; i++)

{

cout << "Enter the probability for a litter of size " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

NYPL[k][i] = t;

}

EXPBIRTH[k] = 0;

for(int i = 0; i <= ML; i++)

{

EXPBIRTH[k] += i*NYPL[k][i];

}

VARBIRTH[k] = 0;

52

for(int i = 0; i <= ML; i++)

{

VARBIRTH[k] += pow(i,2.0)*NYPL[k][i];

}

VARBIRTH[k] = VARBIRTH[k]-pow(EXPBIRTH[k],2);

float t = 0;

cout << "Enter the percentage chance of being born a female in patch " << k+1 << ": ";

cin >> t;

cout << t << endl;

FR[k] = t;

MR[k] = 1 - FR[k];

if(ENV == 0)

{

EEPDF[k][1] = 1;

}

else

{

//fill in the environmental effect pdf and cdf for good, normal, and bad years

float n = 0;

cout << "Enter the probability of a normal environmental year in patch " << k+1 << ": ";

cin >> n;

cout << n << endl;

EEPDF[k][1] = n;

}

//fill in the normal year survival arrays

for(int i = 0; i < AC; i++)

{

cout << "Enter the normal year probability of survival for females in age class " <<i << " in patch " <<k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

NYFS[k][i] = t;

cout << "Enter the normal year probability of survival for males in age class " << i << " in patch " <<k+1 << ": ";

t = 0;

cin >> t;

cout << t << endl;

NYMS[k][i] = t;

}

if(ENV == 0)

{

EEPDF[k][0] = 0;

EEPDF[k][2] = 0;

}

else

{

float g = 0;

cout << "Enter the probability of a good environmental year in patch " << k+1 << ": ";

cin >> g;

cout << g << endl;

EEPDF[k][0] = g;

for(int i = 1; i <= ML ; i++)

{

cout << "Enter the good year modifier for a litter of size " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

GYBE[k][i-1] = t;

}

//fill in the effect arrays and adjust the survival rates for a good year

for(int i = 0; i < AC; i++)

{

cout << "Enter the good yr effect on survival for females in age class " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

GYFSE[k][i] = t;

cout << "Enter the good yr effect on survival for males in age class " << i << " in patch " << k+1 << ": ";

t = 0;

cin >> t;

cout << t << endl;

GYMSE[k][i] = t;

}

for(int i = 0; i < AC; i++)

{

GYFS[k][i] = NYFS[k][i]*GYFSE[k][i];

GYMS[k][i] = NYMS[k][i]*GYMSE[k][i];

}

53

float b = 0;

cout << "Enter the probability of a bad environmental year in patch " << k+1 << ": ";

cin >> b;

cout << b << endl;

EEPDF[k][2] = b;

for(int i = 1; i <= ML ; i++)

{

cout << "Enter the bad year modifier for a litter of size " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

BYBE[k][i-1] = t;

}

//fill in the effect arrays and adjust the survival rates for a bad year

for(int i = 0; i < AC; i++)

{

cout << "Enter the bad yr effect on survival for females in age class " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

BYFSE[k][i] = t;

cout << "Enter the bad yr effect on survival for males in age class " << i << " in patch " << k+1 << ": ";

t = 0;

cin >> t;

cout << t << endl;

BYMSE[k][i] = t;

}

for(int i = 0; i < AC; i++)

{

BYFS[k][i] = NYFS[k][i]*BYFSE[k][i];

BYMS[k][i] = NYMS[k][i]*BYMSE[k][i];

}

}

//cdf’s

for(int i = 2; i >= 0; i--)

{

float t = 0;

for(int j = 0; j <= i; j++)

{

t = t + EEPDF[k][j];

}

EECDF[k][i] = t;

}

//catastrophes

if(CATAS == 1)

{

cout << "Enter the average number of catastrophes per year in patch " << k+1 << ": ";

cin >> CAT[k];

cout << CAT[k] << endl;

for(int i = 1; i <= ML ; i++)

{

cout << "Enter the catastrophe year modifier for a litter of size " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

CYBE[k][i-1] = t;

}

//fill in the effect arrays and adjust the survival rates for a catastrophe year

for(int i = 0; i < AC; i++)

{

cout << "Enter the cat. yr effect on survival for females in age class " << i << " in patch " << k+1 << ": ";

float t = 0;

cin >> t;

cout << t << endl;

CYFSE[k][i] = t;

cout << "Enter the cat. yr effect on survival for males in age class " << i << " in patch " << k+1 << ": ";

t = 0;

cin >> t;

cout << t << endl;

CYMSE[k][i] = t;

}

for(int i = 0; i < AC; i++)

{

CYFS[k][i] = NYFS[k][i]*CYFSE[k][i];

CYMS[k][i] = NYMS[k][i]*CYMSE[k][i];

}

}

54

//carrying capacity initialization

if(DEN == 1)

{

cout << "Enter the carrying capacity for patch " << k+1 << ": ";

cin >> CAPHIGH[k];

cout << CAPHIGH[k] << endl;

cout << "Enter the population size when the first effects of the carrying capacity will be inacted ";

cout << "in patch " << k+1 << ": ";

cin >> CAPLOW[k];

cout << CAPLOW[k] << endl;

if(DENTYPE == 0)

{

TEMPONE = EXPBIRTH[k]/2;

if(AC == 2)

{

CARCAPMOD[k] = (1-NYFS[k][AC-1])/(NYFS[k][AC-2]*TEMPONE);

