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ABSTRACT

NUMERICAL METHODS FOR DIFFUSIVE-CONVECTIVE
EQUATIONS
WITH APPLICATIONS TO THE FLOW OF BACTERIA

IN WATERWAYS

Jeffrey T. Crabill

Water quality is one of the more important health issues facing
the human race. Water resources must be kept clean and pure so
that a clean drinking water supply can be insured for years to come.
Poliutants in water create an unpleasant environment. A team of
microbioiogists at Northern Arizona University sampled Oak Creek
Canyon, AZ, for fecal coliform bacteria. This group of organisms
serves as an indicator for more pathogenic organisms.

Diffusive-convective partial differential equations can be used
to model the flow of bacteria through waterways such as Oak Creek
Canyon, AZ. In this thesis, we derive a family of mathematical models
using diffusive-convective equations. We present algorithms for

approximating solutions to these equations as well as examine the



usefulness and effectiveness of the equations in modeling the
situation in Oak Creek Canyon. We examine the effect of initial
conditions, boundary conditions, source terms, and differing
magnitudes of diffusion and convection on the solution of the diffusive-
convective equations.

Finally, we present various mathematical models that simulate
the major features of the contamination data. We seek to find
solutions whose graphs closely resemble the actual data and hope to
gain insight about the processes that govern the contaminants in Oak
Creek Canyon. In general, we find models that simulate the major
features of the Oak Creek data relatively well and aithough the
numbers generated are not exactly those collected in the field, the
shape of the solution is similar to the actual data. Further study can
be done to improve both the values given by the mathematical models

as well as the collection of the actual data in the field.
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INTRODUCTION

Water quality is an issue that affects people throughout the world. Clean water
is necessary to support life, and therefore it is essential that we maintain a clean
and pure water supply for future generations. As such, it is necessary to monitor
water quality frequently in order fo detect signs of potential problems. Waterways,
such as Oak Creek Canyon in Arizona, attract use because of their recreational
and aesthetic values. These waters must conform to strict government standards
to maintain a leve! of safety for all who use the water.

There are many potential pathogens, such as giardia and polio virus, that can
be found in natural waters. The presence of these pathogens can be indicated by
the presence of fecal coliform bacteria. Fecal coliforms serve as “indicator
organisms,” i.e., organisms that are abundant when the pathogen is abundant and
that are absent when pathogens are not present. The goal of a study conducted
by microbiologists at Northern Arizona University was tb m‘onitor the fecal coliform
levels in Oak Creek Canyon from Pine Flats Campground (upstream) to

Grasshopper Point (downstream) [C].



It is our goal to simulate the features of the Oak Creek water quality data
{Figure 1) with mathematical models; we make no claim, however, that our
numbers are realistic, e.g., of appropriate scale. Also, it is difficult to compare our
numbers to those in the Oak Creek study because the actual data is discrete and
widely and unevenly spaced throughout the study area. Despite these difficulties,
our final best model has a solution whose graph portrays the major features of the
actual data. We hope that the model will provide insight into the processes that
govern the presence of fecal coliforms in the creek. The effects of various
amounts of diffusion and convection, types of source terms, boundary values, and
initial values on the graphs of the solutions will be shown and explained. Once
quantified, scientists may be able to better understand and predict levels of fecal
contamination in Oak Creek with more success.

The processes mentioned above have an effect on the distribution of the
contamination in waterways, such as Oak Creek. This distribution will be
approximated by the solution of a diffusive-convection equation. Consider a
material suspended in a fluid medium. Diffusion of the material is the movement
down the concentration gradient and convection (referred to as advection in some
texts) is the movement of the material due to the flow of the medium. The source
terms will indicate when and where contamination is added or removed from the
system. Finally, boundary values and initial conditions govern the behavior of the
solution at the spatial limits of the study area (upstream and downstream) and at

the beginning of a given year.



We will make use of diffusive-convective partial differential equations (PDEs)
in our modeling applications. These equations have been shown in the literature
to be appropriate for modeling water quality and bacterial movement [J}; [S-1].
Experimental data on the dispersal rate of a specific fecal coliform, Escherichia
coli, have been collected in a faboratory but may not be suitable to model the
naturat situation. To the best of our knowledge, data on the dispersal rate of fecal
coliforms have not been collected in the field. Despite this, one can experiment
with vario'us choices of amounts of diffusion and convection, types of boundary
conditions, and source terms to develop suitable models. Each experimental
result can then be compared to features present in the Oak Creek data.

In Chapter One of this work, we will describe, mathematically, a family of
diffusive-convective PDEs and consider the solution to a simpie special case. The
simple case is considered to introduce and exhibit some of the properties of the
solutions to our family of PDEs. In more complex cases, we will consider the
effects of both diffusion and convection, aé well as three types of boundary
conditions and the addition of forcing terms. The existence, unigueness, and
continuous dependence on parameters of solutions to such PDEs will be
considered in Chapter Two. With a well-posed PDE in mind, we present three
numerical techniques in Chapter Three which can be used to approximate
solutions. Graphing and comparing these approximate solutions to availabie Oak
Creek fecal contamination data will guide us in our selection of forcing terms,

boundary conditions, and magnitudes of diffusion and convection, all of which are



the focus of Chapter Four. Future research directions permitting refinements to
our models will be discussed in Chapter Five as well as other methods for

approximating solutions of diffusive-convective PDEs.



CHAPTER ONE

THE GENERAL DIFFUSIVE-CONVECTIVE
EQUATION

In this chapter, we present and describe a family of diffusive-convective PDEs.
We shall use these equations in our modeling applications in Chapter Four. in the
modeling application, we shall consider the domain, Q = (0,1) x (0, 1), where time
is the first coordinate and space is the second coordinate. For our purposes, time
t = () represents any arbitrary point in time with time 7 = 1 representing exactly one
year jater. Similarly, x = 0 represents an arbitrary point in space and x = |
represents an arbitrary point downstream of the initial point.

Let u be a real-valued function of 1 (time) and x (space). We consider the

general one-dimensional diffusive-convective equation
u(t,x) = Qun(t,x) — Pu(t,x) +ft,x) a>0, 20, e (1.1
with initial condition |
u(0,x) = gx) x<«{0,1] (1.2)

and boundary conditions



u(t,0) =0 tei0,1] (1.3)
au(t, D+ (1 —a)u,(t, 1) =0  ae[0,1], re[0,1], (1.4)

where the coefficients «® and p give the magnitude of the diffusion and
convection, respectively, and the function 7(r,x) is a source term. For our
purposes, we shali consider Zero Dirichiet conditions at x = 0, i.e., equation (1.3).
We assume equation (1.3) for the modeling application, but the methods to be
described in the thesis can be modified to take into account other boundary
conditions at x = 0. We say that a Zero Dirichlet condition exists atx = 1 ifa = 1,
and we say that a Zero Neumann condition exists if « = 0. Otherwise, for

a < (0,1), we say that a Robin condition exists. Throughout the paper, in
particular Chapter Four, we will discuss the appropriateness of each of the above
mentioned boundary conditions, as weil as the “best’ choice of boundary
conditions for our modeling application.

