
Nonlinear Elliptic Boundary
Value Problems: A Numerical

Approach.

by Michael Butros

A Thesis

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Mathematics

Northern Arizona University
August, 2000

Approved:

John M. Neuberger, Ph.D., Chair

Lawrence M. Perko, Ph.D.

James W. Swift, Ph.D.

Abstract

Nonlinear Elliptic Boundary Value Problems:

A Numerical Approach.

Michael Butros

We study the nonlinear elliptic BVP{
∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω,

where ∆ is the Laplacian operator, Ω ⊆ R
2 is the disk, B0(1),

centered at the origin with radius r = 1. The nonlinear func-
tion f : R −→ R satisfies f(0) = 0, and growth conditions

lim|u|−→∞
f(u)

u
= ∞ and f ′(u) > f(u)

u
. The function we will

consider for this work is f(u) = λu + u3. We seek solutions
u : Ω −→ R satisfying the BVP.

We will use Fourier expansion via an orthonormal basis. Our
orthonormal basis is formed using Bessel functions. The zeroes
of the Bessel functions determine the eigenvalues of −∆ on the
disk.

The action functional on the Hilbert space H = H1,2
0 ,

J : H −→ R, is defined to be

J(u) =

∫
(
1

2
| ∇u |2 −F (u)),

where F (u) =
∫ u

0
f(s) ds is the primitive of f(u).

The critical points of the J are then approximated using New-
ton’s method. These critical points are solutions to the BVP.
Using λ = f ′(0) as a parameter, a bifurcation diagram is then
generated for several branches of the solutions to the BVP.

ii

Acknowledgements

First I would like to thank my advisor, Dr. John M. Neuberger, for pro-
viding me with such an interesting topic. But more importantly, I would like
to thank him for his constant assistance and support through every stage
of this thesis. I have taken on this project without any prior experience in
mathematical research or computer programming. His patience and teaching
methods have taught me a great deal, not only about how to conduct math-
ematical research, but also on being a concerned academic advisor. This
experience proved to me how fortunate I was to have Dr. Neuberger as my
advisor. I truly hope that many NAU students get the chance to work with
Dr. Neuberger in the future, and learn from him as I did. Dr. Neuberger
has had a great influence on me in terms of developing my mathematical
intuition, research skills, and my scientific writing skills. I AM VERY
GRATEFUL TO YOU DR. NEUBERGER.

A special thanks goes to the other members of my committee, Dr. Lawrence
Perko, and Dr. James Swift. Their comments and support also helped
tremendously in producing this document. I also would like to thank Jacob
Louchart for his assistance in editing this document, and Dr. Michael Falk
for providing the necessary files to write this document in LATEX.

My deepest gratitude and love goes out to my family who have been
there for me in all my endeavors. Thank you for your never ending love and
support, I am certain that I would not have realized this dream without you.
All that I am today, and all I will ever be in the future, I owe to you. I
LOVE YOU ALL DEARLY.

iii

Contents

List of Tables . vi
List of Figures . vii

Chapter 1 INTRODUCTION AND PRELIMINAIRES 1
1.1 Introduction . 1
1.2 Preliminaries . 3

1.2.1 Laplacian in Polar Coordinates 3
1.2.2 Bessel Functions . 5
1.2.3 Newton’s Method . 6

Chapter 2 HISTORY AND PREVIOUS WORK 8
2.1 Odd Functions Case . 8
2.2 Two Types of Solutions . 8
2.3 Radially Symmetric Solutions on the Disk 9
2.4 Multiple Solutions: More than Two 9
2.5 The BVP on the Square . 10

Chapter 3 METHODOLOGY 11
3.1 Variational Methods . 11

3.1.1 Critical Points Are Solutions 11
3.2 Orthonormal Basis . 13
3.3 Gradient and Hessian . 15
3.4 Newton’s Method in Higher Dimensions 16
3.5 Numerical Algorithm . 17

Chapter 4 NUMERICAL RESULTS 19
4.1 Ordinary Differential Equation, ODE, Case 19
4.2 One-Sign Solutions . 21
4.3 Sign-Changing Solutions . 22

iv

4.4 Bifurcation Diagram . 29

Chapter 5 CONCLUSIONS AND FUTURE STUDIES 31

Bibliography 33

Appendix A Functional Analysis 35

Appendix B Linear Algebra 42

Appendix C FORTRAN Code: Main Program 45

Appendix D Mathemactica Code: ODE bifurcation diagram 66

Appendix E Mathematica code: Solution plots 68

v

List of Tables

4.1 First ten eigenvalues of −∆, on the disk. 21
4.2 positive solution coefficients at λ = 0. 22
4.3 positive solution coefficients at λ = 5.75. 22
4.4 coefficients for sign-changing, exactly-once, non-radially sym-

metric at λ = 0. 24
4.5 coefficients for sign-changing, exactly-once, non-radially sym-

metric at λ = 14.65. 24
4.6 sign-changing twice solution coefficients at λ = 0. 25
4.7 sign-changing twice solution coefficients at λ = 26. 25
4.8 coefficients of sign-changing, radially symmetric solution at

λ = 0. 27
4.9 coefficients of sign-changing, radially symmetric solution at

λ = 30.45. 28

vi

List of Figures

1.1 Diagram of Newton’s Method 6

3.1 Orthonormal basis approximations 15

4.1 Bifurcation diagram for the ODE 20
4.2 Positive solution . 23
4.3 Negative solution . 23
4.4 Sign-changing non-radially symmetric solutions 25
4.5 Rotation in the ϕχ-plane. 26
4.6 Rotation of non-radially symmetric solutions 27
4.7 Sign-changing radially symmetric solution 28
4.8 Bifurcation diagram for the PDE 29

5.1 Infinity norm vs. number of modes 32

vii

Chapter 1

INTRODUCTION AND
PRELIMINAIRES

1.1 Introduction

The subject of partial differential equations, PDE, has many real-life appli-
cations. Nonlinear elliptic PDE have been used in physical problems such
as fluid dynamics, chemical reactions, and steady state solutions of reaction-
diffusion equations.

When studying a nonlinear PDE, one might be interested in finding so-
lutions u : Ω −→ R which satisfy some boundary value problem, BVP. One
might also be interested in the nodal structure of the solutions. These BVP,
in most cases, do not have closed form solutions. In other words, we are not
able to obtain a function in closed form which satisfies the boundary value
problem, and so, we need to use numerical algorithms to generate approxi-
mate solutions.

Our nonlinear elliptic boundary value problem has the form

{
∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω,
(1.1)

where ∆ is the Laplacian operator, Ω is a smooth bounded region in R
n,

and f : R −→ R, satisfies several assumptions. We will examine the BVP
(1.1) on Ω = B0(1), the disk in R

2 centered at the origin with radius r = 1,

and for nonlinearities f satisfying f ′(u) > f(u)
u
, lim|u|−→∞

f(u)
u

= ∞, and

1

2

f(0) = 0, among other conditions. The function we will consider is f(u) =
λu+ u3. It is important to realize that while known existence theorems rely
on such specific assumptions on f , we may execute our numerical algorithm
on a much wider class of nonlinearities.

It is well known that the eigenvalues of −∆ with zero Dirichlet boundary
conditions satisfy

0 < λ1 < λ2 ≤ · · · −→ ∞.

That is, they are all positive, the first is simple (nonrepeated), and they
increase without bound (see [7]). Let {Ψi} denote the set of corresponding
eigenfunctions normalized in L2 = L2(Ω), so that∫

Ω

Ψ2
i dx = 1 and

∫
Ω

ΨiΨj dx = 0, for i �= j.

Nonlinear elliptic PDE problems have been the focus of many studies
in the past 70 years. In certain special cases it has been shown that there
are infinitely many solutions to the BVP (1.1). The case where n = 1, the
ordinary differential equation case, has infinitely many solutions, as we will
discuss in section 4.1. Also, nontrivial solutions to the general problem (1.1)
have been found among the three different types: positive, negative and
sign-changing.

Since we are studying the BVP on the disk, we will use polar coordinates
instead of rectangular coordinates to obtain our solutions. We will discuss
how this change in coordinates leads us to Bessel’s differential equation.
The relationship between the eigenvalues of the Laplacian on the disk and
the zeroes of the Bessel functions is discussed. In section 3.2 we build the
orthonormal basis necessary for the numerical algorithm, and discuss the
methodology behind the numerical algorithm.

We use a variational method to obtain our solutions. In order to do that,
we will define an action functional J on the Hilbert space H = H1,2

0 . Note
that H is a subspace of L2 with corresponding inner products

< u, v >H=

∫
Ω

∇u(x) · ∇v(x) dx, < u, v >2=

∫
Ω

uv dx,

and norms

‖ u ‖H= (

∫
Ω

| ∇u |2 dx)1/2, ‖ u ‖2= (

∫
Ω

u2dx)
1
2 ,

3

where ∇ denotes a generalized gradient

∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xn

)
∈ (L2(Ω))

n.

The zeroes of the gradient of this action functional J are sought. As we
will discuss in Chapter 3, these zeroes are precisely the solutions to (1.1).

1.2 Preliminaries

In this section we will look at some definitions and concepts that are of
importance for the remainder of the project. Throughout this project we
will use the notation ux to represent ∂u

∂x
, uy to represent ∂u

∂y
, and so on.

1.2.1 Laplacian in Polar Coordinates

In this section we will show how to obtain the Laplacian operator in polar
coordinates. We use the transformations: x = r sin(θ), y = r sin(θ), and
x2 + y2 = r2. Differentiating the last equation with respect to x and y,
respectively, we get

2rrx = 2x ⇒ rx = cos(θ)

and

2rry = 2y ⇒ ry = sin(θ).

Applying the product rule to x = r cos(θ) we obtain

1 = −r sin(θ)(θx) + (rx) cos(θ),

1 = −r sin(θ)(θx) + cos2(θ),

so,

θx = −sin(θ)

r
.

4

Similar arguments show that

θy =
cos(θ)

r
.

Next, we find expressions for ux and uy. In particular,

ux = (ur)(rx) + (uθ)(θx),

so,

ux = ur cos(θ)− uθ
sin(θ)

r
.

Similarly,

uy = ur sin(θ) + uθ
cos(θ)

r
.