CAREXPBIRTH[k] = CARCAPMOD[k]*EXPBIRTH[k];

}

else

{

for(int i = 0; i < e; i++)

{

TEMPTWO = TEMPTWO*NYFS[k][i];

}

CARCAPMOD[k] = (1-NYFS[k][AC-1])/(TEMPTWO*TEMPONE*(1+NYFS[k][AC-2]-NYFS[k][AC-1]));

CAREXPBIRTH[k] = CARCAPMOD[k]*EXPBIRTH[k];

}

}

if(DENTYPE == 1)

{

TEMPONE = EXPBIRTH[k]/2;

if(AC == 2)

{

CARCAPMOD[k] = 1/(NYFS[k][AC-1]+NYFS[k][AC-2]*TEMPONE);

for(int i = 0; i < AC; i++)

{

CARCAPFS[k][i] = NYFS[k][i]*CARCAPMOD[k];

}

}

else

{

for(int i = 0; i < e; i++)

{

TEMPTWO = TEMPTWO*NYFS[k][i];

}

for(int i = 0; i < (AC-1); i++)

{

TEMPTHREE = TEMPTHREE*NYFS[k][i];

}

if(fimod(AC,2) == 1)

{

BEG = 0;

MID = 0.5;

END = 1;

POLYONE = pow(BEG,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYONE = POLYONE+pow(BEG,AC-2)*(TEMPTWO*TEMPONE)+BEG*NYFS[k][AC-1]-1;

POLYTWO = pow(MID,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYTWO = POLYTWO+pow(MID,AC-2)*(TEMPTWO*TEMPONE)+MID*NYFS[k][AC-1]-1;

POLYTHREE = pow(END,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYTHREE = POLYTHREE+pow(END,AC-2)*(TEMPTWO*TEMPONE)+END*NYFS[k][AC-1]-1;

while(POLYTWO > 0.0001 || POLYTWO < -0.0001)

{

if(POLYONE*POLYTWO > 0)

{

BEG = MID;

MID = (BEG+END)/2;

POLYONE = pow(BEG,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYONE = POLYONE+pow(BEG,AC-2)*(TEMPTWO*TEMPONE)+BEG*NYFS[k][AC-1]-1;

POLYTWO = pow(MID,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYTWO = POLYTWO+pow(MID,AC-2)*(TEMPTWO*TEMPONE)+MID*NYFS[k][AC-1]-1;

POLYTHREE = pow(END,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYTHREE = POLYTHREE+pow(END,AC-2)*(TEMPTWO*TEMPONE)+END*NYFS[k][AC-1]-1;

}

else

{

END = MID;

MID = (BEG+END)/2;

55

POLYONE = pow(BEG,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYONE = POLYONE+pow(BEG,AC-2)*(TEMPTWO*TEMPONE)+BEG*NYFS[k][AC-1]-1;

POLYTWO = pow(MID,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYTWO = POLYTWO+pow(MID,AC-2)*(TEMPTWO*TEMPONE)+MID*NYFS[k][AC-1]-1;

POLYTHREE = pow(END,AC-1)*(TEMPTHREE*TEMPONE-TEMPTWO*NYFS[k][AC-1]*TEMPONE);

POLYTHREE = POLYTHREE+pow(END,AC-2)*(TEMPTWO*TEMPONE)+END*NYFS[k][AC-1]-1;

}

}

CARCAPMOD[k] = MID;

for(int i = 0; i < AC; i++)

{

CARCAPFS[k][i] = NYFS[k][i]*CARCAPMOD[k];

}

}

else

{

BEG = 0;

MID = 0.5;

END = 1;

POLYONE = pow(BEG,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYONE = POLYONE-pow(BEG,AC-2)*(TEMPTWO*TEMPONE)-BEG*NYFS[k][AC-1]+1;

POLYTWO = pow(MID,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYTWO = POLYTWO-pow(MID,AC-2)*(TEMPTWO*TEMPONE)-MID*NYFS[k][AC-1]+1;

POLYTHREE = pow(END,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYTHREE = POLYTHREE-pow(END,AC-2)*(TEMPTWO*TEMPONE)-END*NYFS[k][AC-1]+1;

while(POLYTWO > 0.0001 || POLYTWO < -0.0001)

{

if(POLYONE*POLYTWO > 0)

{

BEG = MID;

MID = (BEG+END)/2;

POLYONE = pow(BEG,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYONE = POLYONE-pow(BEG,AC-2)*(TEMPTWO*TEMPONE)-BEG*NYFS[k][AC-1]+1;

POLYTWO = pow(MID,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYTWO = POLYTWO-pow(MID,AC-2)*(TEMPTWO*TEMPONE)-MID*NYFS[k][AC-1]+1;

POLYTHREE = pow(END,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYTHREE = POLYTHREE-pow(END,AC-2)*(TEMPTWO*TEMPONE)-END*NYFS[k][AC-1]+1;

}

else

{

END = MID;

MID = (BEG+END)/2;

POLYONE = pow(BEG,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYONE = POLYONE-pow(BEG,AC-2)*(TEMPTWO*TEMPONE)-BEG*NYFS[k][AC-1]+1;

POLYTWO = pow(MID,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYTWO = POLYTWO-pow(MID,AC-2)*(TEMPTWO*TEMPONE)-MID*NYFS[k][AC-1]+1;

POLYTHREE = pow(END,AC-1)*(TEMPTWO*NYFS[k][AC-1]*TEMPONE-TEMPTHREE*TEMPONE);