We first consider the simplest case of equation (1.1) where a closed-form
solution is easily obtainable. Several numerical approximations will be compared
with the actual solution to demonstrate the capabilities of the numerical algorithms
presented in Chapter Three. This simple experiment will also serve to introduce
the diffusive nature of equation (1.1). Leta=1,a =05, =0, f(t,.x) = 0on Q,
and g(x) = sin(xx). (The value of ¢ was chosen for comparison purposes later in
the chapter.) This is a simple case of the Heat Equation and models pure
diffusion, i.e., the movement of a substance down a concentration gradient. It can
also be viewed as a mode! of the distribution of heat within a rod over a given
period of time [Z]. If the ends of the rod are kept at a constant temperature (say

6



0° C), then a Zero Dirichlet conditions exists at both ends of the rod. Using basic
calculus, it follows that the Heat Equation, with Zero Dirichiet boundary conditions

has solution

ult,x) = e 5 gin(zx). (1.5)

The graph of equation (1.5), shown in Figure 2, shows the diffusive nature of u(z,x)
on Q. When ¢ = 0, there is an initial “temperature,” which decreases ast — |. As
t increases without bound, the solution approaches the zero function. This is just
as one would suspect since the temperature of the rod would decrease over time
as heat escapes the ends of the rod.

We could also observe the diffusive nature of the Heat Equation in the case of
a one-dimensional “lake,” in which material does not enter or leave, i.e., a closed
system. In this situation, Zero Neumann boundary conditions are appropriate at
both ends of the lake, since no inflow or outflow is assumed. If there were some
initial poliution distribution in the lake, then we could make use of the Heat
Equation in the same manner as above. Instead, we shall consider the solution to
the Heat Equation with mixed boundary conditions, i.e., Dirichlet at x = 0 and
Neumann at x = |, since we are interested in systems such as Oak Creek where
these mixed boundary conditions are more appropriate. In this case, the solution,
u(t,x) (Figure 3) would represent the amount of poliution at the point (1,x) € Q.
The level of contamination near the boundary at x = 1 is nearly constant and the
contaminant is distributed quite differently than in the Dirichlet case. The material

has spread out, rather than having been removed atx = 1.



Convection is the mass transport of material caused by the flow of the medium
in which the material is suspended. Allowing § > 0 changes equation (1.1) to a
diffusive-convective equation. The additional term will have the effect of pushing
the material forward in space. The amount of material is reduced at points in
where u.(1,x) > 0 (upstream in the case of Oak Creek) and the material is
increased where u,(f,x) < 0 (downstream in the case of Oak Creek). Hence, we
subtract the convection term to reflect this situation. Let us consider the following

simple diffusive-convective equation:
w,(,x) = 0.5un(t,x) — ux(t,x), (1.6)

with Zero Dirichlet conditions and the initial function g(x) = sin(nx). The effects of
the convection term can be seen in the skew of the solution surface shown in
Figure 4. The solution without convection was shown in Figure 2. Comparing
these two surfaces gives a clear view of the effect of convection on the solution

surface. There is a distinct pull toward x = 1 in the example with convection.



CHAPTER TWO

WELL-POSEDNESS OF THE PROBLEM

In this chapter, we consider the weli-posedness of the family of
diffusive-convective equations that we will use in our modeling application. This
involves both the existence and uniqueness of solutions in addition to continuous
dependence on initial data, boundary data, parameters and source terms. First,
we establish the existence and uniqueness of the solution, then we will give
justification for the continuous dependence on the data.

Such well-posed problems are necessary if we are to have any faith in the
results of our numerical algorithms. For the PDEs of interest in our modeling
application, it may be difficult or impossible to find a closed-form solution. Also, it
is possible that future models, not included in this thesis, will include nonlinear
terms in the source term of equation (1.1). In many cases, closed-form solutions
do not exist and we shall therefore use numerical approximations of the solutions
to the PDEs. (Note that the methods of this thesis work in cases where

closed-form solutions do exist.)



We will show that a simple case of equation (1.1) has a unigue solution and

then generalize that result to other cases of equation (1.1).

in this chapter, we present an adaptation of a proof by Berg and McGregor [B]
in which the existence and uniqueness of the solution to the Heat Equation is
exhibited. We first state the following three lemmas. Proofs of these facts can be
found in the text [B]. The first lemma gives eigenvalues and eigenfunctions for a

simple ordinary differential equation.
L.emma 21 Let g be a function of x. Forx « (0,1), the ordinary differential
equation

P+ Ap =0

with boundary conditions lim,.o- @(x) = lim,.;- (x) = 0 has eigenvalues

An = (nr)? and eigenfunctions ¢, = sin(nnx), for each natural number, n.

Next, we change pace a bit and exhibit the familiar Fourier series

representation of a function.

Lemma 2.2 ifp and p' are continuous functions in x € [0, 1] such that

p0) =p(1) =0, then

plxy = Z by sin(nrx)

=]

where

10



by =2 I; plx)sin{nrx).

Finally, we present a technical lemma that will be important in the proof the

major result of this chapter.

Lemma 23 If 9, ¢', w, and y'are continuous functions in x € [0,1], and ¢" and

y'" are continuous functions in x € (0,1), then Green's Formula,

1
J lov" - vo'lds = [ov' - wo'L,

holds, where the integral on the left is improper. In addition, if either 9" or y" is

continuous on [0,1], then

j; oy dx = _f; vo'dx.

The major result of existence and uniqueness of solutions can now be stated.

Theorem 2.4 Suppose that there is a function u(t,x) such that the following hold.

() u, u, uy, and uy, are defined and continuous for (¢,x) € Q and
w(t,x) = ug(tx)  (hx) € Q @2.1)
and further, u,(t,x) is bounded wherix € (0,1} and t € (t,.1;) for each
0<n <<l
(N Himigege uft, x), Yimye - u(f,x), Hmeg u,(2,x), and Yim,.i- u(t,x) exist for alf
re (0,1).
(ili) For every piecewise continuous function w on [0, 1}, there exists a

11



plecewise continuous function, f(x), such that

lim [ ) ws) e = [ A0 i) ae 22)

Then there is only one such function, u(t,x), and it is given by

u(t,x) = an e~ sin(nmx) (2.3)

=1

where
by = 2j; f(x) sin(nrx) d, (2.4)

xe (0,1),andr < (0,1).