Using the same method to obtain expressions for uxx and uyy,
we see that

uxx = (uxr)(rx) + (uxθ)(θx)

= (cos(θ)urr − (sin(θ)
r

)uθr + (sin(θ)
r2)uθ) cos(θ)

+ (cos(θ)uθr − sin(θ))ur − (sin(θ)
r

)uθθ(
cos(θ)

r
)uθ − sin(θ)

r
.

Thus, uxx can be written as

uxx = cos2(θ)urr − (
2 sin(θ) cos(θ)

r
)uθr

+(
(2 sin(θ) cos(θ)

r2
)uθ + (

sin2(θ)

r
)ur + (

sin2(θ)

r2
)uθθ.

Using similar arguments we get

uyy = (uyr)(ry) + (uyθ)(θy).

5

Hence,

uyy = sin2(θ)urr + (
2 sin(θ) cos(θ)

r
)uθr

−(
2 sin(θ) cos(θ)

r2
)uθ + (

cos2(θ)

r
)ur + (

cos2(θ)

r2
)uθθ.

Thus, the Laplacian in polar coordinates can be written as

∆u = uxx + uyy = urr + (
1

r
)ur + (

1

r2
)uθθ.

Note that in the radially symmetric case where u = u(r), we have uθ =
0 so
∆u = urr +

1
r
ur.

1.2.2 Bessel Functions

In this section we will demonstrate how the zeroes of the Bessel functions
form the eigenvalues of −∆ on the disk.

Consider the eigenvalue problem

∆u+ λu = 0,

with zero Dirichlet boundary conditions. Use separation of variables, i.e., let
u = f(r) cos(mθ) to obtain

∆u+ λu = cos(mθ)

(
frr +

1

r
fr + (λ− m2

r2
)f

)
= 0.

Using z =
√
λ r leads to Bessel’s differential equation, see [17]

z2(fzz) + z(fz) + (z2 −m2)f = 0. (1.2)

Equation (1.2) is known to have solutions, (see [17]), of the form

fm(r) = c1Jm(
√
λr) + c2Ym(

√
λr),

6

where Jm(r) and Ym(r) are Bessel functions of the first kind.

Now, by the zero Dirichlet conditions, and since Ym(
√
λ r), is not bounded

at r = 0, our solutions are forced to be of the form

fm(r) = c1Jm(
√
λr)

with fm(1) = 0, thus
√
λ is a zero of Jm(r).

Thus, the zeroes of the Bessel function determine the eigenvalues of the
Laplacian, as well as the corresponding eigenfunctions to those eigenvalues.
We will refer to an eigenvalue-eigenfunction pair as an eigenpair.

1.2.3 Newton’s Method

The method discussed in this section, which is used to find zeroes of func-
tions, will be limited to the one dimensional case. In section 3.4 we will
demonstrate how this method may be extended to higher dimensions and
show how the higher dimensional method was used in our program.

Derivation of Newton’s Method

Figure 1.1: Diagram of Newton’s Method

The objective here is to obtain the x-intercept of the the tangent line of a
function at a given point. Let y = mx+ b be the the equation of the tangent

7

line. Solving for the y-intercept b, we get

b = y −mx.

At a specific point (xn, f(xn)), m may be replaced with f ′(xn) and so we
have

b = f(xn)− f ′(xn)xn.

Hence,

y = f ′(xn)x+ f(xn)− f ′(xn)xn = f ′(xn)(x− xn) + f(xn).

Next, we find the x-intercept of the above equation, by solving

0 = f ′(xn)(x− xn) + f(xn)

for x. Renaming the x-intercept to be called xn+1, the above equation yields

xn+1 = xn − f(xn)

f ′(xn)
. (1.3)

This is the equation for Newton’s method.

Newton’s Methods Theorem
The following theorem is used to show sufficient conditions under which

Newton’s method convergers to a solution, (see [2]).

Theorem 1.2.1 Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f(p) = 0 and
f ′(p) �= 0, then there exists a δ > 0 such that Newton’s method generates a
sequence {pn}∞n=1 converging to p for any p0 ∈ [p− δ, p+ δ].

Note: In [2] the theorem states p ∈ [a, b].

Chapter 2

HISTORY AND PREVIOUS
WORK

In this chapter, we mention some of the work that has been done on this
problem and some major results that helped in better understanding our
problem. The reader is encouraged to check the referenced work for more
details on the content of these works.

2.1 Odd Functions Case

In the 1920’s, Ljusternik and Schnirelmann (see [12]) showed that if f was
an odd function, then the BVP (1.1) has infinitely many solutions. Even
though their result showed that infinitely many solutions exist, only three
nontrivial solutions have been found in the general non-odd case (see [4]).
The function we are considering for our project is odd, f(u) = λu+ u3. Our
numerical results supports that there are indeed, infinitely many solutions
for the case when f is odd (see Chapter 4).

2.2 Two Types of Solutions

In 1973, Ambrosetti and Rabinowitz introduced the famous Mountain Pass
Lemma, MPL, (see [1]). They used the MPL to show that in the general case
(1.1) has at least two nontrivial solutions: one positive and one negative.
That is to say, there exists solutions u1 and u2 satisfying (1.1), with u1(x) ≥

8

9

0 and u2(x) ≤ 0, ∀x ∈ Ω. Both solutions can be obtained by our algorithm
and are discussed in Chapter 4.

2.3 Radially Symmetric Solutions on the Disk

In 1987, Castro and Kurepa (see [8]) showed that there are infinitely many
radially symmetric solutions to (1.1) when Ω is the ball. They accomplished
this by analyzing the energy and nodal structure of the solutions. This work
is of importance to us since we are looking at the disk as the region. We would
like to study the existence of solutions which are non-radially symmetric as
well as radially symmetric. Both types of solutions can be found using our
algorithm and they will be discussed in Chapter 4. As far as we know, it is not
known whether there are infinitely many non-radially symmetric solutions.

2.4 Multiple Solutions: More than Two

The work of Castro, Cossio, and Neuberger, (see [4], [5], [6], [3], and [13]), has
been of great help in this project. The authors of [4] proved the existence of
a third nontrivial solution, u3, besides the positive and negative solutions, to
(1.1). This new solution, which we will refer to as the CCN solution, changes
signs exactly once. That is, u−1

3 ((0,∞)) and u−1
3 ((−∞, 0)) are connected

nonempty subsets of Ω. The set u−1(0) is called the internal zero set, and
the so-called zero-set conjecture (see [13]) states that u−1(0) intersects the
boundary ∂Ω.

The work of Choi and McKenna (see [9]) is also of importance to us.
They used the MPL, to generate an algorithm which is considered to be the
first in the spirit of our methods. The Mountain Pass Algorithm (MPA) (see
[9]) was also developed independently by Neuberger (see [13]). The MPA
can be used to approximate solutions which have only one sign. Neuberger
also developed a sign-changing algorithm which has been refered to as the
Modified Mountain Pass Algorithm (MMPA) (see [13]). There was then a
need for a new algorithm due to the fact that MPA and MMPA are only
capable of handling certain types of solutions. They can be used to find
critical points of Morse index as high as 2, but not higher. Roughly speaking,
the Morse index of a critical point is the number of linearly independent
“down” directions in function space of a functional.

10

2.5 The BVP on the Square

Here we cover the recent work of Neuberger and Swift (see [14]), who inves-
tigated (1.1) on the region Ω = [0, 1]× [0, 1]. The eigenpairs of −∆ , on the
square are known to be of the form

λm,n = (m2 + n2)π2 and ψm,n = 2 sin(mπx) sin(nπy),

where λm,n are the eigenvalues, and ψm,n are the corresponding eigenfunc-
tions of −∆ on the square with zero Dirichlet boundary conditions.

Neuberger and Swift used Newton’s method, as we do here, to obtain the
critical points of the action functional J(u) . They sought the Morse index
of these critical points and analyzed the nodal structure of the solutions.

The algorithm the authors use in [14], which is the same as the algorithm
used in this project, uses a much simpler orthonormal basis than ours. The
algorithm in theory can be used for a wide variety of nonlinearities f and on
different regions Ω. The authors also show that the L2 inner product, norm,
gradient, and Hessian perform as well as the Sobolev counterparts.

The authors discuss the symmetry of the PDE on the square, as well as
the various bifurcations that occur from the trivial solution. In this project
we also obtain a bifurcation diagram using the bifurcation parameter λ =
f ′(0). We also investigate the possibility of secondary and tertiary bifurcation
points similar to those found in [14].

Chapter 3

METHODOLOGY

In this section we discuss the methods we used to obtain approximate solu-
tions to the nonlinear elliptic PDE (1.1).

3.1 Variational Methods

In this project we will use a variational technique to obtain approximate so-
lutions to our PDE. A variational technique considers calculating the critical
points of an action functional, in the cases where the critical points can be
shown to be solutions to the BVP.

We define our action functional J : H −→ R by

J(u) =

∫
(
1

2
| ∇u |2 −F (u)),

where F (u) =
∫ u

0
f(s)ds , ∀u ∈ R, defines the primitive F of f.

3.1.1 Critical Points Are Solutions

By regularity theory for elliptic BVP (see [10]) u , is a solution of (1.1) if and
only if u is a critical point of the action functional J(u).

Here, we sketch a proof of why the critical points of the action functional
defined above are solutions to the BVP. Note that under our assumptions on
f, J(u) is C2 onH (see [4]).

The directional derivative of J at u in the v direction is given by

J ′(u)(v) = lim
t−→0

J(u+ tv)− J(u)

t
.

11

12

Applying the definition of the action functional we get

J ′(u)(v) = limt−→0

∫
Ω
{ 1

2
(∇(u+tv))2−F (u+tv)}−∫

Ω
{ 1

2
(∇u)2−F (u)}

t

= limt−→0

∫
Ω{ 1

2
(∇u)2+∇u·t∇v+ 1

2
t2(∇v)2−F (u+tv)− 1

2
(∇u)2+F (u)}

t

= limt−→0

∫
Ω{∇u·t∇v+ 1

2
t2(∇v)2−(F (u+tv)−F (u))}

t

=
∫
Ω
∇u · ∇v − limt−→0

∫
Ω

1
2
t(∇v)2 − limt−→0

∫
Ω

(F (u+tv)−F (u))
t

.

By the Lebesgue Dominated Convergence Theorem, we can move the
“lim” inside the integral sign and calculate the limit to obtain

J ′(u)(v) =
∫

Ω

∇u · ∇v −
∫

Ω

f(u)(v).