POLYTHREE = POLYTHREE-pow(END,AC-2)*(TEMPTWO*TEMPONE)-END*NYFS[k][AC-1]+1;

}

}

CARCAPMOD[k] = MID;

for(int i = 0; i < AC; i++)

{

CARCAPFS[k][i] = NYFS[k][i]*CARCAPMOD[k];

}

}

}

}

}

//movement initialization

if(PATCHMOVE == 1)

{

for(int i = 0; i < PATCH; i++)

{

if(k == i)

{

PATCHMOVEMENTPDF[k][i] = 0;

}

else

{

cout << "Enter the probability of moving from patch " << k+1 << " to patch " << i+1 << ": ";

cin >> PATCHMOVEMENTPDF[k][i];

cout << PATCHMOVEMENTPDF[k][i] << endl;

}

}

}

}

56

//**************The Birth Cycle Initialization***************************************

//NORMAL YEAR BIRTH

//initialize the normal year birth PDF array

float NYBPDF[PATCH][AS];

//initialize the array which will be used to get the male & female babies per litter

int BABIES[PATCH][2*AS];

for(int k = 0; k < PATCH; k++)

//fill in the normal year birth array & the babies per litter array

{

NYBPDF[k][0] = NYPL[k][0];

TEMPNYBPDF[k][0] = NYPL[k][0];

BABIES[k][0] = 0;

BABIES[k][1] = 0;

int c1 = 1;

for(int i = 1; i <= ML; i++)

{

for(int j = 0; j <= i; j++)

{

float t = 0;

t = NYPL[k][i]*C(i,j)*pow(MR[k],j)*pow(FR[k],(i-j));

NYBPDF[k][c1] = t;

TEMPNYBPDF[k][c1] = t;

BABIES[k][2*c1] = j;

BABIES[k][2*c1+1] = i-j;

c1++;

}

}

}

//create Normal Year CDF array

float NYBCDF[PATCH][AS];

for(int k = 0; k < PATCH; k++)

{

for(int i =(AS-1); i >= 0; i--)

{

float t = 0;

for(int j = 0; j <= i; j++)

{

t = t + NYBPDF[k][j];

}

NYBCDF[k][i] = t;

TEMPNYBCDF[k][i] = t;

}

}

//GOOD YEAR EFFECTS ON BIRTH

if(ENV == 1)

{

//initialize and modify good year litter probability array

for(int k = 0; k < PATCH; k++)

{

float t1 = 0;

for(int i = ML; i > 0; i--)

{

GYPL[k][i] = GYBE[k][i-1]*NYPL[k][i];

t1 += GYPL[k][i];

}

GYPL[k][0] = 1-t1;

}

//initialize and fill in the good year birth PDF array

for(int k = 0; k < PATCH; k++)

{

GYBPDF[k][0] = GYPL[k][0];

TEMPGYBPDF[k][0] = GYPL[k][0];

int c2 = 1;

for(int i = 1; i <= ML; i++)

{

for(int j = 0; j <= i; j++)

{

float t = 0;

t = GYPL[k][i]*C(i,j)*pow(MR[k],j)*pow(FR[k],(i-j));

GYBPDF[k][c2] = t;

TEMPGYBPDF[k][c2] = t;

c2++;

}

}

}

57

//create good year CDF array

for(int k = 0; k < PATCH; k++)

{

for(int i =(AS-1); i >= 0; i--)

{

float t = 0;

for(int j = 0; j <= i; j++)

{

t = t + GYBPDF[k][j];

}

GYBCDF[k][i] = t;

TEMPGYBCDF[k][i] = t;

}

}

//BAD YEAR EFFECTS ON BIRTH

//initialize and modify bad year litter probability array

for(int k = 0; k < PATCH; k++)

{

float t2 = 0;

for(int i = ML; i > 0; i--)

{

BYPL[k][i] = BYBE[k][i-1]*NYPL[k][i];

t2 += BYPL[k][i];

}

BYPL[k][0] = 1-t2;

}

//initialize and fill in the bad year birth PDF array

for(int k = 0; k < PATCH; k++)

{

BYBPDF[k][0] = BYPL[k][0];

TEMPBYBPDF[k][0] = BYPL[k][0];

int c3 = 1;

for(int i = 1; i <= ML; i++)

{

for(int j = 0; j <= i; j++)

{

float t = 0;

t = BYPL[k][i]*C(i,j)*pow(MR[k],j)*pow(FR[k],(i-j));

BYBPDF[k][c3] = t;

TEMPBYBPDF[k][c3] = t;

c3++;

}

}

}

//create bad year CDF array

for(int k = 0; k < PATCH; k++)

{

for(int i =(AS-1); i >= 0; i--)

{

float t = 0;

for(int j = 0; j <= i; j++)

{

t = t + BYBPDF[k][j];

}

BYBCDF[k][i] = t;

TEMPBYBCDF[k][i] = t;

}

}

}

//CATASTROPHE YEAR EFFECTS ON BIRTH

if(CATAS == 1)

{

//initialize and modify catastrophe year litter probability array

for(int k = 0; k < PATCH; k++)

{

float t3 = 0;

for(int i = ML; i > 0; i--)

{

CYPL[k][i] = CYBE[k][i-1]*NYPL[k][i];

t3 += CYPL[k][i];

}

CYPL[k][0] = 1-t3;