Before giving the proof, we note that it can be seen that the function £in (iii) is
the initial condition x(0,x).
Proof. Suppose that u(z,x) is a solution to (2.1) and satisfies (i), (i), and (iii). By
assumption, for each r > 0, u(t,x) and u,(,x) are continuous functions on Q.
Lemma 2.2 gives u(t,x) = 3~ B.(t) sin(anx) with x € (0,1), where
Bu(f) = 2[; u(t,x) sin(rrx) dx. Now B,(¢) is continuous and differentiable, thus

differentiation yields

4B =2 [ w(ex) sin(nmx) dx (2.5)
dr " Y A5 ’ )

12



From (2 !), we have
Bn(t) = 2;[1 llxx(f x) Sin(n:'rx) dx (2 6)
dar 0 ’ ) '

Consequently, the functions u(t,x) and sin{nrx) satisfy the hypotheses of Lemma

2.3, and hence

4p.y=2 ; u(t,x) nysm(mx) dx
= 20m)? | ; u(t,x) sin(nm) dx. (2.7)
So, B,(t) satisfies thé ordinary differential equation
B(t) + (nm)?Bu(f) = 0 (2.8)
which has solution
B,(f) = bpe ™ 1> 0 (2.9)

where b, is a constant. Thus by substitution, we may obtain the following {unique)

representation:

u(t,x) = Y bue ™ sin(nrx)  (6x) € Q. (2.10)

L

Finally, since lim..o+ B,(t) = b,, putting w(x) = sin(nzx) (see iii) gives

;
lim B.{r) = lim 2! u(t,x)sin{nnx) dx
107 0" 0

=2 j; Fx) sin(nrx) dx. (2.11)

Thus u(t,x) is given by (2.3) and (2.4) and hence exists for (1,x) € Q. The

uniqueness of the solution is immediate. Suppose that there are two solutions to

13



(2.1). Each, then, is equal to the infinite sum in (2.10) and are therefore equal to
each other. |

To complete the well-posedness argument in a more general setting, we note
that our family of diffusive-convective PDEs depends continuously on the initial
and boundary data [Y].

The above proof can be modified to account for other boundary conditions.
The second hypothesis requires only that the various limits at the boundaries
exist, therefore both Neumann and Robin conditions also would give unique
solutions to the PDE. In addition, these problems are well-posed [Y].

For more complicated problems, such as those including convection and/or
source terms, the literature tends to favor another approach, which we introduce
here for completeness. This approach, suggested by Lieberman uses the notion

of Héider continuity [L]. Let Z be a linear operator defined by
Lu = —u; + a¥Dyu + b'Diu + cu,

where o is a matrix-valued function, #' is a vector-valued function, cis a
scalar-valued function, and D, and D are the first and second differential
operators {with respect to space.) It can be shown that there is a unique function,

u, satisfying

u=¢ onpPQ

where PQ) is the parabolic boundary of ), if the function fis Hélder continuous. In

our Oak Creek setting, the parabolic boundary is a subset of  which consists of

14



the lines 7 = 0,7 = |, and x = 0. For the purposes of this work, we shall only
consider functions fsuch that f e C. It can then be shown that such f'are Holder
continuous {L].

Hence, any diffusive-convective PDE with appropriately defined boundary

conditions has a unique solution on Q. [Y]

15



CHAPTER THREE

NUMERICAL METHODS

We shall now consider three different numerical methods used to solve
equation (1.1). These methods are able to handie all of the types of initial and
boundary conditions that we will be using in our modeling application, as well as
more general terms that may involve nonlinear functions. We will develop each
method and then apply it to a specific case of equation (1.1). Finally, we will
compare the results of the methods, both to each other and against the known
solutions (where available.)

In this chapter, we first consider numerical methods to solve the Heat Equation

with Zero Dirichlet boundary conditions as given below.

ut,x) = unlt,x) (Lx) e 3.1
u(0,x) = glx) xe[0,1] '

u(t,0) =0 te{01)

w(t,1)=0 te(0,1).

One should note that although the pair (+,x) € Q, these procedures can also

be extended to the domain (0, 7T) x (0,1) {See Section 4.4). We also define some

16



useful notation for the forthcoming sections. Let the quantities ¢; and x; be L. and

i¥

JF' respectively, and define uli jl= u(f.,x;).

3.1 The Explicit Method of Numerical Approximation
The Explicit Method is a well-known and well-studied method of approximation

that uses a simple forward-difference approximation to the PDE to approximate a

solution [B-F]. The algorithm is as follows:

Choose Ar = - and Ax = L such that -4 < L
M N (Ax)? 7 2

. The latter, well-known,
condition is due to Courant, Friederics, and Levy (“C.F.L." condition). This is
necessary for the convergence of the method [B-FJ; [Il. Hence the Explicit Method
is conditionally stable.

The set ) is thus divided into a grid of A x N rectangles. The PDE (3.1) can

be approximated by

[.+}‘n.]_“ [.e ] _ {.vl+ 1]—2 [‘s -]“*“ [-11_1]
uli it uit,} _ ui,} (l‘;;)jz H\ i} , (3,!1)

for ie {0,},.. . M-1},
je {l.2,...N-1}.

Note that the left hand side of equation (3.1.1) is a two-point forward time
difference approximating u, and that the right hand side of equation (3.1.1) is a
three-point central space difference that approximates .. [B-F]. At any given time

step, 7, alt quantities in equation (3.1.1) are known except for u[i + 1,/]. Solving for

uli + 1,7] yields

17



uli+ 1,/]= ?z%%f[uﬁJ+‘ﬂ—2uUJ}Hdﬂj—-H]-+uUJL (3.1.2)

for ie {01 M-1}
je {12, N=1}

Equation (3.1.2) suggests an iterative method for solving the PDE explicitly. A
program to implement this algorithm was written in C and can be found in
Appendix 1. Let us first test the program on the problem given in equation (3.1)

with the fol[owing definition of g(x):
g(x) = sin(nx). (3.1.3)
The closed-form solution to this problem is given by
u(t,x) = e sin(mx). (3.1.4)

Table 1 contains the results of executions of the above algorithm on this example
for the following pairs of A and N: (5000, 50), (20000, 100), and (2000000, 1000).
The method provides very good approximations to the actual solution that improve
as the number of time and space steps increase. For the purposes of this work,
however, the pair (5000, 50) will be acceptable. In this simplest case, the error
associated with this method with this choice of M and N is at most 3 x 107; a ;:alue
which hardly has any effect on the graph. As a consequence of the well-posed-
ness of the problem, we are confident that similar, adequately small errors will be
observed in the execution of the algorithm on more complex problems. In
addition, other examples were run with finer time and space grids to determine if
this would have a significant effect on the shape of the graphs. The graphs of the

resultant numerical approximations were identical and the execution required

18



more time. Therefore, we will continue to use the pair (5000, 50) since the graphs
are of primary interest.

The iteration described in (3.1.2) can be modified to handle other boundary
conditions, as well as the addition of forcing terms, convection terms, and others
terms that may be necessary for a model. Let us now consider the more general

problem stated in (1.1) through (1.4). This can be approximated by

u[i+1,']—u[', } — ['sj+1]"2 [J] + [lsf—l]
oulb] _ g xl (2;)2 u (3.1.5)

B B u[f,j + gx"‘" u{izﬂ +f(f,-,)€j)

for i€ {01, M-1},
.j & {]129"'9N'— 1}3

which, after solving for u[i + 1,/], vields

Wi+ 1,7] = o? (Af)? [ij+ 1] =2uli) +ulij—11] +ulij]  (3.1.6)

— BRL iy + 1] = ulij]] + fltix) At
for i€ {09 ]$"'9M..‘..l}:
je{1,2,..,N-1}.