Using similar arguments we can obtain

J ′′(u)(v, w) =
∫

Ω

{∇v · ∇w − f ′(u)vw}.

Next, the so-called “bootstrap” method shows that u being a critical
point implies u ∈ C2[a, b], (see [10]). Thus we can integrate the expression
∇u · ∇v in J ′(u)(v) by parts using the following substitutions

X = ∇u dY = ∇v

dX = ∆u Y = v.

Using the formula
∫
XdY = XY − ∫ Y dX we get

J ′(u)(v) =
∫

∂Ω

∂u

∂η
v −

∫
Ω

{∆u · v + f(u)v}.

Now, since v satisfies the boundary conditions the first term becomes
zero, leaving the following

13

J ′(u)(v) =
∫

Ω

−(∆u+ f(u))v.

Finally, if J ′(u)(v) = 0 ∀v ∈ H then

∆u+ f(u) = 0.

Thus, the critical points of the action functional are solutions to the BVP.
It is easily shown that if u is a solution of the BVP, then u is also a critical
point of the action functional.

3.2 Orthonormal Basis

As we have discussed earlier, the eigenvalues of −∆ on the disk are deter-
mined by the zeroes of the various Bessel functions of the first kind. The
corresponding eigenfunctions, which form an orthonormal basis, are divided
into three components. The radial component is defined by

ψi = aiJ0(
√
λ0

i r),

where J0 is the Bessel Zero function,
√
λ0

i is the ith zero of J0(r), and
ai =

1√∫
Ω

J0(
√

λ0
i r)2

. That is to say, ai, is calculated so that
∫
ψ2

i = 1.

The remaining two components of the orthonormal basis are the nonradial
components and they are given by

ϕi,j = bi,jJi(
√
λi

j r) cos(iθ)

and

χi,j = bi,jJi(
√
λi

j r) sin(iθ).

Here Ji denotes the various Bessel functions for i �= 0,
√
λi

j is the j
th zero of

the ith Bessel function, and bi,j is calculated so that
∫
ϕ2

i,j = 1, and
∫
χ2

i,j =
1. Thus, given u ∈ L2 there exist constants {ai}, {bi,j}, and {ci,j} so that

u = Σiaiψi + ΣiΣjbi,jϕi,j + ΣiΣjci,jχi,j .

14

We calculated the first ten zeroes of the first ten Bessel functions of the
first kind, starting with the Bessel zero function, J0(r). The zeroes were
calculated using Mathematica. The normalizing factors, ai and bi,j, were
also calculated using Mathematica. These values were then hardcoded into
our program (see Appendix C).
NOTE: We started coding using Mathematica, but we needed faster exe-
cution to handle our algorithm, necessitating a change to FORTRAN. In
FORTRAN, we have access to the NETLIB libraries: LAPACK, BLAS, and
NAPACK.

The eigenfunctions of −∆ on the disk play a major role in our study of
PDE (1.1), as well as in the numerical algorithm. In the next section we
show how these eigenfunctions are essential in obtaining the gradient vector
and Hessian matrix.

Once the orthonormal basis is generated, the matter of implementing the
singly indexed and doubly indexed components in our FORTRAN program
arose. The radial components of the orthonormal basis are singly indexed
while the two non-radial components are doubly indexed.

The number of the orthonormal basis components used is called on the
number of Fourier modes. This is the finite number of Fourier coefficient used
in the expansion performed on the eigenfunctions. The number of “modes”
is dependent on the number of Bessel functions s2, and Bessel zeroes s1,
used in the code. The number of modes m is given by m = s1 +2s1(s2 − 1).
Once the number of modes is set, then the orthonormal basis components
are divided into three categories: The radial components is stored as a vector
of length s1, the non-radial component containing the cos(iθ) term is stored
in a vector of size s1(s2 − 1), and the non-radial component containing the
sin(iθ) term is stored in a vector of size s1(s2 − 1).

The orthonormal basis allows us to perform a Fourier expansion on the
eigenfunctions of −∆ on the disk. The Fourier expansion is then used to
approximate both radial and non-radial functions. Figure 3.1 shows how
accurate these approximations are when we used the orthonormal basis to
approximate the radially symmetric function f = r2(1− r2), on B0(1), with
s1 = s2 = 3.

The independent axis represents the radius, r ∈ [0, 1], and the depen-
dent axis represent the amplitude of the two functions. The function we
approximated starts at the point (0, 0) and ends at the point (1, 0).

15

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

Figure 3.1: Orthonormal basis approximations

3.3 Gradient and Hessian

By regularity theory of elliptic BVP (see [10]), the critical points of the
gradient are precisely the solution to (1.1). By the Riesz Representation
Theorem (see [15]) one defines the L2 gradient g to be the unique function
which satisfies J ′(u)(v) =< g, v >2 for all v ∈ L2. The subscript “2” will
be dropped as we are only using the L2 inner product, norm, gradient and
Hessian. The reader is encouraged to read [14] for a more detailed discussion
on the reason why we choose this gradient.

Our approximations will be restricted to a finite dimensional subspace
K ofL2 of dimensionm = s1+2s1(s2−1) containing functions which are twice
differentiable for all u ∈ K. The subspaceK is defined byK = span{Ψi}m

i=1,
where Ψi are the eigenfunctions discussed in previous sections, and m is the
size of the finite dimensional subspace K.

Since the eigenfunctions of −∆ on the disk are normalized in L2, we can
define Ĵ : R

m −→ R by Ĵ(a) = J(u), where u = Σm
i=1aiΨi ∈ K. We are now

seeking critical points of Ĵ instead of the infinite dimensional functional J.

16

Now, we can define the L2 gradient of Ĵ to be the vector

g(a) =

(
∂Ĵ(a)

∂a1
, . . . ,

∂Ĵ(a)

∂am

)
= (J ′(u)(Ψ1), . . . , J

′(u)(Ψm)) ∈ R
m.

Integrating by parts yields

gk(a) =
∂Ĵ(a)

∂ak
= −

∫
Ω

(∆u+ f(u))Ψk = akλk −
∫

Ω

f(u)Ψk.

The self-adjoint Hessian D2J(u) which represents the bilinear operator
J ′′(u), satisfies

J ′′(u)(v, w) =< D2J(u)v, w > .

Note that the subscript of 2 was left out. The Hessian matrix of Ĵ is given
by

H(a) =

(
∂2Ĵ(a)

∂ai∂aj

)m

i,j=1

= (J ′′(u)(Ψi,Ψj))
m
i,j=1.

Again, integrating by parts we obtain

Hi,j(a) = δijλi −
∫

Ω

f ′(u)ΨiΨj ,

where δij = 1 if i = j, otherwise δij = 0.
Since the Hessian matrix may be non-invertible we considered the use of

singular value decomposition and pseudoinverses as tools in our algorithm
(see Appendix B). In the case where H is invertable, the pseudoinverse is
not needed, since it is the same as the regular inverse.

3.4 Newton’s Method in Higher Dimensions

In Chapter 1, we derived the formula for Newton’s method in one dimension.
It is now necessary to extend that formula to higher dimensions in order for
us to be able to use it for our problem.

Since we are interested in obtaining zeroes of the gradient g we use the
gradient and Hessian developed in the previous section instead of f, and f ′

in (1.3). We now state the following formula for Newton’s method in higher
dimensions

an+1 = an −H−1(an)g(an),

17

where g represents J ′(u)(v), and H−1 represents either the inverse matrix
of the Hessian, if H is invertible, or the pseudoinverse matrix H†, if H is
noninvertible.

3.5 Numerical Algorithm

Now we have all the components needed for the numerical algorithm. We
divide Ω into grid points (ri, θi). The number of grid points has to be large
enough in order for the code to produce satisfactory result. Our results were
obtained using 30− 50 grid points. Since we are applying Newton’s method
we will need an initial guess vector for the Fourier coefficients. This initial
guess is important to the convergence of Newton’s method.

We truncated our infinite dimensional space H into a finite dimensional
subspace K with dimension m = s1 + 2s1(s2 − 1). We will restrict all the
code computations to the size of K.

Recall that the eigenfunctions were normalized in L2 to satisfy
∫
Ω
ΨiΨj =

δij and
∫
Ω
∇Ψi∇Ψj = δijλi, where δij is the Kronecker delta function, and

λi is the ith eigenvalue of the Laplacian on the disk.
We define the finite m-dimensional function Ĵ : R

m −→ R by Ĵ(a) =
J(u), where u = Σm

i=1aiΨi ∈ K. Thus we can now approximate the solutions
to the BVP by computing the critical points of the Ĵ .

With the gradient and Hessian now available, we have the following for-
mula for Newton’s iteration

an+1 = an −H−1(an)g(an).

One could also take smaller Newton’s step iterations by introducing a step
size δ to imitate a continuous Newton’s flow. Then, Newton’s iteration
becomes:

an+1 = an − δ(H−1(an))g(an).

When Newton’s method generate a vector a, to which the sequence {an}
converges, we can approximate our solutions u by u = Σm

i=1aiΨi. If this
solution is nondegenerate, then we can compute the Morse index of that
critical point by counting the number of negative eigenvalues of the Hessian
matrix.

18

PSEUDOCODE FOR ALGORITHM
We now provide a pseudocode for the algorithm, which can be used to

approximate solutions in many regions and using many nonlinearities (see
[14])

1. Define region Ω, the nonlinearity f, and step size δ.

2. Obtain orthonormal basis {Ψk}m
k=1 for a large enough subspace K ⊂

H.

3. Choose initial guess a = a0 = {ak}m
k=1, and set u = u0 = Σm

i=1aiψi.
Set the loop counter n = 0.

4. Loop until satisfied

(a) Calculate the gradient vector of the action functional, g = gn+1 =
(J ′(u)(Ψk)

m
k=1 ∈ R

m.

(b) Calculate the Hessian matrix, H = Hn+1 = (J ′′(u)(Ψj,Ψk))
m
j,k=1.

(c) Compute W = W n+1 = H−1g, using the inverse or pseudoinverse.

(d) Set a = an+1 = an − δW. Update u = un+1 = ΣakΨk.

(e) Increment loop counter n.

(f) Calculate Ĵ(a), and the signature of H if desired.

(g) Calculate approximation
√
g · g of ‖ ∇J(u) ‖; STOP if small

enough.