}

//initialize and fill in the catastrophe year birth PDF array

for(int k = 0; k < PATCH; k++)

{

58

CYBPDF[k][0] = CYPL[k][0];

TEMPCYBPDF[k][0] = CYPL[k][0];

int c4 = 1;

for(int i = 1; i <= ML; i++)

{

for(int j = 0; j <= i; j++)

{

float t = 0;

t = CYPL[k][i]*C(i,j)*pow(MR[k],j)*pow(FR[k],(i-j));

CYBPDF[k][c4] = t;

TEMPCYBPDF[k][c4] = t;

c4++;

}

}

}

//create catastrophe year CDF array

for(int k = 0; k < PATCH; k++)

{

for(int i =(AS-1); i >= 0; i--)

{

float t = 0;

for(int j = 0; j <= i; j++)

{

t = t + CYBPDF[k][j];

}

CYBCDF[k][i] = t;

TEMPCYBCDF[k][i] = t;

}

}

}

//create patch to patch movement cdf

if(PATCHMOVE == 1)

{

for(int k = 0; k < PATCH; k++)

{

for(int i = (PATCH-1); i >= 0; i--)

{

float t = 0;

for(int j = 0; j <= i; j++)

{

t = t + PATCHMOVEMENTPDF[k][j];

}

PATCHMOVEMENTCDF[k][i] = t;

}

}

}

//************************THE MAIN SIMULATION LOOP**************************************

//initialize the population-by-age-class arrays for both males and females

int FPOPINIT[PATCH][AC];

int MPOPINIT[PATCH][AC];

//fill in the population arrays

for(int k = 0; k < PATCH; k++)

{

for(int i = 0; i < AC; i++)

{

int t = 0;

cout << "Enter the number of females in age class " << i << " in patch " << k+1 << ": ";

cin >> t;

cout << t << endl;

FPOPINIT[k][i] = t;

cout << "Enter the number of males in age class " << i << " in patch " << k+1 << ": ";

cin >> t;

cout << t << endl;

MPOPINIT[k][i] = t;

}

}

//initialize the number of times to be simulated

int SIMCNT = 0;

cout << "Enter the number of independent simulations to be run: ";

cin >> SIMCNT;

cout << SIMCNT << endl;

//initialize the years to be simulated

int YRCNT = 0;

cout << "Enter the number of years to be simulated in each simulation run: ";

cin >> YRCNT;

cout << YRCNT << endl;

int YEARLYPOPTOT[PATCH][SIMCNT][YRCNT];

59

for(int k = 0; k < PATCH; k++)

{

for(int b = 0; b < SIMCNT; b++)

{

for(int d = 0; d < YRCNT; d++)

{

YEARLYPOPTOT[k][b][d]=0;

}

}

}

float YEARLYPOPAVE[PATCH][YRCNT];

for(int k = 0; k < PATCH; k++)

{

for(int d = 0; d < YRCNT; d++)

{

YEARLYPOPAVE[k][d]=0;

}

}

int EXT = 0;

int TOTALPOP = 0;

int TOTPOP[PATCH];

int FTOT[PATCH];

int MTOT[PATCH];

float AVERAGEPOP[PATCH];

float POPAVE[PATCH][SIMCNT];

float AVEFEMPOP[PATCH];

float AVEMALPOP[PATCH];

float FEMACPOP[AC];

float MALACPOP[AC];

int FPOP[PATCH][AC];

int MPOP[PATCH][AC];

for(int k = 0; k <PATCH; k++)

{

for(int l = 1; l <= SIMCNT; l++)

{

POPAVE[k][l-1] = 0;

}

AVERAGEPOP[k] = 0;

AVEFEMPOP[k] = 0;

AVEMALPOP[k] = 0;

TOTPOP[k] = 0;

FTOT[k] = 0;

MTOT[k] = 0;

}

//enter simulation loop

for(int l = 1; l <= SIMCNT; l++)

{

for(int k = 0; k < PATCH; k++)

{

TOTPOP[k] = 0;

for(int i = 0; i < AC; i++)

{

FPOP[k][i] = FPOPINIT[k][i];

MPOP[k][i] = MPOPINIT[k][i];

TOTPOP[k] += FPOPINIT[k][i];

TOTPOP[k] += MPOPINIT[k][i];

}

}

int CATCNT = 1;

float CATRAN = R();

//enter yearly loop

for(int i = 1; i <= YRCNT; i++)

{

float RNDNUM;

//patch specific population adjustments

for(int k = 0; k < PATCH; k++)

{

for(int j = (AC-1); j > 0; j--)

{

FPOP[k][j] += FPOP[k][j-1];

FPOP[k][j-1] = 0;

MPOP[k][j] += MPOP[k][j-1];

MPOP[k][j-1] = 0;

}

for(int j = 0; j < AC; j++)

{

60

TEMPNYFS[k][j] = NYFS[k][j];

TEMPNYMS[k][j] = NYMS[k][j];

TEMPGYFS[k][j] = GYFS[k][j];

TEMPGYMS[k][j] = GYMS[k][j];

TEMPBYFS[k][j] = BYFS[k][j];

TEMPBYMS[k][j] = BYMS[k][j];

TEMPCYFS[k][j] = CYFS[k][j];

TEMPCYMS[k][j] = CYMS[k][j];

}

for(int j = 0; j < AS; j++)

{

TEMPNYBCDF[k][j] = NYBCDF[k][j];

TEMPGYBCDF[k][j] = GYBCDF[k][j];