Note that in (3.1.5), u, is approximated with a two-point forward difference [B-F].
For each i, the approximations for «[i, N - 2} and u[i,N — 1] are used to
approximate [/, N] as per the Robin condition, in the following manner. For each

ie{1,2,.., M}, approximate (1.4) with

aufi,N] + (1 - a) MaN =21 = Bli N - H +3ultN] _ (3.1.7)

Solving for u{i, V] yields

19



Wi N] = ({a - 1)u[,',N2;§)]C -_r ;16(11+—3a) uli, N=1]) , (3.1.8)

for each i. Note that in (3.1.7), u,(i, N) is approximated with a three-point
backwards difference [B-F]. To the best of our knowledge, this approach to
approximating the solution near the boundary x = 1 is new, as we have not seen
this method used in the literature that we have reviewed.

The algorithm for approximating the solution to a PDE of the general form (1.1)
can then be implemented. For each i, apply (3.1.8) forj € {1,2,..N—1}. Then,
for each i, u[i, N] can be approximated with (3.1.8). Refer to Appendix 1 for the
computer code that implements this algorithm.

Since this algorithm is easy to code and the parameters are easy fo modify
within the code, we shalf use the Explicit Method for the modeling applications in

Chapter 4.

3.2 The Implicit Method of Numerical Approximation

Equation (3.1.1) is only one of several ways to approximate numerically the
Dirichlet problem in equation (3.1). For completeness, we present a second way
to approximate equation {3.1) that gives a system of linear equations in N~ 1
‘unknowns, We modify equation (3.1.1) by approximating the right hand side with

future times rather than present times. The new approximation is

uli+ L7l —ufiy]  uli+1lj— 17— 2uli+ 1,77+ ufi+ 1,7+ 1]
At B (Ax)?
for e {0,1,. . M—-1},
je{,2,..,N-1}.

(3.2.1)

20



At
(Ax)t’

Lettingp = equation (3.2.1) simplifies to

—puli+ 1,j= 11+ Q@p+Dui+ 1,j] -~ puli+ 1Lj+ 1] = ulij], (3.2.2)
Jor i€ {01, M—1},
je {12, ,N-1},

which gives a system of N — | linear equations. The resulting system can be

written as
Aw=v (3.2.3)
where
w = (ufi + 1j])m (3.2.4)
v = (u[i,/ (3.2.5)
and
24t —p 0O o
-p 2p+1 -p 0 .. ..
A= 0 -p 2p+1 —p o .
0 0
P
0 0 -p 2p+1

Note that A is row equivalent to the identity matrix and therefore invertible.
We now define some useful notation. Let Au[i + 1,+] represent matrix
multiplication of A and the column vector u[i + 1,)= (ufi + 1,/])}5".

The algorithm is as follows: Choose M and N. Initialize the vector u with

u[0./1= g(fw), where #[0,7] is the /" component of «, for eachj = {1.2,....N}.
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Then, foreach i e {1,2,...,M}, solve system (3.2.3) with a tridiagonal solver (the
computer code that implements the algorithm to solve a tridiagonal system can be
found in Appendix 2). After each implementation of the tridiagonal solver, u[i, )
will be overwritten with u[i + 1,+]. The discretized approximation to the solution at
t = 1 will be given in the final vector, «[M,+]. The results of the execution of this
algorithm on equation (3.1) with initial condition (3.1.3) can be found in Table 2.
Refer to Appendix 3 for the computer code that implements the Implicit Method.
The Implicit Method described here can also be modified to involve other

boundary conditions and forcing terms. For this paper, we shall use the Explicit
Method for more complicated problems (e.g., problems with forcing terms) due to

the extreme ease of the computer code for that method.

3.3 The Crank-Nicolson Method of Numerical Approximation
Again, for completeness, we present a third numerical approximation
algorithm. If we change the approximation of the second space derivativé slightly,
we can modify the Implicit method to obtain the so-called Crank-Nicolson method.
An average of the approximations to u.. found in equations (3.1.1) and (3.2.1) is

used to obtain the following approximation to the Dirichlet problem in equation

(3.4):
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uli + 1,71 —ufif] ulij + 1}~ 2uli,j] +uli,j- 1]

=Ll
At 2 (A‘x‘)2
(3.3.1)
i+ 1,j— 1] = 2uli+ 1) +uli+ 17+ 1]
+ - ],
(Ax)?
for i€ {0,1,. M- 1},
je{1.2,.,N=1}.
After solving for «[/ + 1,/], {3.3.1) can be written in the matrix form

Aw = By, (3.3.2)

with w and v defined in equations {3.2.4) and (3.2.5), respectively. The matrices A

and B are given by

14p :22 0 v o D
P g
~ 0 2L ogep EoL
A= 2 £ (3.3.3)
0 e e e O
-0
2.
0 0 ;;3— P+p
and
1-p % 0 .0
él J—p -g— 0 e o
0 2 y_p 2 . ..
B - 2 P2 (3.3.4)
0 .0
2
)
0 0 % 1-p
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Like the Implicit method, described in the previous section, the matrix A has
tridiagonal form and we can use the same tridiagona! solver implemented
previously to iterate the algorithm in equation (3.3.2). One must perform the
matrix multiplication in the right hand side of equation (3.3.2) and then the process

is identical to the Implicit method described above. The C code implementing this

algorithm can be found in Appendix 4. Again, notice that A is invertible.

3.4 Stability and Error of the Three Algorithms

To ensure accuracy for modeling purposes, we must be sure that the three
iterative methods described above are stable and hence converge. There has
been extensive study on the stability of the Explicit, Implicit, and Crank-Nicolson
algorithms and we shall briefly outline the requirements for stability of the
algorithms here [B-F}; {i].

As already mentioned in section 3.1, the Explicit Method must satisfy the

“C.F.L" condition, i.e.,

A
(axy? ~

a (3.4.1)

L
2
This method is said to be conditionally stable. For a detailed explanation and
proof, see [B-F} and [l], respectively. In fact, the methods are very similar to the
following argument for the stability of the Implicit Method.

The Implicit Method has an important advantage over the Explicit Method. It is

unconditionally stable. This could therefore require less execution time, since the
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values of M and N can be smaller than for the Explicit Method. We have found,
however, that the Explicit Method with the pair (5000, 50) is generally quicker than
the Implicit Method.