Chapter 4

NUMERICAL RESULTS

In this chapter we present the results we obtained from the algorithm de-
veloped in [14] applied to the disk instead of the square for the function
f(u) = λu+ u3.

4.1 Ordinary Differential Equation, ODE, Case

It is a good idea when studying a PDE problem, to first consider a simpler
case. The ODE case, n = 1, is such a case. In this case, we are looking for
solutions of the differential equation: y′′ + f(y) = 0 on [0, 1]. By studying
this case first, we were able to generate our first bifurcation diagram, (see
Figure 4.1), and get a better understanding of what needs to be done for
the PDE case. The bifurcation diagram was obtained by using a “shooting”
argument (see [2]).

The shooting method can be used to solve the BVP

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = 0, y(b) = 0,

by obtaining a sequence of solutions of the initial value problems, IVP, of the
form

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = 0, y′(a) = t,

involving a parameter t, to approximate the solutions to our BVP.
We start with an initial guess that determines the initial elevation at

which the “object” is fired from the point (a, 0), and follow the curve de-
scribed by the IVP above. We solve the IVP using a Euler’s numerical ODE

19

20

solver, although more sophisticated solvers such as Runge-Kutta could be
used. The code we used to solve the ODE case is found in Appendix D.

The bifurcation diagram obtained supports the result that the ODE case
does indeed have infinitely many solutions. Clearly any vertical line drawn
will intercept the graph infinitely many times. The system considered for the
ODE case was y′′ = −(y3 + λy), y(0) = 0 = y(π).

5 10 15 20 25

5

10

15

20

25

Figure 4.1: Bifurcation diagram for the ODE

The independent axis in the bifurcation diagram is the parameter λ and
the dependent axis is the value of t which resulted in y(π) = 0.

After studying the ODE case, we now present some results obtained from
executing the algorithm on the disk for the BVP. We need to mention here
that there is a specific order associated with the eigenvalues of −∆ on the
disk, and when we refer to a certain eigenfunction number we mean the
eigenfunction corresponding to the eigenvalue with that number in the order
of the eigenvalues of −∆ on the disk. For example, the third eigenfunction
is the eigenfunction corresponding to the third smallest eigenvalue, and so
on. The following table lists the first ten eigenvalues. Note: For i �= 0 each
eigenvalue has multiplicity two.

21

Number Bessel Fcn (i) Zero Number (j)
√
λi

j

1 0 1 2.40483
2 1 1 3.83171
3 2 1 5.13562
4 3 1 5.38015
5 0 2 5.52008
6 1 2 7.01559
7 4 1 7.58834
8 2 2 8.41724
9 0 3 8.65373
10 5 1 8.77148

Table 4.1: First ten eigenvalues of −∆, on the disk.

4.2 One-Sign Solutions

The first solution obtained was the solution found in figure 4.2. This solution
is positive on Ω, in other words, u ≥ 0, for all x ∈ Ω. This solution is also
radially symmetric, that is uθ = 0 for all (r, θ) ∈ Ω. The positive solution
corresponds to the first eigenfunction. It is obtained from an initial guess
which includes non-zero entries in the radial component of our basis only.

The solutions obtained for this work were obtained after using different
initial guesses for the Fourier coefficients in the algorithm. Each initial guess
contained non-zero values in some of m available entries. The initial guess
vector could be divided into three parts: the first s1 entries would hold values
for the coefficient of the radial component ψi of the basis, the next s1(s2−1)
entries would hold values for the coefficients of the non-radial component of
the basis containing the cos(iθ) terms ϕij, and the last s1(s2 − 1) entries
would hold values for the coefficients of the non-radial component of the ba-
sis containing the sin(iθ) terms χij. For example, consider the case were
s1 = s2 = 3, i.e., m = 15 modes. The initial guess would consist of 15
entries. The first three would be for the ψi component, the next six entries
would be for the ϕij component, and the last six entries would hold values
for the χij component. A “good” initial guess for the Fourier coefficients
determines the speed of the convergence of our algorithm to a solution and
more importantly, to which solution it converges.

22

The positive solution belongs to the first curve in the bifurcation diagram
found in Figure 4.7. Table 4.2 lists the values for the solution coefficients
when λ = 0 andm = 15.

λ a1 a2 a3 a4...15

0 2.6248 0.35973 0.049529 0

Table 4.2: positive solution coefficients at λ = 0.

Table 4.3 lists the coefficients of the positive solution on the positive so-
lution branch, just before it bifurcates from the trivial solution branch.

λ a1 a2 a3...15

5.75 0.23163 .00015298 0

Table 4.3: positive solution coefficients at λ = 5.75.

Note that the value of λ used in the Table 4.3 is very close to the 5.78 ,
the first eigenvalue of −∆ with zero Dirichlet boundary conditions on B0(1).

The negative solution is obtained by using the negative values for the
initial guess used to obtained the positive solution. As expected, since our
choice of f is odd, the negative solution has the same magnitude as the
positive solution, and is also radially symmetric. Since the positive and
negative solutions are radially symmetric then any rotation of these solutions
will yield the same solution. We will discuss the case for the non-radially
symmetric solutions later in this chapter.

4.3 Sign-Changing Solutions

The results obtained in section 4.2 were one-signed and radially symmetric.
We want to show next that our algorithm can be used to find sign-changing
solutions as well as non-radially symmetric solutions. This will show that our
algorithm can be used to find the different types of solutions to the BVP:

23

-1-0.500.51
-1
-0.5

0
0.51

0

1

2

3

1
-0.5

0
0.5

Figure 4.2: Positive solution

-1-0.500.51
-1
-0.5

00.5
1

-3

-2

-1

0
1
0.5
00.5

Figure 4.3: Negative solution

24

positive, negative and sign-changing, as well as radially symmetric and non-
radially symmetric.

A sign-changing exactly once non-radially symmetric solution is obtained
using an initial guess with non-zero entries in the ϕij component of the basis.
The sign-changing solution of lowest action value has been refered to as the
CCN solution (see [4]). This solution corresponds to the second eigenfunc-
tion and belongs to the second curve in the bifurcation diagram. A listing of
the solution coefficients is found in Table 4.4 for λ = 0.

λ a1...3 a4 a5 a6 a7...15

0 0 4.217408 0.4133865 -0.2021605 0

Table 4.4: coefficients for sign-changing, exactly-once, non-radially symmet-
ric at λ = 0.

As the solution converges to the trivial solution the magnitude of the
‖ u ‖∞ decreases. The coefficients of the CCN solution at λ = 14.65, before
it converges to the trivial solution, are found in the following table

λ a1...3 a4 a5...15

14.65 0 0.2178988 0

Table 4.5: coefficients for sign-changing, exactly-once, non-radially symmet-
ric at λ = 14.65.

We were also capable of obtaining a sign-changing non-radially symmetric
solution which changes signs exactly twice. This solution corresponds to the
third eigenfunction and is also obtained from an initial guess with non-zero
entries in the φij components. Tables 4.6 and 4.7 show the values of the
solution coefficients at λ = 0 and λ = 26, respectively.

25

λ a1...6 a7 a8 a9 a10...15

0 0 5.68765 0.33685 -0.49658 0

Table 4.6: sign-changing twice solution coefficients at λ = 0.

λ a1...6 a7 a8 a9 a10...15

26.00 0 0.412829 0 -0.000154192 0

Table 4.7: sign-changing twice solution coefficients at λ = 26.

-1-0.50 0.5 1

-1
-0.5

0
0.5

1

-1

0

1

1
-0.5

0
0.5

-1-0.500.51
-1
-0.5

0
0.51

-1

0

1

1
-0.5

0
0.5

Figure 4.4: Sign-changing non-radially symmetric solutions

The existence of non-radially symmetric solutions lead us to the follow-
ing question: What happens to a non-radially symmetric solution under a
rotation?

To answer this question we considered the following experiment. Take
the CCN solution which has non zero entries in the ϕ component of our
orthonormal basis only. That is to say, u1 = ΣiΣjbi,jϕi,j. We observed that
when we translated the non zero coefficients from the ϕ to theχ component

26

of our basis, we obtained a solution u2 which is a rotation by π
2
of u1 of the

form u2 = ΣiΣjbi,jχi,j.
Choosing various initial guesses of the form ũt = cos(t)u1+sin(t)u2 leads

to solutions ut on the continuum of rotations of u1. The solutions obtained
in this manner are depicted in Figure 4.5

Figure 4.5: Rotation in the ϕχ-plane.

To summarize, if a solution is rotated by an angle θ then the rotation
yields another solution, thus providing a continuum of solutions. That is
to say, taking a non-radially symmetric solution and rotating it will yield
another non-radially symmetric solution to BVP (1.1). The graphs in Figure
4.6 demonstrate this result. Note that this is also true for radially symmetric
solutions since any rotation of a radially symmetric solution is equal to that
prior to the rotation.

We also obtained a sign-changing radially symmetric solution. This solu-

27

-1-0.50 0.5 1

-1
-0.5

0
0.5

1

-1

0

1

1
-0.5

0
0.5

-1-0.50 0.5 1

-1
-0.5

0
0.5

1

-1

0

1

1
-0.5

0
0.5

Figure 4.6: Rotation of non-radially symmetric solutions

tion was obatined with an initial guess containing non-zero entries for the ψi

component of the basis. The solution corresponds to the fifth eigenfunction,
which corresponds to the second zero of the Bessel Zero function. We are
confident we could find many more solutions, although we would need to in-
crease the number of modes in order to find these solutions. We have not yet
attempted to construct the branch of solutions corresponding to the fourth
eigenfunction. The values of the coefficients at λ = 0 are listed in Table 4.8

λ a1 a2 a3 a4...15

0 -2.7653657 5.902088 1.5634856 0

Table 4.8: coefficients of sign-changing, radially symmetric solution at λ = 0.

As this solution converged to the trivial solution, as one could observe
from the fourth curve in Figure 4.7, the values of the solution coefficients
decreased. Table 4.9 lists the values for the solution just before it converged
to the trivial solution.

28

-1-0.5 00.5 1

-1
-0.5

00.5
1

-0.5
0

0.5
1

1.5

-10.5 00 5

1
-0.5

00.5

Figure 4.7: Sign-changing radially symmetric solution

λ a1 a2 a3...15

30.45 0 0.166996 0

Table 4.9: coefficients of sign-changing, radially symmetric solution at λ =
30.45.