TEMPBYBCDF[k][j] = BYBCDF[k][j];

TEMPCYBCDF[k][j] = CYBCDF[k][j];

}

//determine carrying capacity effects on births and survival

if(TOTPOP[k] > CAPLOW[k])

{

if(DEN == 1)

{

//birth rate based

if(DENTYPE == 0)

{

if(TOTPOP[k] < CAPHIGH[k])

{

TEMPEXPBIRTH[k] = (EXPBIRTH[k]-CAREXPBIRTH[k])/(CAPLOW[k]-CAPHIGH[k])*(TOTPOP[k]-CAPHIGH[k])+CAREXPBIRTH[k];

CARCAPBE[k] = TEMPEXPBIRTH[k]/EXPBIRTH[k];

}

else

{

CARCAPBE[k] = CAREXPBIRTH[k]/EXPBIRTH[k];

}

}

//survival based

else

{

if(TOTPOP[k] < CAPHIGH[k])

{

for(int a = 0; a < AC; a++)

{

TEMPFS[k][a] = (NYFS[k][a]-CARCAPFS[k][a])/(CAPLOW[k]-CAPHIGH[k])*(TOTPOP[k]-CAPHIGH[k])+CARCAPFS[k][a];

CARCAPFSE[k][a] = TEMPFS[k][a]/NYFS[k][a];

}

}

else

{

for(int a = 0; a < AC; a++)

{

CARCAPFSE[k][a] = CARCAPFS[k][a]/NYFS[k][a];

}

}

for(int a = 0; a < AC; a++)

{

TEMPNYFS[k][a] = CARCAPFSE[k][a]*TEMPNYFS[k][a];

TEMPGYFS[k][a] = CARCAPFSE[k][a]*TEMPGYFS[k][a];

TEMPBYFS[k][a] = CARCAPFSE[k][a]*TEMPBYFS[k][a];

TEMPCYFS[k][a] = CARCAPFSE[k][a]*TEMPCYFS[k][a];

TEMPNYMS[k][a] = CARCAPFSE[k][a]*TEMPNYMS[k][a];

TEMPGYMS[k][a] = CARCAPFSE[k][a]*TEMPGYMS[k][a];

TEMPBYMS[k][a] = CARCAPFSE[k][a]*TEMPBYMS[k][a];

TEMPCYMS[k][a] = CARCAPFSE[k][a]*TEMPCYMS[k][a];

}

}

//normal

if(DENTYPE == 0)

{

float ct = 0;

for(int a = 1; a <= ML; a++)

{

TEMPNYPL[k][a] = CARCAPBE[k]*NYPL[k][a];

ct += TEMPNYPL[k][a];

}

TEMPNYPL[k][0] = 1 - ct;

TEMPNYBPDF[k][0] = TEMPNYPL[k][0];

int c = 1;

for(int g = 1; g <= ML; g++)

61

{

for(int j = 0; j <= g; j++)

{

float t = 0;

t = TEMPNYPL[k][g]*C(g,j)*pow(MR[k],j)*pow(FR[k],(g-j));

TEMPNYBPDF[k][c] = t;

c++;

}

}

//create carrying capacity CDF array

for(int g =(AS-1); g >= 0; g--)

{

float t = 0;

for(int j = 0; j <= g; j++)

{

t = t + TEMPNYBPDF[k][j];

}

TEMPNYBCDF[k][g] = t;

}

//good

ct = 0;

for(int a = 1; a <= ML; a++)

{

TEMPGYPL[k][a] = CARCAPBE[k]*GYPL[k][a];

ct += TEMPGYPL[k][a];

}

TEMPGYPL[k][0] = 1 - ct;

TEMPGYBPDF[k][0] = TEMPGYPL[k][0];

c = 1;

for(int g = 1; g <= ML; g++)

{

for(int j = 0; j <= g; j++)

{

float t = 0;

t = TEMPGYPL[k][g]*C(g,j)*pow(MR[k],j)*pow(FR[k],(g-j));

TEMPGYBPDF[k][c] = t;

c++;

}

}

//create carrying capacity CDF array

for(int g =(AS-1); g >= 0; g--)

{

float t = 0;

for(int j = 0; j <= g; j++)

{

t = t + TEMPGYBPDF[k][j];

}

TEMPGYBCDF[k][g] = t;

}

//bad

ct = 0;

for(int a = 1; a <= ML; a++)

{

TEMPBYPL[k][a] = CARCAPBE[k]*BYPL[k][a];

ct += TEMPBYPL[k][a];

}

TEMPBYPL[k][0] = 1 - ct;

TEMPBYBPDF[k][0] = TEMPBYPL[k][0];

c = 1;

for(int g = 1; g <= ML; g++)

{

for(int j = 0; j <= g; j++)

{

float t = 0;

t = TEMPBYPL[k][g]*C(g,j)*pow(MR[k],j)*pow(FR[k],(g-j));

TEMPBYBPDF[k][c] = t;

c++;

}

}

//create carrying capacity CDF array

for(int g =(AS-1); g >= 0; g--)

{

float t = 0;

for(int j = 0; j <= g; j++)

{

t = t + TEMPBYBPDF[k][j];

}

62

TEMPBYBCDF[k][g] = t;

}

//catastrophe

ct = 0;

for(int a = 1; a <= ML; a++)

{

TEMPCYPL[k][a] = CARCAPBE[k]*CYPL[k][a];

ct += TEMPCYPL[k][a];