To give the reader a feel for a possible treatment of the issue of stabiiity using
numerical analysis, we present justification for the stability of the Implicit Method.
For stability, the matrix A must be such that the spectral radius of its inverse, ie.,
p(A™"), is bounded above by 1 [B-F]. Recall that for any square matrix M,

p(M) =max; jw,|, where o, is an eigenvalue of M. The eigenvalues of A are
- inf L.
A =1 +4p(sm ZN))

foreach/ e {1,2,..,N-1}. Since p > 0, we have that each 4; > 1. Define

w; = 75— The eigenvalues of A™! are the w; and w; < 1 foreachi e {1,2,..,N-1}.

Hence p(A™') < 1, and the method is stable, independent of the values of Ar and
Ax. Using this method, we are no longer bound to the restrictions imposed on the
Explicit Method by the “C.F.L" condition. Refer to [B-F] for a more detailed
treatment of the stability of the implicit Method.

Finally, it can be shown that the Crank-Nicolson Method is also unconditionally
stable. The details may be found in Isaacson and Keller [I]. The results in Table 3
show the much improved accuracy of the Crank-Nicolson Method over the Implicit
Method in the case of M = N = 5000; however, time of execution was significantly

greater.
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data. More complex observations may be incorporated in later models.

it can be argued that single-celled organisms have random or pseudo-random
movement [E-K]. Edelstein-Keshet (1987) states, however, that the organisms
could be modeled similarly to diffusion at the population level. One couid then use
equation (1.1) to model the dispersion of single-celled organisms, such as fecal
coliform bacteria.

Diffusive equations have been used to model the dispersal of bacteria. A
simple example is the application of the Heat Equation to the dispersion of
Pseudomonis flucrescens by Segal et al. [S-ll]. Segal calculated, from
experimental observations, a dispersal rate of P. fluorescens of 0.2 cm?h™'. The
dispersal rate for E. coliis 0.03cm?*h™', suggesting that, in a waterway such as Oak
Creek, the movement of the bacteria can be attributed to both convection and
diffusion [S-1l]. These numbers are mentioned solely to demonstrate that diffusion
does have an effect on the presence of fecal coliforms in the creek. We will not,
however, try to incorporate these values into our models. One must be cautious
with the values and with the units attached to them. The solutions to the
mathematical models in this work give numbers that need scaling before any units
can be attached. |

There are several other characteristics of the data that we will consider. These
are (a) the peak of the contamination at the start and end of the summer season
near Slide Rock State Park, (b) the periodic nature of the contamination in time,

and (c) the outflow of contaminants beyond the lower boundary of the study area.
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The inclusion of an appropriate source ferm is necessary to consider these
factors. Source terms could also take into account natural phenomena such as
spillage of waste, reproduction, and predation.

Note that the solutions to all PDE models to follow were approximated using
the Explicit Method with M = 50 and N = 5,000, given the fast execution time and

the simplicity of the C code that implements this method.

4.2 Simple Empirical Models
We begin with a stream that is free of contamination at the upstream and
downstream boundaries and that has relatively little flow. In this case, we shall
assume Zero Dirichlet boundary conditions both upstream and downstream and
no convection. We consider a source term that is periodic in time and has a
maximum value at (0.5,0.5) € Q, in order to satisfy factors (a), (b}, and (c) above.
Consider the function
Flx) = (1 —cos(2me)) e 057, (4.2.1)
as the source term. The data suggests that an initial condition reflecting no
contamination at the first of the year is appropriate, so we will define
glx) = 0. (4.2.2)

An approximation to the solution of

U = U +f(4,X), (4.2.3)
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with Zero Dirichlet boundary conditions and initial function g(x) is shown in Figure
5. Scaling of the contamination axis aside, this solution surface more closely
resembles a smooth approximation to the data in Figure 1 than any of the graphs
we have thus far obtained. [f we then consider a running stream, the effects of
convection can be seen in Figure 6, which shows an approximation to the solution

of
U (£,x) = uxlt,x) — u(t,x) + f(t,x). (4.2.4)

Thus far, our empirical modeling techniques have generated PDE models that
are not unreasonable. The models (4.2.3) and (4.2.4) are the most reasonable so
far. These models give solution surfaces that vanish at ¢ = 0, peak at (0.5,0.5),
and vanish at 1 = 1. Nonetheless, we can take the next step and investigate the
effects of other boundary conditions as well as other source terms.

A (nearly) Zero Dirichiet boundary condition seems appropriate at x = 0 since
the contamination upstream in Oak Creek has been observed to be very low [C].
We may, however, consider a Zero Neumann conditionatx = 1. Thisisto
assume that there is no change in contamination downstream. Numerical
approximations of solutions to (4.2.3) and (4.2 .4), with these boundary conditions,
are shown in Figures 7 and 8, respectively. The interesting aspect of these
surfaces is at x = 1. The Zero Neumann condition yields an approximate solution
that is nearly constant near the boundary x = 1, which resembles the graphs in
Figure 1. There were nonzero measurements taken downstream that would tend

to favor this boundary condition over the Zero Dirichlet condition.
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It is therefore reasonable to consider the effect of the Robin condition at x = 1.
The Robin condition (1.4) gives an intermediate boundary condition that may be
usefu! in the modeling process. The parameter a € [0, 1] gives a measure of "how
Dirichlet” or “how Neumann” the model is. Consider the simple
diffusive-convective equations (4.2.3) and (4.2.4) with a Robin condition atx = 1
with a = 0.5. The approximations to the solutions are shown in Figures 9 and 10,

respectively.

4.3 More Complex Models

Section 4.2 detailed the effect of each part of the PDE model, i.e., boundary
conditions, source terms, etc., individually. In this section, we will take
combinations of the above in an attempt to obtain a model whose solution more
closely resembles the Oak Creek data.

Thus far, the models have shown that the peak of the contamination has been
isolated to one point along the creek in the middle of the year. This may not be
satisfactory as Figure 1 shows several peaks throughout the summer near Slide
Rock and extending as far as Grasshopper Point in 1998. Let us consider

equation (4.2.4) with a multi-peak source term such as
Flt.x) = (1 — cos(2mn)) (eB03" 4 30077 (4.3.1)

The coefficient of the second exponential increases the effect of the source near
Slide Rock (near x = 0.7). Figures 11 and 12 show approximations to the solution

surfaces fo this problem with downstream Zero Dirichlet and Zero Neumann
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conditions, respectively. The Neumann condition downstream gives a more
accurate picture of the contamination downstream as it reflects the nonzero
measurements taken in the study of Oak Creek {C]. Figure 13 shows an
approximation to the solution of the previous model with the coefficient of
convection 8 = 3. The increased effect of convection pushes more contaminants
downstream. We have now obtained a more realistic model since there is a
higher concentration of contaminants downstream for the majority of the year

{compare to Figure 1).

4.4 Conclusions

It appears that the downstream Zero Neumann boundary condition generally
improves the model. This makes sense because the data indicate nearly constant
amounts of pollution near the end of the study area. One couid also experiment
with values of & that are nearly Neumann (such as g = 0.2) to decrease slightly the
amount of contamination downstream.