29

4.4 Bifurcation Diagram

With the assumption f(0) = 0, u = 0 is always a solution which is refered
to as the trivial solution. Taking f ′(0) = λ as the bifurcation parameter, we
will get a bifurcation of solutions from the trivial solution branch whenever
λ passes through one of the eigenvalues of −∆. The bifurcations that might
occur depend on the multiplicity of the eigenvalue, the parity of the eigen-
function, and the function f . The graph in Figure 4.7 shows a portion of the
bifurcation diagram obtained for several solution curves of our BVP. The first
curve corresponds to the positive/negative solutions, the second curve cor-
responds to the sign-changing exactly once non-radially symmetric solution
of minimum action value, CCN solution, the third curve corresponds to the
sign-changing twice solution and the last curve corresponds to the radially
symmetric sign-changing solution.

10 20 30 40 50

2

4

6

8

10

Figure 4.8: Bifurcation diagram for the PDE

The independent axis represent the value of λ at which the solution curve
bifurcates from the trivial solution and the dependent axis represent the
infinity norm of the solution, ‖ u ‖∞. Note that each curve converges to
the trivial solution. As expected, while the solution curves are converging
to the trivial solution the magnitude of ‖ u ‖∞ decreases. The value of

30

λ to which each curve converges should be the eigenvalue corresponding to
the solution. For example, the last curve in Figure 4.7 corresponds to the
fifth eigenfunction and bifurcates at the fifth eigenvalue, λ5 = (5.52008)2 =
30.47128321. Any point on a specific bifurcation curve represents a solution
of the BVP which is the same type of solution (e.g., sign-changing non-
radially symmetric). The amplitude of these solutions will always decrease
as the branch approaches the trivial solution branch.

One interesting calculation one might consider is the signature of the
Hessian matrix, that is, the number of negative eigenvalues in that matrix.
The number of negative eigenvalues may be obtained by writing the Hessian
matrix to a file. We used Mathematica to compute the eigenvalues of that
matrix and count the number of negative eigenvalues. This is also known as
the Morse index of a critical point if H is invertable. In the case were H
is non-invertable, the critical points are degenerate and one cannot compute
the Morse index. The Morse index of a critical point is important because
by examining the signature of H along a bifurcation curve, we can determine
whether we have secondary or higher bifurcation points on that curve. Along
any bifurcation curve, if at a certain point the signature changes from one
value to another, then that point produces a secondary bifurcation point. We
did not observe any secondary or higher bifurcation points in our diagram,
but we might observe them if we examine more bifurcation curves. We think
that these secondary or higher bifurcation points will occur at solutions that
have non-zero coefficients in more than one component of our orthonormal
basis, since such a solution might cause a soluction curve corresponding to one
eigenfunction to converge to a solution curve with a different corresponding
eigenfunction.

Chapter 5

CONCLUSIONS AND
FUTURE STUDIES

In this project, we approximated the solutions of a nonlinear elliptic BVP
using Newton’s method. An action functional was defined and Newton’s
method was applied to the gradient of that action functional. The results we
obtained were compared to the results obtained by Neuberger, (see [13]), us-
ing a modified Mountain Pass Lemma technique. Our results were consistent
with those obtained in the works mention in Chapter 2, and they indicate
that our algorithm works for finding approximate solution to BVP (1.1) on
the disk.

When we ran our code using a larger number of modes, i.e., a larger
number of basis components, our results did not vary much. The bifurca-
tion diagram and solution graphs were obtained using 66 modes and when
compared to those obtained using only 15 modes, they were very similar.
The code was tested with modes going as high as 190. The results remained
very close regardless of the number of modes used. This gives confidence
in the quality of the results obtained by our algorithm. Figure 5.1 shows
the difference in ‖ u ‖∞, as the number of modes increase. This graph was
obtained for the positive solution at λ = 0. In the figure, the independent
axis is the common value used for s1 = s2 instead of the total number of
modes m = s1 + 2s1(s2 − 1).

Our results did not show any secondary bifurcation point on the first four
computed bifurcation curves. We expect that secondary bifurcation points,
or higher, might exist if we investigate more bifurcation curves. This is a
change from the result obtained for the same BVP on the square, (see [14]).

31

32

4 5 6 7 8 9 10

3.2

3.4

3.6

3.8

4

Figure 5.1: Infinity norm vs. number of modes

Their results showed a couple of bifurcation curves converging to the second
eigenvalue, and they observed secondary and tertiary bifurcation points in
their fourth bifurcation curve. We think this is due to the difference in nature
between the eigenpairs of each region, and the fact that all of our solutions
had non zero coefficients in only one component of the orhonormal basis.

Our results show that the method used in [14] can be used on the disk.
This is good motivation to try and apply this algorithm for more complicated
regions. This leads to another possible future study which would be to con-
sider non uniform (arbitrary) regions. These regions would have no known
closed form for the orthonormal basis, which would have to be approximated
numerically.

We think it would be of value to consider the BVP on an annulus. This
is because the annulus has Bessel functions as the orthonormal basis, and we
can use our algorithm to approximate solutions on the annulus by considering
it to be made up of many circles. The Bessel functions in that experiment
would include both Bessel functions of the first kind Jm(r) andYm(r).

Another investigation to consider would be a triangle as the domain. We
believe that the triangle might have an orthonormal basis in closed form. We
have shown that the algorithm used for the square also works on the disk. It
would be worth while to see whether this algorithm could also be applied to
the triangle.

Bibliography

[1] A. Ambrosetti, and P. Rabinowitz. Dual Variational Methods in Crit-
ical Point Theory and Applications. Journal of Functional Analysis, 14,
p 417-437, 1993.

[2] R.L. Burden and J.D. Faires. Numerical Analysis. PWS-Kent, 1989.

[3] A. Castro, and J. Cossio. Multiple Solutions for a Nonlinear Dirichlet
Problem. SIAM Journal of Mathematical Analysis, Vol. 25, No. 6, p
1554-1561, 1994.

[4] A. Castro, J. Cossio, and J.M. Neuberger. Sign-Changing Solutions
of a Nonlinear Dirichlet Problem. Rocky Mountain Journal of Mathe-
matics, Vol. 27, No. 4, 1997.

[5] A. Castro, J. Cossio, and J.M. Neuberger. On Multiple Solutions of a
Nonlinear Dirichlet Problem. Proceedings of the Second World Congress
of Nonlinear Analysis, part 6 (Athens, 1996). Nonlinear Analysis Theory,
Methods and Applications, Vol. 30, No. 6, p 3657-3662, 1997.

[6] A. Castro, J. Cossio, and J.M. Neuberger. A Minimax Principle,
Index of the Critical Point and Existence of Sign-Changing Solutions
to Elliptic Boundary Value Problems. Electronic Journal of Differential
Equations, Vol. 1998, No. 2 p 1-18, 1998.

[7] R. Courant, and D. Hilbert. Methods of Mathematical Physics, Volumes
I and II. New York: Interscience, 1953 and 1962.

[8] A. Castro, and A. Kurepa. Infinitely many Radially Symmetric Solu-
tions to a Superlinear Dirichlet Problem in a Ball. Proceedings of The
American Mathematical Society, Vol. 101, No. 1, 1987.

33

34

[9] Y.S. Choi, and P.J. McKenna. A Mountain Pass Method for The
Numerical Solution of Semilinear Elliptic Problems. Nonlinear Analysis
Theory, Methods and Applications, Vol. 20, No. 4, p 417-437, 1993.

[10] D. Gilbarg, and N. Trudinger. Elliptic Partial Differential Equations
of Second Order. Springer-Verlag: Berlin, New York, 1983.

[11] B. Jacob. Linear Algebra. W.H. Freeman and Company, 1990.

[12] L. Ljusternik, and L. Schnirelmann. Methods Topologique dans les
Problems Variational. Hermann and Cie, Paris, 1934.

[13] J.M. Neuberger. A Numerical Method for Finiding Sign-Changing So-
lutions of Superlinear Dirichlet Problems. Nonlinear World, Vol. 4, No.
1, p 73-83, 1997.

[14] J.M. Neuberger, and J.W. Swift. Newton’s Method and Morse Index
for Semilinear Elliptic PDEs. to appear.

[15] H.L. Royden Real Analysis, Third Edition. Prentice Hall, 1988.

[16] E. Zeidler Applied Funtional Analysis, Applications to Mathematical
Physics. Springer, 1997.

[17] D. Zwillinger. CRC Standard Mathematical Tables and Formulae, 30th

Edition. CRC Press, 1996.

Appendix A

Functional Analysis

In this section we look at some definitions and results from functional analysis
which we used in this project, see [16].

Definition A.0.1 A Linear Space X over R is a set X, together with an
addition

u+ v u, v ∈ X

and a scalar multiplication

αu α ∈ R, u ∈ X.

With the following holding true for all u, v, w ∈ X and α, β ∈ R

u+ v = v + u,
(u+ v) + w = u+ (v + w)

(α + β)u = αu+ βu,
α(u+ v) = αu+ αv

α(βu) = (αβ)u,
αu = u if α = 1.

Furthermore, there exists exactly one element θ ∈ X so that

35

36

u+ θ = u ∀u ∈ X.

And for each given u ∈ X, the equation

u+ v = θ,

has exactly one solution v ∈ X, v = −u.

Example A.0.2 Let X := R
N , where N = 1, 2, · · · ; that is, the set of all

the N-tuples

X = (ξ1, · · · , ξN)

Define

(ξ1, · · · , ξN) + (η1, · · · , ηN) = (ξ1 + η1, · · · , ξN + ηN),

and

α(ξ1, · · · , ξN) = (αξ1, · · · , αξN), α ∈ R.

Then, X becomes a linear space over R.

Definition A.0.3 Let X be a linear space over R.

Then X is called a normed space over R iff there exist a norm || · || on
X, i.e., for all u, v ∈ X and α in R the following is true

(i) || u ||≥ 0, with equality iff u = 0.

(ii) || αu ||=| α | || u || .
(iii) || u+ v ||≤|| u || + || v || .

Definition A.0.4 Let X be a normed space. For fixed u0 ∈ X and ε > 0
the set:

Uε(u0) := {u ∈ X : || u− u0 ||< ε}

37

is called an ε-neighborhood of the point u0.

The subset M of X is called open iff, for each point u0 ∈ M , ∃ some
ε-neighborhood, Uε(u0), such that

Uε(u0) ⊆ M.