}

TEMPCYPL[k][0] = 1 - ct;

TEMPCYBPDF[k][0] = TEMPCYPL[k][0];

c = 1;

for(int g = 1; g <= ML; g++)

{

for(int j = 0; j <= g; j++)

{

float t = 0;

t = TEMPCYPL[k][g]*C(g,j)*pow(MR[k],j)*pow(FR[k],(g-j));

TEMPCYBPDF[k][c] = t;

c++;

}

}

//create carrying capacity CDF array

for(int g =(AS-1); g >= 0; g--)

{

float t = 0;

for(int j = 0; j <= g; j++)

{

t = t + TEMPCYBPDF[k][j];

}

TEMPCYBCDF[k][g] = t;

}

}

}

}

//determine breeding pair number (this is based on a monogamous species)

int BREEDERS = 0;

if(BREEDINGTYPE == 0)

{

BREEDERS = FPOP[k][AC-1];

}

else

{

if(FPOP[k][AC-1] < MPOP[k][AC-1])

{

BREEDERS = FPOP[k][AC-1];

}

else

{

BREEDERS = MPOP[k][AC-1];

}

}

//determine the type of environment for the year

int ENVTYPE;

if(ENV == 0)

{

ENVTYPE = 1;

}

else

{

int CATTEST = Poisson(CATCNT, CAT[k], CATRAN);

if(CATTEST == 1)

{

ENVTYPE = 3;

CATCNT = 1;

CATRAN = R();

}

else

{

CATCNT++;

RNDNUM = R();

RandomCount++;

for(int j = 0; j < 3; j++)

{

if(RNDNUM <= EECDF[k][j])

{

ENVTYPE = j;

63

break;

}

}

}

}

//determine the number of newborns

for(int j = 1; j <= BREEDERS; j++)

{

RNDNUM = R();

RandomCount++;

for(int h = 0; h < AS; h++)

{

if(ENVTYPE == 0)

{

if(RNDNUM <= TEMPGYBCDF[k][h])

{

FPOP[k][0] += BABIES[k][2*h+1];

MPOP[k][0] += BABIES[k][2*h];

break;

}

}

if(ENVTYPE == 1)

{

if(RNDNUM <= TEMPNYBCDF[k][h])

{

FPOP[k][0] += BABIES[k][2*h+1];

MPOP[k][0] += BABIES[k][2*h];

break;

}

}

if(ENVTYPE == 2)

{

if(RNDNUM <= TEMPBYBCDF[k][h])

{

FPOP[k][0] += BABIES[k][2*h+1];

MPOP[k][0] += BABIES[k][2*h];

break;

}

}

if(ENVTYPE == 3)

{

if(RNDNUM <= TEMPCYBCDF[k][h])

{

FPOP[k][0] += BABIES[k][2*h+1];

MPOP[k][0] += BABIES[k][2*h];

break;

}

}

}

}

//determine the number of female and male survivors

for(int j = 0; j < AC; j++)

{

int t = FPOP[k][j];

for(int h = t; h > 0; h--)

{

RNDNUM = R();

RandomCount++;

if(ENVTYPE == 0)

{

if(RNDNUM >= TEMPGYFS[k][j])

{

FPOP[k][j] -= 1;

}

}

if(ENVTYPE == 1)

{

if(RNDNUM >= TEMPNYFS[k][j])

{

FPOP[k][j] -= 1;

}

}

if(ENVTYPE == 2)

{

if(RNDNUM >= TEMPBYFS[k][j])

{

FPOP[k][j] -= 1;

64

}

}

if(ENVTYPE == 3)

{

if(RNDNUM >= TEMPCYFS[k][j])

{

FPOP[k][j] -= 1;

}

}

}

t = MPOP[k][j];

for(int h = t; h > 0; h--)

{

RNDNUM = R();

RandomCount++;

if(ENVTYPE == 0)

{

if(RNDNUM >= TEMPGYMS[k][j])

{

MPOP[k][j] -= 1;

}

}

if(ENVTYPE == 1)

{

if(RNDNUM >= TEMPNYMS[k][j])

{

MPOP[k][j] -= 1;

}

}

if(ENVTYPE == 2)

{

if(RNDNUM >= TEMPBYMS[k][j])

{

MPOP[k][j] -= 1;

}

}

if(ENVTYPE == 3)

{

if(RNDNUM >= TEMPCYMS[k][j])

{

MPOP[k][j] -= 1;

}

}

}

}

}

//test for extinction of species and output of yearly data

for(int w = 0; w < PATCH; w++)

{

TOTPOP[w] = 0;

FTOT[w] = 0;

MTOT[w] = 0;

}

for(int w = 0; w < PATCH; w++)

{

for(int h = 0; h < AC; h++)

{

TOTPOP[w] += FPOP[w][h];

TOTPOP[w] += MPOP[w][h];

FTOT[w] += FPOP[w][h];

MTOT[w] += MPOP[w][h];

}

}

TOTALPOP = 0;

for(int w = 0; w < PATCH; w++)

{

TOTALPOP += TOTPOP[w];

YEARLYPOPTOT[w][l-1][i-1] = TOTPOP[w];

}

if(TOTALPOP < 1)

{

EXT += 1;

break;

}

//patch to patch movement

if(PATCHMOVE == 1)

{

65

for(int w = 0; w < PATCH; w++)

{

if(TOTPOP[w] > CAPHIGH[w])

{

RNDNUM = R();