The models presented in this chapter are not limited in time to one year. We
defined the domain of our PDEs with only one year in mind, however, it is easy to
run the simulations for longer periods of time. As we would suspect, the final
contaminant distribution along the creek at the end of year X would beccme the
initial contaminant distribution at the beginning of experiment year X + 1. For

example, consider the following problem:
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u {1, x) = up(£,%) + f{t,x) re(0,3), xe(0,1) (4.4.1)
u(0,x) =0 xe{0,1]
u(t,0) =0 ¢e[0,3]
u(t, 1) =0 re[0,3]

where f(1,x) is defined in equation (4.3.1). This extends our previous model
(Figure 7) to three years. The approximation to the solution is shown in Figure 14.
Note that the solution appears to have become periodic in time and it is
reasonable to assume that it would continue in this manner indefinitely. Figure 15
shows the same problem with convection. Again, we have a periodic solution,
however, the convection term has pushed the contaminants downstream.

Using our modeling techniques, it would be very difficult to match the exact
data shown in Figure 1. There are random elements, such as wading tourists,
irregular water flow, and rainfall, that have not been considered. These and other
unpredictable events can upset the balance and hence make the models less
accurate. We have, however, shown how each element of the PDE model
influences the solution surface. In addition, we have attempted to find the
parameters that give a reasonable model for the Oak Creek contamination data.

In conclusion, the model whose solution is given in Figure 10 appears to be
the best representation of the Oak Creek data. it most accuratly places the peak
of the contamination and gives the relative shape of thé actual data throughout Q.

It also accounts for all of the factors whose effects we originally set out to exhibit.
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CHAPTER FIVE

FURTHER RESEARCH

While the mathematics behind the linear parabolic PDEs used in this work is
well-developed, the application to Oak Creek is new. The work contained in this
thesis is a step toward modeling the flow of contaminants through the Oak Creek
Canyon waterway. We have demonstrated both PDE models and techniques for
approximating solutions to these PDEs. There are further possibilities that can be
explored.

Due fo time constraints, comparison to theoretical error bounds was not done.
Estimation of higher partial derivatives is required in order to determine an error
bound for each of our three numerical methods [B-F]. While we are confident that
our approximate solutions are within those error bounds, it wouid be desirable to
verify this. Other numerical methods implemented in future studies wouid benefit
from similar error analysis.

Further analysis of our mathematical models can be performed to determine
the actual effect of each parameter on the solution. Since it appears that the

source terms in the models have a significant effect on the shape of the solution, it
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is reasonable to question the usefulness of the other terms in the model. We are
confident that the parameter f has a significant effect on the model because the
introduction of convection did show a difference in the solution surfaces. Further
study can be done on other terms to determine what effect they have on the
model as a whole.

This project was limited to PDEs with one space dimension. Currently, only
one-dimensional space data exists for the water quality of Oak Creek. One could
also consider the width and/or depth of the creek. At each sampling site,
contaminants could be measured at different depths. A diffusive-convective
equation in higher space dimensions would then be required. The Explicit Method
could be applied to higher dimensional problems with regular grids.

To consider irregular grids and more complex boundary conditions, other
numerical techniques could then be employed to solve the PDEs. One could use
the so-called Finite Element methods. These methods are better suited to handle
complex boundary conditions that can arise in mode!ihg situations, such as wildly
varying shorelines and creekbeds [B-F]. More biological and physical study could
be undertaken at Oak Creek to better understand the processes that occur near
the boundaries of the study area.

More research can aiso be undertaken on the nature of the contamination so
that the source term in equation (1.1) cduid be more precise. For example, the
bacteria may be reproducing af a detectable rate or may be decreasing in number

due to the predation by other organisms. It has also been hypothesized that the
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sediments can act as reservoirs for £. coli and could inciease the number of
bacteria in the water column when the sediment is disturbed by human or animal
activity in the creek [C]. Hence, it may be useful to consider an additional spatial
dimension in future modeils.

In section 4.1, we mentioned the pseudo-random movements of the bacteria
from {E-K]. In addition, events such as rainfall and tourism can affect the levels of
contamination in the creek. This idea suggests the possibility of incorporating
some random noise into the models. Perhaps this would create a more realistic
model.

Finally, it would be insightful if one could find a smoothing algorithm, such as a
three dimensional spline, for the data collected at Oak Creek. f we could find an
~ interpolation of the data that can be expressed in closed form, we could get a

better idea for boundary conditions and forcing terms.
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Table 1 -- Results of executian of the Explicit Algorithm with the indicated

values of M and N at t=1. All errors are absolute errors.

A. M=50and N =5,000

X u(1, x) Actual Error
0.0 0.000000000 0.000000000 0.000000000
0.1 0.000015880 0.000015983 0.000000104
0.2 0.000030205 0.000030402 0.0000006197
0.3 0.000041574 0.000041845 0.000000271
0.4 0.000048873 0.000049192 0.000000319
0.5 0.000051388 0.000051723 0.000000335
0.6 0.000048873 0.000049192 0.000000319
0.7 0.000041574 0.000041845 0.000000271
0.8 0.000030205 0.000030402 0.000000167
0.9 0.000015880 0.000015983 0.000000104
1.0 0.000000000 0.000000000 0.000000000

B. M =100 and N = 20,000

X u(1, % Actual Error
0.0 0.000000000 0.000000000 0.000000000
0.1 0.000015957 0.000015983 0.000000026
0.2 0.000030353 0.000030402 0.000000049
0.3 0.000041777 0.000041845 0.000000068
0.4 0.000049112 0.0000498192 0.000000080
0.5 0.000051639 0.000051723 0.000000084
0.6 0.000049112 0.000049192 £.000000080
0.7 0.000041777 0.000041845 0.000000068
0.8 0.000030353 0.000030402 0.000000049
0.9 0.000015957 0.000015983 0.000000026
1.0 0.000000000 0.000000000 0.000000000
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Table 1 -- Resuits of execution of the Explicit Algorithm with the indicated

values of M and N at t=1. All errors are absolute errors.

C. M =1,000and N = 2,000,000

X

u(1, x)

Actual

Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.000000000
0.000015883
0.000030402
0.000041844
0.000049191
0.000061722
0.000049191
0.000041844
0.000030402
0.000015983
0.000000000

0.000000000
0.000015983
0.000030402
0.000041845
0.000049192
0.000051723
0.000046192
0.000041845
0.000030402
0.000015983
0.000000000

0.000000000
0.000000000
0.000000000
0.000000001
0.000000001
0.000000001
0.000000001
0.000000001
0.000000000
0.000000000
0.000000000
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Table 2 -- Results of execution of the Implicit Algorithm (implicit.c) at t=1. All
errors are absolute errors.