The subset M of X is called closed iff the set X −M is open.

Definition A.0.5 Let M and Y be sets. An operator

A : M −→ Y

associates to each point u in M, a point v in Y, denoted by v = Au.

(i) A : M −→ Y is called surjective iff A(M) = Y

(ii) A : M −→ Y is called injective iff Au = Av implies u = v

The operator A : M −→ Y is bijective iff A is both surjective and injec-
tive.

If A : M −→ Y is bijective, then there exists the so-called inverse operator

A−1 : Y −→ M

defined by:

A−1v = u iff Au = v.

Example A.0.6 Let M = R, and Y = R.
Define the operator

A : R −→ R

by

Ax = x3.

38

Definition A.0.7 Let X and Y be normed spaces over R. The operator

A : M ⊆ X −→ Y

is called continuous iff, for each point u ∈ M and each ε > 0, there is a
δ(ε, u) > 0 such that || v − u ||< δ(ε, u) and v ∈ M implies || Av − Au ||< ε.

In addition, if it is possible to choose the δ(ε, u) > 0 in such a way that
does not depend on the u ∈ M, then the operator A : M ⊆ X −→ Y is
uniformly continuous.

Definition A.0.8 The normed space X is called a Banach space iff each
Cauchy sequence is convergent. Recall, a sequence {un} in a normed space
X is called Cauchy if for each ε > 0 there exists a number n0(ε) such that
|| un − um ||< ε for all n,m ≥ n0(ε).
Banach spaces are also called complete normed spaces.

Example A.0.9 Let N = 1, 2, · · · . Then the space X := R
N is a Banach

space over R with the norm || x ||:=| x |∞, where

| x |∞= max | ξj | 1 ≤ j ≤ N , x = (ξ1, · · · , ξN).

Definition A.0.10 Let X be a normed space. A subset M of X is called
dense in X iff M = X, i.e., for each u ∈ X and each ε > 0 there is a v ∈ M
such that || v − u ||< ε.

Definition A.0.11 Let X be an N-dimensional linear space over R, where
N = 1, 2, · · · . By a basis {e1, · · · , eN} of X we mean a set of elements
e1, · · · , eN of X such that, for each u ∈ X,

u = α1e1 + · · ·+ αNeN ,

where α1, · · · , αN ∈ R are uniquely determined by u, and are called the
components of u.

Proposition A.0.12 Let N = 1, 2, · · · . Then in each N-dimensional linear
space X over R there exists a basis {e1, · · · , eN}.

39

Definition A.0.13 The two norms || · || and || · ||1 on the normed space X
are called equivalent iff there are positive numbers α and β so that

α || u ||≤|| u ||1≤ β || u || ∀u ∈ X.

Proposition A.0.14 Two norms on a finite-dimensional linear space X
over R are always equivalent.

Proposition A.0.15 Let {un} be a sequence in a finite-dimensional normed
space X with dim(X) > 0. then

un −→ u in X as n −→ ∞

iff the corresponding components with respect to any fixed basis converge
to each other.

Example A.0.16 Let xn = (ξ1n, · · · , ξNn). Then

lim
n−→∞

| xn − x |= 0

iff

lim
n−→∞

ξkn = ξk, ∀k = 1, · · · , n.

That is, the convergence xn −→ x as n −→ ∞ is equivalent to the conver-
gence of the corresponding components.

Definition A.0.17 A subset L of the linear space X over R is called a linear
subspace of X iff

u, v ∈ L and α, β ∈ R imply αu+ βv ∈ L.

Definition A.0.18 Let X and Y be linear spaces over R. The operator
A : L ⊆ X −→ Y is called linear iff L is a linear subspace of X and

A(αu+ βv) = αAu+ βAv for all u, v ∈ L and α, β ∈ R.

40

Definition A.0.19 Let X be a linear space over R. An inner product on X
assigns to each u and v in X a number < u, v >∈ R such that the following
hold for all u, v, w ∈ X and α, β ∈ R

(i) < u, u >≥ 0 with equality iff u = 0.

(ii) < u, αv + βw >= α < u, v > +β < u,w > .

(iii) < u, v > =< v, u >, where u represents the complex conjugate of u.

For u, v ∈ X, u is said to be orthogonal to v if < u, v >= 0.
A linear space X over R together with an inner product is called a pre-

Hilbert.

Proposition A.0.20 Each pre-Hilbert X space over R is also a normed
space over R with respect to the norm

|| u ||:=< u, u >
1
2 , ∀u ∈ X.

Definition A.0.21 A Hilbert space is a pre-Hilbert space that is a Banach
space with respect to the norm

|| u ||:=< u, u >
1
2 , ∀u ∈ X.

Example A.0.22 Let X := R. Then, X is a real Hilbert space with the
inner product

< u, v >:= uv ∀u, v ∈ R.

The corresponding norm || u ||=< u, u >2 equals | u | .

Proposition A.0.23 Each finite-dimensional pre-Hilbert space is a Hilbert
space.

Definition A.0.24 Let X be a normed sapce over R. By a bounded bilinear
form on X we mean an operator a : X ×X −→ R, satisfying

41

(i) Bilinearity:

For all u, v, w ∈ X and α, β ∈ R

a(αu+ βv, w) = αa(u, w) + βa(v, w).

and

a(w, αu+ βv) = αa(w, u) + βa(w, v).

(ii) Boundedness:

There is a constant d > 0 so that

| a(u, v) |≤ d || u || || v ||, ∀u, v ∈ X.

a(u, v) is called symmetric iff

a(u, v) = a(v, u), ∀u, v ∈ X.

Definition A.0.25 Let X be a Hilbert space over R. Then the finite, or
countable, system {u0, u1, · · · } is called orthogonal, if

< uk, um >= δkm, ∀k,m.

Appendix B

Linear Algebra

In this section we look at some results and definitions from Linear Algebra,
see [11].

Definition B.0.26 An m × n matrix D = (dij) is called a pseudodiagonal
matrix if dij = 0 whenever i �= j.

Definition B.0.27 An m×m matrix A is called orthogonal if AAt = Im =
AtA.

Definition B.0.28 Let A be an m × n matrix. We call the product A =
U1DU t

2 a singular-value decomposition for A if U1 is an m × m orthogonal
matrix, D is an m × n pseudodiagonal matrix all of whose entries are non-
negative, and U2 is an n× n orthogonal matrix.

The diagonal entries of matrix D σi {i = 1, 2, 3, . . . , n} are called the
singular values of A.

Theorem B.0.29 Let A be an m × n real matrix. Then A has a singular-
value decomposition. Moreover, the singular values of A are uniquely deter-
mined (with multiplicity).

Definition B.0.30 Suppose that < ·, · > is an inner product on a vector
space V. We say that a basis {u1, · · · , un} is an orthogonal basis for V if
the ui are mutually orthogonal; that is, < ui, uj >= 0 whenever i �= j. In
addition, if each || ui ||= 1, we sat that the basis is orthonormal.

Theorem B.0.31 Any finite-dimensional inner product space V, has an or-
thogonal basis (and hence an orthonormal basis).

42

43

Example B.0.32 Let

A =


 1 2

1 2
1 2




A has rank 1.

Form the symmetric matrix

S = AtA =

(
3 6
6 12

)

Computing the eigenvalues of S we get that the chracteristic polynomial
Cs(X) = X(X − 15), which has X = 0, and X = 15 as eigenvalues. It
can be shown that X = 0 has (2,−1) as an eigenvector and X = 15 has an
eigenvector (1, 2).

It can be shown that {(1√
5
, 2√

5
), (2√

5
, −1√

5
)} is an orthonormal basis in R

2

of eigenvectors of S.

Next,

A

(
1√
5

2√
5

)
=




√
5√
5√
5




which has norm
√
15, the square root of the eigenvalue of the eigenvector

(1√
5
, 2√

5
) of S.

This vector is normalized to the unit vector (1√
3
, 1√

3
, 1√

3
), which we extend

to an orthonormal basis of R
3, say

{(1√
3
, 1√

3
, 1√

3
), (1√

2
, 0, −1√

2
), 1√

6
, −2√

6
, 1√

6
)}.

So, this gives the following singular-value decomposition of A

44


 1 2

1 2
1 2


 =




1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3

−1√
2

1√
6






√
15 0
0 0
0 0


(1√

5
2√
5

2√
5

−1√
5

)
.

Definition B.0.33 (i) If D = (dij) is an m × n pseudodiagonal matrix,
the pseudoinverse of D, denoted D†, is defined to be the n×m matrix
given by D† = (fkl) where fii = d−1

ii if dii �= 0, and fkl = 0 otherwise.

(ii) If A is an m×n matrix with singular-value decomposition A = U1DU t
2,

we define the pseudoinverse of A, A†, to be the n×m matrix
A† = U2D

†U t
1. The pseudoinverse is also known as the Moore-Penrose

generalized inverse.

Example B.0.34 The pseudoinverse of matrix A, of example (1.4.7), is
given by

A† =

(
1√
5

2√
5

2√
5

−1√
5

)(1√
15

0 0

0 0 0

)
1√
3

1√
3

1√
3

1√
2

0 −1√
2

1√
6

−2√
6

1√
6


 .

REMARKS

(i) The matrix we will use in this project, the Hessian, is a symmetric,
square matrix.

(ii) When A is a sqaure symmetric matrix, then σi =| λi |, where λi

represents the eigenvalues of matrix A.

(iii) The pseudo-inverse of matrix A, is used to find the least norm squared
solution to Ax = b, when A is singular (noninvertible).