RandomCount++;

for(int a = 0; a < PATCH; a++)

{

if(RNDNUM < PATCHMOVEMENTCDF[w][a])

{

if(TOTPOP[a] < CAPHIGH[a])

{

RNDNUM = R();

RandomCount++;

if(RNDNUM < MR[w])

{

MPOP[w][e]--;

MPOP[a][e]++;

TOTPOP[w]--;

TOTPOP[a]++;

MTOT[w]--;

MTOT[a]++;

break;

}

else

{

FPOP[w][e]--;

FPOP[a][e]++;

TOTPOP[w]--;

TOTPOP[a]++;

FTOT[w]--;

FTOT[a]++;

break;

}

}

}

}

}

else

{

for(int a = 0; a < PATCH; a++)

{

TESTM[a]=MPOP[a][e];

TESTF[a]=FPOP[a][e];

}

for(int h = TESTM[w]; h > 0; h--)

{

RNDNUM = R();

RandomCount++;

for(int a = 0; a < PATCH; a++)

{

if(w == a)

{

a++;

}

if(RNDNUM < PATCHMOVEMENTCDF[w][a])

{

MPOP[w][e]--;

MPOP[a][e]++;

TOTPOP[w]--;

TOTPOP[a]++;

MTOT[w]--;

MTOT[a]++;

break;

}

}

}

for(int h = TESTF[w]; h > 0; h--)

{

RNDNUM = R();

RandomCount++;

for(int a = 0; a < PATCH; a++)

{

if(w == a)

{

a++;

}

66

if(RNDNUM < PATCHMOVEMENTCDF[w][a])

{

FPOP[w][e]--;

FPOP[a][e]++;

TOTPOP[w]--;

TOTPOP[a]++;

FTOT[w]--;

FTOT[a]++;

break;

}

}

}

}

}

}

}

//find end of simulation run populations for each patch

for(int w = 0; w < PATCH; w++)

{

POPAVE[w][l-1] = TOTPOP[w];

AVERAGEPOP[w] += TOTPOP[w];

AVEFEMPOP[w] += FTOT[w];

AVEMALPOP[w] += MTOT[w];

}

}

//output of ending population sizes for each simulation run

for(int w = 0; w < PATCH; w++)

{

for(int b = 0; b < YRCNT; b++)

{

for(int d = 0; d < SIMCNT; d++)

{

YEARLYPOPAVE[w][b] += YEARLYPOPTOT[w][d][b];

}

}

}

for(int w = 0; w < PATCH; w++)

{

for(int b = 0; b < YRCNT; b++)

{

YEARLYPOPAVE[w][b] = YEARLYPOPAVE[w][b]/SIMCNT;

}

}

double POPVAR[PATCH];

double POPSTDDEV[PATCH];

for(int w = 0; w < PATCH; w++)

{

AVERAGEPOP[w] = AVERAGEPOP[w]/SIMCNT;

POPVAR[w] = 0;

for(int h = 0; h < SIMCNT; h++)

{

POPVAR[w] += pow((AVERAGEPOP[w]-POPAVE[w][h]),2);

}

POPVAR[w] = POPVAR[w]/SIMCNT;

POPSTDDEV[w] = pow(POPVAR[w],0.5);

AVEFEMPOP[w] = AVEFEMPOP[w]/SIMCNT;

AVEMALPOP[w] = AVEMALPOP[w]/SIMCNT;

cout << "The average end of the sim. pop. for patch " << w+1 << " is:" << AVERAGEPOP[w] << endl;

cout << "The variance of the end of the sim. pop. for patch " << w+1 << " is:" << POPVAR[w] << endl;

cout << "The standard deviation of the end of the sim. pop. for patch " << w+1 << " is:" << POPSTDDEV[w] << endl;

cout << "The average end of the sim. female proportion for patch " << w+1 << " is:" << AVEFEMPOP[w]/AVERAGEPOP[w] << endl;

cout << "The average end of the sim. male proportion for patch " << w+1 << " is:" << AVEMALPOP[w]/AVERAGEPOP[w] << endl;

// cout << "End of year population averages for patch " << w+1 << ": " << endl;

// for(int b = 0; b < YRCNT; b++)

// {

// cout << YEARLYPOPAVE[w][b] << endl;

// }

}

//extinction risk

cout << "The extinction risk is: " << EXT << "/" << SIMCNT << endl;

//# of rnd #’s

cout << "There were " << RandomCount << " random numbers used during this simulation." << endl;

for(int w = 0; w < PATCH; w++)

{

cout << "The end of 50 year population sizes for patch " << w+1 << ": " << endl;

for(int d = 0; d < SIMCNT; d++)

67

{

cout << YEARLYPOPTOT[w][d][YRCNT-1] << endl;

}

}

//**

//output of the various arrays and variables

int d = 0;

cout << "To see the pdf’s, cdf’s, and other arrays used for the simulation, type ’1’." << endl;

cin >> d;

if(d == 1)

{

cout << "Newborn #’s" << endl;

for(int i = 0; i < AS ; i++)

{

cout << BABIES[0][2*i] << ",";

cout << BABIES[0][2*i+1] << " ";

}

cout << endl;

for(int k = 0; k < PATCH; k++)

{

char Temp;

cout << "Hit any key, then ENTER to see patch " << k+1 << "." << endl;

cin >> Temp;

cout << "Normal Year PDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i = 0; i < AS ;i++)