A. M=N= 5000

X u(1, x) Actual Error
0.0 0.000000000 0.000000000 0.000000000
0.1 0.000016144 0.000015983 0.000000160
0.2 0.000030674 0.000030402 0.000000272
0.3 0.000042200 0.000041845 0.000000355
0.4 0.000049594 0.000048192 0.000000402
0.5 0.000052131 0.000051723 0.000000408
0.6 0.000049564 0.000048192 0.000000372
0.7 0.000042142 0.000041845 0.000000297
0.8 0.000030584 0.000030402 0.000000192
0.9 0.000016050 0.000015983 0.000000067
1.0 0.000000000 0.000000000 0.000000000
B. M =5000 and N = 10,000
X w1, x) Actual Error
0.0 0.000000000 0.000000000 0.000000000
0.1 0.000016050 0.000015983 0.000000066
0.2 0.000030495 0.000030402 0.000600093
0.3 0.000041954 0.000041845 0.000000109
0.4 0.000049305 0.000048192 0.000000113
0.5 0.000051827 0.000051723 0.000000104
0.6 0.000049275 0.000049192 0.000000083
0.7 0.000041897 0.000041845 0.000000052
0.8 0.000030416 0.000030402 0.000000014
0.9 0.000015957 0.000015983 0.000000027
1.0 0.000000000 0.000000000

0.000000000
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Table 3 - Results of execution of the Crank-Nicholson Algorithm at t=1 with
M = N = 5000. All errors are absolute errors.

X u(1, x) Actual Error
0.0 0.000000000 0.000000000 0.000000000
0.1 0.000015956 0.000015983 0.000000028
0.2 0.000030317 0.000030402 0.000000085
0.3 0.000041709 0.000041845 0.000000136
0.4 0.000049017 0.000049192 0.000000175
0.5 0.000051524 0.000051723 0.000000199
0.6 0.000048987 0.000048192 0.000000205
0.7 0.000041652 0.000041845 0.000000193
0.8 0.000030238 0.000030402 0.000000164
0.9 0.000015863 0.000015983 0.000000120
1.0 0.000000000 0.000000000 0.000000000
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Figure 1. Data from Crabili ef al. {C] showing the log order levels of contamination throughout

Oak Creek Canvon during the three-year study (a - ¢ represent the years 1994 -1896). The sampling sites
are Pine Flats (PFC), Slide Rock (SR), Manzanita Campground (MZC), and Grasshogper Point (GP).

The suffixes U and D represent upstream and downstream collections.
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rigure 2. Three dimensional plot and contour plot of equation (1.5). The
contour plot shows x on the horizontal axis and t on the vertical axis.
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Figure 3. Approximation to the solution surface and contour plot of the
approximation to the solution of equation (1.5) with Neumann boundary
conditions at x = 1. The contour plot shows x on the horizontal axis and t on
the vertical axis. '
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Figure 4. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation (1.6) showing the effect of
convection. The contour plot shows x on the horizontal axis and t on the
vertical axis.
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Figure 5. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation (4.2.3). The contour plot
shows x on the horizontal axis and t on the vertical axis.
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Figure 6. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation (4.2.4). The contour piot
shows x on the horizontal axis and t on the vertical axis.
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Figure 8. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation
t x=1 and convection.
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Figure 12. Solution surface and contour plot of the solution surface of

equation (4.2.4) with source term (4.3.1
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Figure 13. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation (4.2.4) with source term
(4.3.1), a zero Neumann condition at x=1 and convection with a coefficent of
three. The contour plot shows x on the horizontal axis and t on the vertical axis.
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Figure 14. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation (4.4.1). The contour plot
shows x on the horizontal axis and t on the vertical axis.
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Figure 15. Approximation to the solution surface and contour plot of the
approximation to the solution surface of equation (4.4.1) with convection.
The contour plot shows x on the horizontal axis and t on the verticai axis.
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Appendix 1 Computer code used to implement the Explicit Method with any
source term and downstream boundary condition.

{*  This program implements the Explicit Method to approximate =~ */
/> solutions to diffusive-convective equations with different source =/
/*  terms and downstream boundary conditions. *

#include <sidio.h>
#include <math.h>

#define pi 3.14159265359

#define M50  /* Initial number of divisions on x-axis * /
#define N 5000 /™ Initial number of divisions on t-axis * /

void main()

{

int ik ! * Counters * /

int t;

double u[M+1]; ! * Array of values, u(t,x) */

double new_u[M+1]; /' * Array of new values to be passed
tou™/

double f(); /* Forcing Function */
double a(); /* Initial value function. >/

double m2n = ((double)M * (double)M / (double)N);

/* M2 divided by N */

double alpha = 1.0; /* Robin conditions (1 = Dirichlet) * /
double k=1.0; /* Diffusion coefficient : */
double conv = 1.0; / * Convection coefficient *f
double forc =1.0; /* Flag for forcing term 1=0On  */

FILE *writefile;
writefile=fopen("results","w");

95



1 Initalize the array  *f

for(i=0; i<=M; i++)

{
u[i]=g({double)i/M};
}

for(t=0; t<=(1*N}); t++)
{
forj=1;j <M, j++)
new_ulj]=k*m2n* (u[j+1]-2*u[j]+u[j-1]) +ulj]
+ forc * (1.0 / (doubie)N) * f( (double)j / M, (double)t /N )
-conv*M/(double)N /2.0 (uf j+1]-u[j-1]);

/ * Downstream boundary condition * /

new_u[M] = (alpha-1) * (-u[M-2] + 4*u[M-1]) / (3-3*alpha+2*alpha /
(double)M};

/ Fede sk o o ok e ok ke ke s ek Uncomment for graphics khkdhikhhkkkhthdtrhhhrhhhdhkirhhikrrdrhihidk ik /

if((t%100)==0)
{
for(i=0; i<=M; i++) /*=(M/50Q)) */
fprintf(writefile,"%12.9fn" u[ i });
}

l Sk kdhhdhhidkdeddhddkikhikikihkhidodhtih kit h A h g ikl foh Rk kiR hdd ke sk w ek d dkdedek ke kR kok & l

for(j=1; j<=M; j++)
uj]=new_ufj];

/ EE 2 TR L L L L E ST L Uncomment for nice ﬁVE-—COlunm output o e ke v e e e ke e e e e e e e e e e e e ke ke
if( (t%100) == 0)

{

for(j=0; j<=M; j+=M / 5)
fprintf(writefile,"%9.7f "u[j 1)

fprintf(writefile,"\n");

}

wkRgdk ke dokdddkdoddkkdhdokdokkddokiok ko dh ki kkkhkkkh ik kdkhthkihhhhhddhkhhkhdkhkhhdhhkkthkdkhhhkhkhhkkkhhn I

}
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/ e e s e ek ok i e e ok o e ok e ke ke ek ke ek Uncomment for Simp{e OUtpUt FRKAEEAF AR X R AT AR R A AT hh kg hhdk
for(j=0; j<=M; j+=(M / 10))
fprintf(writefile,"Final u[%3d] = %12.9f \n"julj D,

FE KA AT REREAF LR EARA TR hhkdhdhkdhhkkhrhkhhbdhdhrrhihdhdAvhhdRdd kb rrderkritrhkhrtrhrbii /

fclose(writefile),

}

/= Initial value function declaration */

double g(double X)
{
return ( sin{pi*X) ),
}
/* Forcing term  */
double f(double X, double T)
{
return (

(1-cos(2*pi*T))*(1*exp(-100*(X-0.3)*(X-0.3)) +
1*exp(-100*(X-0.7)*(X-0.7)))
%;
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Appendix 2 The "tridiagsolve” subroutine, written in C, that implements

Gaussian Reduction to solve a matrix equation of the form Au=v for u, where A

is a square, tridiagonal matrix.