Appendix C

FORTRAN Code: Main
Program

program main

c

c This program approximates solutions of

c the Laplacian on the disk.

c

integer s1, s2, t ! # of modes, and

integer ss1, ss2, tt ! grid points

integer i, j, m, k ! counters

integer irank ! used in dgelss

integer tm ! size of work

integer info ! used in dgelss

integer maxits ! for convergence

parameter (s1=3, s2=3, t=30)

real*8 rc !used in dgelss

real*8 work(10*(s1+2*s1*(s2-1))) !dgelss

real*8 s(s1+2*s1*(s2-1)) !dgelss

real*8 ar(0:s2-1,s1,0:t) !populates basis

45

46

real*8 g(s1+2*s1*(s2-1)) !gradient vector

real*8 w(s1+2*s1*(s2-1))

c declare the Hessian matrix

real*8 h(s1+2*s1*(s2-1), s1+2*s1*(s2-1))

real*8 hs(s1+2*s1*(s2-1), s1+2*s1*(s2-1))

c norm and z are defined below

real*8 norm(10, 0:9), z(10, 0:9)

real*8 u(0:t,0:t), v(0:t, 0:t)

real*8 a(s1+2*s1*(s2-1))

real*8 tol /.0010d0/

real*8 step /0.25d0/, gnorm, svtol /-.010/

real*8 sup, lamb

real*8 inclam /0.250d0/ !increment of lambda

real*8 beglam /0.0d0/, endlam /26.50d0/ !lambda loop boundaries

common /dim/ ss1, ss2, tt, m

common /lam/ lamb

c

c norm contains the normalizing factors of our

c orthonormal basis...it should be mentioned

c that norm reads the column number followed

c by the row number. EX. norm(3,2)=.097943...

c

data norm

1 /0.8467035918146336, 0.363734032801459,

1 0.2314924993891328, 0.169764042975790,

1 0.1340248319919783, 0.110716333424303,

1 0.0943139732886407, 0.0821444530321886,

1 0.0727565, 0.0652943,

2 0.2548069316531115, 0.141480784643807,

2 0.0979431182186440, 0.074896873774668,

2 0.0606306053654783, 0.050929645210038,

2 0.0439048421817592, 0.0386916,

2 0.0344163, 0.0310582,

3 0.1812303981518046, 0.1156868087183309,

47

3 0.0848698241788109, 0.0670087279938525,

3 0.0553567583605326, 0.04715635764711681,

3 0.0410719121321879, 0.0365114,

3 0.0326505, 0.0216156,

4 0.1397490018655017, 0.09771725696665015,

4 0.0748417518750472, 0.06061205236292317,

4 0.0509220230950026, 0.04390125238130618,

4 0.0385811643092523, 0.0345026,

4 0.0464232, 0.025683,

5 0.1131271749192205, 0.0844561443625315,

5 0.0668945410268326, 0.05531508095617517,

5 0.0471382190756436, 0.04106299210306602,

5 0.0363732917388703, 0.0327873,

5 0.0345388, 0.0269494,

6 0.09462155496668334,0.07425908879717315,

6 0.06043552404622364,0.05085333508162501,

6 0.04386992118119299,0.03856519103908102,

6 0.03440199344895086,0.0311231,

6 0.0287105, 0.0220264,

7 0.08103574680160013,0.06617211487906287,

7 0.05507950477521234,0.04704165096854257,

7 0.04101718369144361,0.0363492109859799,

7 0.03263062423864986,0.0297334,

7 0.0271487, 0.0147849,

8 0.0709218,0.0595902,0.056356, 0.0439807, 0.0384854,

8 0.0438014,0.0310238,0.0283449, 0.0167437, 0.0213025,

9 0.0625654,0.0615768,0.0536715, 0.0154881, 0.0289892,

9 0.0486754,0.0295739,0.0271116, 0.0249543, 0.0245545,

1 0.0559043,0.0495773,0.0502785, 0.0383306, 0.0287506,

1 0.042403, 0.0282506,0.0205418, 0.0193991, 0.0223104/

c Z contains the zeros of the Bessel functions.

c It also reads the collumn number first and

c then the row number...z(3,2) is the third

c zero of the BesselJ(2)????????????????????????

data z

48

1 /2.40483, 5.52008, 8.65373, 11.7915, 14.9309, 18.0711,

1 21.2116, 24.3525, 27.4935, 30.6346,

2 3.83171, 7.01559, 10.1735, 13.3237, 16.4706, 19.6159,

2 22.7601, 25.9037, 29.0468, 32.1897,

3 5.13562, 8.41724, 11.6198, 14.796, 17.9598, 21.117,

3 24.2701, 27.4206, 30.5692, 33.7165,

4 6.38016, 9.76102, 13.0152, 16.2235, 19.4094, 22.5827,

4 25.7482, 28.9084, 32.0649, 35.2187,

5 7.58834243450397, 11.0647094886081, 14.3725366716403,

5 17.615966049812, 20.8269329569653, 24.0190195247725,

5 27.199087765982, 30.3710076671176, 33.5371377118195,

5 36.6990011287448,

6 8.77148, 12.3386, 15.7002, 18.9801, 22.2178, 25.4303,

6 28.6266, 31.8117, 34.9888, 38.1599,

7 9.93611, 13.5893, 17.0038, 20.3208, 23.5861, 26.8202,

7 30.0337, 33.233, 36.422, 39.6032,

8 11.0864, 14.8213, 18.2876, 21.6415, 24.9349, 28.1912,

8 31.4228, 34.6371, 37.8387, 41.0308,

9 12.2251, 16.0378, 19.5545, 22.9452, 26.2668, 29.5457,

9 32.7958, 36.0256, 39.2404, 42.4439,

1 13.3543, 17.2412, 20.807, 24.2339, 27.5837, 30.8854,

1 34.1544, 37.4001, 40.6286, 43.8438/

rc = 1.0d-5 !dgelss

c for dim common block

ss1 = s1

ss2 = s2

tt = t

m = s1+2*s1*(s2-1)

tm = 10 * m

maxits = 500

write(*,*) m, " modes"

49

c****************************

c BEGIN MAIN BLOCK *

c****************************

c populate the initial guess coefficients

c zero out u prior to initializing interior

do i=0, t

do j=0, t

u(i,j) = 0.0d0

end do

end do

do i=1, m

a(i) = 0.0d0

end do

c The following is a list of initial guesses

c which yielded solution to the BVP with

c s1=s2=3 and t=30

c positive sol at lam = 0.

c a(1) = 2.62d0

c a(2) = 0.36d0

c s-c e-o ccn J_1 psi_2c (slam_1 r) Cos... at lambda=0.

c a(4) = 4.20d0

c a(5) = 0.4d0

c s-c e-o J_1 psi_2c (slam_1 r) Cos ... at lam = 0

c with s1 = s2 = 6

c a(7) = 4.20d0

c a(8) = 0.4d0

c looking for psi_3c sol (J_2 (slam_1 r) Cos... at lambda = 0

a(7) = 5.69d0

a(8) = 0.34d0

50

c psi_2s

c a(10) = 4.2d0

c a(11) = 0.4d0

c p2c + p2s

c do i=0,m

c a(i) = .707 * a(i)

c end do

c lam = 14, p2c

c a(4) = 0.960d0

c s-c r-s solution

c a(2) = 7.0d0

c calling bsub to populate the basis array

c used by psi, phi, and xhi in ppc.

c z and norm (i,j): i=1,s1 is zero #, j=0,s2-1 is bes #

call bsub(ar, norm, z)

open(unit=3, file="uj.txt")

open(unit=2, file="bifj.txt")

open(unit=4, file="hess.txt")

open(unit=5, file="coff.txt")

c calculating the Fourier expansion of our basis

call fourier(a, u, ar,sup)

write(3,*) u

c

c Calculating the grad and hess and using

c Newton’s method to get soln approx.

c

51

do lamb = beglam, endlam, inclam

if (lamb .lt. endlam) then

step = 0.95d0

end if

i = 0

gnorm = 1.0d0

do while ((i .lt. maxits) .and. (gnorm .gt. tol))

i = i+1

c write(*,*) "i=", i

c write(*,*) "calling grad"

call grad(a, u, g, z, v, gnorm, ar)

c write(*,*) "G="

c write(*,*) g

c write(*,*) "calling hess"

call hess(a, u, h, z, v, ar)

c write(*,*) "H="

c write(*,*) h

do j=1,m

do k=1, m

hs(j,k) = h(j,k)

end do

end do

c

c dgelss is a routine from the lapack library which

c finds the least norm squared solun to Ax=b

c

c write(*,*) "calling dgelss"

call dgelss(m,m,1,h,m,g,m,s,rc,irank,work,tm,info)

c write(*,*) "output from dgelss="

52

c write(*,*) g

c write(*,*) "calling newt"

call newt(a, g, w, step)

c write(*,*) "output from newt"

call fourier(a, u, ar, sup)

c write(*,*) "Sup = ", sup

write(*,*) "gnorm = ", gnorm

c write(3,*) u

c write(*,10) (a(k), k=1,5)

c 10 format(5(f9.5,1x,\))

end do

write(*,*)"*********************"

write(*,*) "A="

write(*,*) a(1),a(2),a(3),a(4)

write(*,*) a(5),a(6),a(7),a(8)

write(*,*) a(9),a(10),a(11),a(12)

write(*,*) a(13),a(14),a(15)

write(*,*) "**********************"

write(*,*) lamb, sup

write(2,*) lamb, sup

write(3,*) u

write(4,*) hs

write(5,*) a

end do

write(3,*) u

close(5)

close(4)

close(3)

close(2)

53

end

c**************************

c END OF MAIN PROGRAM *

c**************************

real*8 function f(w)

c This function evaluates

c the cube of a number.

c This is the nonlinearity function

real*8 w

real*8 lamb

common /lam/ lamb

f = w**3 + lamb*w

end

c***********************************

real*8 function fp(w)

c this calculates the derivative of f(x)

real*8 w

real*8 lamb

common /lam/ lamb

fp = 3.0d0*w**2 + lamb

end

c**********************************

real*8 function integf(w)

54

c this is the primitive of f(w)

real*8 w

real*8 lamb

common /lam/ lamb

integf = 0.25d0*w**4 + (lamb/2.0d0)*w**2

end

c**********************************

integer function crondelta(i,j)

c this routine defines the Kronecker delta

integer i, j

if (i.eq.j) then

crondelta = 1

else

crondelta = 0

end if

end

c**********************************

real*8 function ppc(j, kr, kt, ar)

c this function eats j and spits out

c the appropriate basis element evaled

c at a point (kr,kt) in our grid.

integer j, j2, jb, jz

integer m, s1, s2, t

integer kr, kt

55

real*8 ar(0:s2-1, s1, 0:t)

real*8 psi, phi, xhi

common /dim/ s1, s2, t, m

if (j.le.s1) then

jb = 0

jz = j

ppc = psi(j,kr,ar)

else

if (j.le.s1+s1*(s2-1)) then

j2 = j-s1

jb = int((j2-0.5)/s1)+1

jz = j2-(jb-1)*s1

ppc = phi(jb,jz,kr,kt,ar)

else

j2 = j-s1-(s2-1)*s1

jb = int((j2-0.5)/s1)+1

jz = j2-(jb-1)*s1

ppc = xhi(jb, jz, kr, kt, ar)

end if

end if

end

c**

56

subroutine fourier(a, u, ar, sup)

c This routine calculates the Fourier expansion

c of our basis elements.