{

cout << NYBPDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Normal Year CDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i = 0; i < AS ; i++)

{

cout << NYBCDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Good year probabilities for each litter for patch " << k+1 << " :" << endl;

cout << "[";

for(int i = 0; i <= ML; i++)

{

cout << GYPL[k][i] << " ";

}

cout << "]" << endl;

cout << "Good Year PDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i=0; i < AS ;i++)

{

cout << GYBPDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Good Year CDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i=0; i < AS ;i++)

{

cout << GYBCDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Bad year probabilities for each litter for patch " << k+1 << " :" << endl;

cout << "[";

for(int i = 0; i <= ML; i++)

{

cout << BYPL[k][i] << " ";

}

cout << "]" << endl;

cout << "Bad Year PDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i=0; i < AS ;i++)

{

cout << BYBPDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Bad Year CDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i=0; i < AS ;i++)

{

cout << BYBCDF[k][i] << " ";

68

}

cout << "]" << endl;

cout << "Normal Year survival rates for each age class (Females) for patch " << k+1 << " :" <<endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << NYFS[k][i] << " ";

}

cout << "]" << endl;

cout << "Normal Year survival rates for each age class (Males) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << NYMS[k][i] << " ";

}

cout << "]" << endl;

cout << "Good Year survival rates for each age class (Females) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << GYFS[k][i] << " ";

}

cout << "]" << endl;

cout << "Good Year survival rates for each age class (Males) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << GYMS[k][i] << " ";

}

cout << "]" << endl;

cout << "Bad Year survival rates for each age class (Females) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << BYFS[k][i] << " ";

}

cout << "]" << endl;

cout << "Bad Year survival rates for each age class (Males) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << BYMS[k][i] << " ";

}

cout << "]" << endl;

cout << "Catastrophe year probabilities for each litter for patch " << k+1 << " :" << endl;

cout << "[";

for(int i = 0; i <= ML; i++)

{

cout << CYPL[k][i] << " ";

}

cout << "]" << endl;

cout << "Catastrophe Year PDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i=0; i < AS ;i++)

{

cout << CYBPDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Catastrophe Year CDF for patch " << k+1 << " :" << endl;

cout << "[";

for(int i=0; i < AS ;i++)

{

cout << CYBCDF[k][i] << " ";

}

cout << "]" << endl;

cout << "Catastrophe Year survival rates for each age class (Females) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << CYFS[k][i] << " ";

}

cout << "]" << endl;

cout << "Catastrophe Year survival rates for each age class (Males) for patch " << k+1 << " :" << endl;

cout << "[";

for(int i =0; i < AC; i++)

{

cout << CYMS[k][i] << " ";

69

}

cout << "]" << endl;

}

}

}

//combination subroutine

int C(int n, int r)

{

int t1 = 1;

int t2 = 1;

int c = 0;

if ((n-r) > r)

c = r;

else

c = (n-r);

for (int i = n; i >= n-c+1; i--)

{

t1 *= i;

}

for (int j = 1; j <= c; j++)

{

t2 *= j;

}

int t3 = t1/t2;

return t3;

}

//random number generator

float R()

{

float t = rand()/(RAND_MAX+1.0);

return t;

}

//catastrophe check

int Poisson(int t, float lambda, float CatRnd)

{

float x = 1 - exp(-lambda*t);

if(CatRnd <= x)

{

return 1;

}

else

{

return 0;

}

}

//fmod rescale

double fimod(int x, int y)

{

double v = x;

double z = y;

return fmod(v,z);

}

Bibliography

[1] Akcakaya, H. Resit. RAMAS/metapop User Manual version 1.1. New
York: Applied Biomathematics.

[2] Beier, Paul “Metapopulation Models, Tenacious Tracking, and Cougar
Conservation.” in D.R. McCullogh ed. Metapopulations and Wildlife Man-
agement, Island Press, 1996: 293-323

[3] Case, Ted J. An Illustrated Guide to Theoretical Ecology. New York:
Oxford UP, 2000

[4] Knuth, D. E. The art of computer programming. Vol. 2, 3rd ed. Addison-
Wesley, 1998. 17

[5] Lacy, Robert C. “VORTEX: A Computer Simulation Model for Popula-
tion Viability Analysis.” Wildlife Research Vol. 20 (1991): 45-65.

[6] Lamberson, Roland H., Noon, Barry R., Voss, Curtis, & McKelvey,
Kevin, “Reserve Design for Territorial Species: The Effects of Patch Size
and Spacing on the Viability of the Northern Spotted Owl.” Conservation
Biology, 1994: 185-195

[7] Lehmer, D.H. “Mathematical methods in large scale computing units.”
In Proc. 2nd Symposium on Large-Scale Digital Calculating Machinery.
1949. Cambridge, MA: Harvard UP, 1951, 141-146.

[8] Murphy, Michael T. “Source-Sink Dynamics of a Declining Eastern King-
bird Population and the Value of Sink Habitats.” Conservation Biology
Vol. 15 No. 3 June 2001: 737-748.

[9] Possingham, H.P. & Davies, I. “ALEX: A Model for the Viability Analysis
of Spatially Structured Populations.” Biological Conservation Vol. 73 1995:
143-150.

70

71

[10] Ross, Sheldon. A First Course in Probability, Fifth Edition. New Jer-
sey: Prentice Hall, 1998.

[11] Taha, Hamdy A. Operations Research, Fourth Edition. New York:
Macmillan Publishing Co., 1987