real*8 a(s1+2*s1*(s2-1))

real*8 u(0:t,0:t)

real*8 ar(0:s2-1, s1, 0:t)

real*8 sup

real*8 sum, ppc

integer i, m, s1, s2, t

integer kr, kt

common /dim/ s1, s2, t, m

c populating the interior of matrix u

sup = 0.0d0

do kr = 0, t-1

do kt = 0, t

sum = 0.0d0

do i=1, m

sum = sum + a(i) * ppc(i,kr,kt,ar)

end do

u(kr,kt) = sum

if (abs(u(kr,kt)) .gt. sup) then

sup = abs(u(kr,kt))

end if

end do

end do

end

57

c**

real*8 function lambda(j,z)

c This function eats an integer "j" and returns

c the appropriate bessel function and zero

c associated with that integer.

integer j

real*8 z(10, 0:9)

integer s1, s2,t

integer jb, jz

common /dim/ s1, s2, t, m

if (j.le.s1) then

jb = 0

jz = j

else

if (j.le.s1+s1*(s2-1)) then

j2 = j-s1

jb = int((j2-0.5)/s1)+1

jz = j2-(jb-1)*s1

else

j2 = j-s1-(s2-1)*s1

jb = int((j2-0.5)/s1)+1

jz = j2-(jb-1)*s1

end if

end if

58

lambda = z(jz, jb)

end

c**

subroutine grad(a, u, g, z, v, gnorm, ar)

c Routine which calculates the grad

c of the action functional

c critical points of this grad are

c the approx solutions

real*8 a(m)

real*8 u(0:t, 0:t)

real*8 g(m)

real*8 z(10, 0:9)

real*8 v(0:t, 0:t)

real*8 gnorm

real*8 ar(0:s2-1, s1, 0:t)

integer i, kr, kt

integer s1, s2, t, m

real*8 integrate, f, ppc, lambda

real*8 term

common /dim/ s1, s2, t, m

c Begin calculating gradient

gnorm = 0.0d0

do i=1, m

do kr=0, t

do kt=0, t

59

v(kr, kt) = ppc(i,kr,kt,ar)*f(u(kr,kt))

end do

end do

term = integrate(v)

g(i) = a(i)*lambda(i,z)**2 - term

gnorm = gnorm + g(i)**2

end do

gnorm = gnorm ** .5

end

c**

subroutine hess(a, u, h, z, v, ar)

c This routine calculates the hessian matrix

c of the action functional

real*8 a(m)

real*8 u(0:t, 0:t)

real*8 h(m,m)

real*8 z(10, 0:9)

real*8 v(0:t, 0:t)

real*8 ar(0:s2-1, s1, 0:t)

integer i, j, kr, kt

real*8 integrate, fp, ppc, lambda

integer crondelta

real*8 term

integer s1, s2, t, m

60

common /dim/ s1, s2, t, m

c Begin calculating Hessian

do i=1, m

do j=1, m

do kr=0, t

do kt=0, t

v(kr,kt) =

1 ppc(i,kr,kt,ar)*ppc(j,kr,kt,ar)*fp(u(kr,kt))

end do

end do

term = integrate(v)

h(i,j) = lambda(i,z)**2.0*crondelta(i,j) - term

end do

end do

end

c***

subroutine newt(a, b, w, step)

c This routine implements Newton’s

c method on the grad and hess "inverse"

c to calc critical points of the grad

real*8 a(m)

real*8 b(m) ! output of dgelss

real*8 w(m)

real*8 step

61

c integer i, j

integer k

integer s1, s2, t, m

common /dim/ s1, s2, t, m

c get the solution from dgelss

do k=1,m

a(k)=a(k)-step*b(k)

end do

end

c***

subroutine bsub(ar, norm, z)

real*8 ar(0:s2-1,s1,0:t)

real*8 norm(10, 0:9), z(10, 0:9)

real*8 besselj, pi /3.141592653590d0/

real*8 a1, a2, a3, a4, a5, a55, a6

integer jb,jz,kr

integer s1, s2, t, m

common /dim/ s1, s2, t, m

c do jb=0,s2-1

c do jz=1,s1

c write(*,*) norm(jz, jb)

c end do

c end do

do jb = 0, s2-1

do jz = 1, s1

do kr = 0, t

62

a1 = z(jz,jb)

a2 = float(kr)/t

a3 = a1 * a2

a4 = besselj(jb, a3)

a5 = norm(jz,jb)

a55 = sqrt(a5)

a6 = a4/a55

ar(jb, jz, kr) = a6

end do

end do

end do

end

c**********************************

real*8 function besselj(n, x)

integer n, nb, ncalc

real*8 x, b(100)

real*8 alpha

nb = n+1

alpha = 0.0d0

call RJBESL(x, alpha, nb, b, ncalc)

if (ncalc.ne.nb)then

besselj = 999

else

besselj = b(nb)

end if

end

c***

c* BesselJ(0, slam0[[j]]*r_k)

*

c***

63

double precision function psi(j, k, ar)

integer ss1, ss2, tt

real*8 ar(0:ss2-1,ss1,0:tt)

common /dim/ ss1, ss2, tt, m

integer j, k

psi = ar(0, j, k)

end

c***

c* BesselJ(i, slam_i[[j]]*r_k)*cos(2 pi i theta) *

c***

double precision function phi(jb, jz, kr, kt, ar)

integer jb, jz, kr, kt

real*8 ar(0:ss2-1,ss1,0:tt)

integer ss1, ss2, tt

common /dim/ ss1, ss2, tt, m

real*8 pi /3.14159265359/, theta

theta = float(jb) * 2.0 * pi * float(kt) / float(tt)

phi = ar(jb, jz, kr) * cos(theta)

end

c***

c* BesselJ(i, slam_i[[j]]*r_k)*sin(2 pi i theta) *

c***

double precision function xhi(jb, jz, kr, kt, ar)

integer jb, jz, kr, kt

real*8 ar(0:ss2-1,ss1,0:tt)

integer ss1, ss2, tt

common /dim/ ss1, ss2, tt, m

64

real*8 pi /3.14159265359/, theta

theta = float(jb) * 2.0 * pi * float(kt) / float(tt)

xhi = ar(jb, jz, kr) * sin(theta)

end

c**********************************

c integration *

c**********************************

real*8 function integrate(v)

integer ss1, ss2, tt

common /dim/ ss1, ss2, tt, m

integer i, j, n

integer ii, jj

real*8 r, dr, dt

real*8 uu, sum, rp1, rm1

real*8 v(0:tt, 0:tt)

real*8 pi /3.14159265359/

n=tt

dr = 1.0 / real(n)

dt = 2.0 * pi / real(n)

sum = 0.0

do i=1, n/2

ii = 2*i - 1

do j=1, n/2

jj= 2*j - 1

65

r = real(ii) * dr

rp1 = real(ii+1) * dr

rm1 = real(ii-1) * dr

uu = (v(ii-1,jj-1) * rm1 + v(ii+1,jj+1) * rp1 +

1 v(ii+1,jj-1) * rp1 + v(ii-1,jj+1) * rm1) +

2 4 * (v(ii,jj-1) * r + v(ii,jj+1) * r +

3 v(ii+1,jj) * rp1 + v(ii-1,jj) * rm1) +

4 16 * v(ii,jj) * r

sum = sum + uu

end do

end do

sum = sum * dr * dt / 9

integrate = sum

end

c**********************************

Appendix D

Mathemactica Code: ODE
bifurcation diagram

This is the code we used to generate the bifurcation diagram for the ODE
case. We use Euler’s method for higher order systems to solve our ODE
problem.

Clear[a,b,x,y,n,i,alist,y0,yp0,yi1,yi2,f,dx];

Clear[difc,endc,c]; (* parameters for the initial value of the slope loop*)

Clear[diflambda,endlambda,lambda]; (* parameters for the lambda loop *)

f[y_,lambda_]:=-(lambda*y+y^3); (* system being solved *)

n = 500; (* number of divisions for the interval [a,b] *)

a = 0;

b = Pi;

dx = (b-a)/n;

difc = .1; (* increment of c. c is the value of y’(a) *)

endc = 25; (* upper limit for c *)

diflambda = .25; (* increment of lambda *)

endlambda = 25; (* upper limit for lambda *)

alist = {}; (* creates a list *)

(* begin looking for values of lambda for which y(b) =0 *)

(* when one such value is found write it to alist as (lambda, c) *)

66

67

For[lambda=0, lambda<=endlambda, lambda+=diflambda,

For[c=difc, c<=endc, c+=difc,

yp0 = c;

yi2 = y0 //N;

yi1 = y0 +dx *yp0 //N;

For[i=2, i<=n, i++,

x = a + i * dx;

y = (dx^2)*(f[yi1,lambda]+2*yi1-yi2 //N;

temp = yi1;

yi1 = y;

yi2 = temp;

];

ysign = Sign[y];

If[c==difc, test = ysign, Null];

If[test==ysign,Null,

test = ysign;

Print["c=", c, " and lambda=", lambda];

alist = Append[alist, {lambda, c}];

];

];

];

ListPlot[alist]; (* graph the bifurcation diagram *)

Appendix E

Mathematica code: Solution
plots

This code is used to plot the solutions from our FORTRAN program. After
writing the solutions to a file in FORTRAN we read that file in Mathematica
and obtain a parametric plot for the solution after changes the values in the
file from rectangular to polar.

n = 30; (* number of grid points *)

fmt = Table[Table[Number, {i,0,n}],{j,0,n}]; (* formats the soluton file *)

alist = ReadList["file-path", fmt]; (* reads the contents of the file *)

c = alist[[3]]; (* choose one set of solution coefficients *)

ii[r_,t_] := Floor[r*n]+1; (* generates a number between 1 and 31 *)

jj[r_,t_] := Floor[t*n/(2 Pi)] +1 (* same as above *)

f[r_,t_] := c[[jj[r,t], ii[r,t]]];

ParametricPlot3D[{r Cos[t], r Sin[t], f[r,t]}, {r,0,1}, {t, 0, 2 Pi}];

68