* Subroutine that implements Gaussian Reduction on a tridiagonal matrix ¥/
* This subroutine will read in the upper diagonal, lower diagonal, diagonal, */

/* and the "b" vector and then manipulate the b vector.
f* N is the size of the square matrix.

void tridiagsolve(int N, double U{ ], double L[}, double D[ ], double B[ })

{

int i;

for(i=0; i<=N-2; i++)
Dli+1]=Dli+1]-(L[1}¥DLip* Ui}

for(i=0; i<=N-2; i++)
Bli+1]=B[i+1]-(L[i}YD{iD)*B[i]

B[ N-1]=B[N-1 VD[ N-1};

for(i=N-1; i>=0; i-)
BLij= (Bli]-U[i]*BLi+1/DLi];

*
¥/
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Appendix 3 Computer code used to implement the Implicit Method with any
source term and downstream boundary condition.

/*  This program implements the Implicit Method to approximate “/
/* solutions to diffusive-convective equations with different source *f
/*  terms and downstream boundary conditions. *f

#include <sidio.h>
#include <math.h>
#include " Alib\matrix.h"

#define pi 3.141592654

#define M 5000 /* Number of x - divisions */
#define N 5000 * Number of t - divisions */

/***i***************i****** Initiai Function ******************************‘k***********/

doubie initialf{double X)
{

return sin(pi * X);

}

/*****************‘k**i‘*** Ac.tual Function ***************************i**************!

double actualf(double X)

{
return (exp(-pi * pi} * sin(pi * X));
}

l*************'k********* Source Term *********************************************I

double f(double T, double X)

{
return ( '
(1-cos(2*pi*T) )*( exp( -100 * (X-0.4)*(X-0.4) ) +
exp( -100 * (X-0.6)*(X-0.6) ))
);
}

/*****i**‘k****************1\-********"k*****************************'k'k**********************I

59



void main()

{
int i,
int i
double p = (double)(M*M)/(double) N;
* Delta t divided by Deilta x squared */
double q = (1.0)/N;
double u[M]; * Array of function values */
double D[M]; /* Diagonal */
double U[M-1]; /* Upper diagonal */
double L[M-1]; * Lower diagonal */
double initialf(); /* Initial value function */
void tridiagsolve(), /* Tri Diagonal Solver */

FILE *writefile:
writefile = fopen("lresults” "w'");

* Initialize the arrays */

for(i=0; i<=M-2; i++)

{
ufi] = initialf( (double) (i+1) / (double) M };
}
/* Solve the PDE */
for(i=0; i<=(N-1); i++)
{
u{0] =0.0;
u[M-1]=0.0; /* Initialize the Dirichlet cond'n */
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for(j=0; j<=M-3, j++)

{

Dfjj=2"p + 1,
U[j] = -p;

LT = -p;

}
D[M-2}= 2*p + 1;

/* Add the forcing term to the u[i]'s */

for(j:(); j<zM-2; j++)
uli] = ufjl + g * f{ (double)i/N, (double)ji/M ),

tridiagsoive(M-1,U,L,D,u);
/********* Use these two ;ines When printing graphics e o e 3 e e v kR E R A e g e ek e de ke e R e Rk ko ok

for(j=0; j<=M-2; j++)
fprintf(writefile,"%12.8g\n", ufj});

/******************’*******i‘!\'****************************************‘k********************l

ki

=== Use these two lines when only the numbers are wanted * === e/
for(i=0; i<=M-2; i+=(M/10))

forintf(writefile,"u[%2d] = %12.9f  Actual = %12.9f Error=
%12.8n" i,ufi],actualf((double)(i)/M), uli]-actualf((double)(i)/M));

/*******************************************’k‘k*******************************************/

fclose(writefile);

}

61



Appendix 4 Computer code used to implement the Crank-Nicholson Method
with any source term and downstream boundary condition.

/* This program implements the Crank-Nicholson Method to approximate */
L solutions to diffusive-convective equations with different source *
/* terms and downstream boundary conditions. "/

#include <stdio.h>
#include <math.h>
#include "matrix.h"

#define pi 3.141592654

#define M 5000 /* Number of x - divisions */
#define N 5000 /* Number of t - divisions */

I*********i**************** Actual Solution ****************************************I

double actualf(double X)

{
return (exp(-pi * pi) * sin(pi * X));
}

l**ir'k********************* SOurce Term ********_***********************************/

double f(double T, doubie X)
{

return (
(1 -cos(2pi*T) )*( exp( -100 * (X-0.4)*(X-0.4) ) +
exp( -100 * (X-0.6)*(X-0.6} })
);
}

I***********************************************'k****************************************f

f
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void main(}

{
int X
int i
double p = (double)(M*M)/(double) N;

/* Delta t divided by Delta x squared */
double q = {1.0)/N;
double u[Mj; * Array of function vaiues */
double b[M]; /* Temp array of fct values */
double D{MY; f* Diagonal */
double U[M-1]; I* Upper diagonal */
double L[M-11; /* Lower diagonal */
double initialf(); /* Initial value function */
void tridiagsolve(); /* Tri Diagonal Solver */
double alpha = 1.0; f* Boundary condition */
double forc =0.0; /* Ftag for the forcing term */
FILE *writefile;

writefile = fopen("CNresults","w");

/* Initialize the arrays */

for(i=0; i<M-2; i++)

{
ufi+1] = initialf( (double) (i) / (double) M );

}

/* Solve the PDE */

for(i=0; i<=(N-1); i++)

{
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for(j=0; j<=M-3; j++)
{

D) = p + 1;
Ui} = -p/2:
L[] = -p/2;
)

DIM-2J=p + 1:

b{0] = (1-p)*u0] + p/2 * u[1];
for(j=1; j<=(M-2); j++)
{
bli] = p/2 * ufi-1] + (1-p) * ufi] + p/2 * ufj+1];
}
b[M-2] = p/2 * u[M-3] + (1-p) * u[M-3];
for(j=0; j<=(M-2); j++)
ufjl = b[il;
tridiagsolve(M-1,U,L,D,u);
l**i********* Use these two Iines When printing graphics **************************/

for(j=0; j<=M-2; j++)
printf("%12.9g\n", uj]);

/*************'k******************************'k*******************************************I
/* Add the forcing term to the ufi]'s */

for(j=0; j<=M-2; j++)
ufj] = u[j] + forc * q * f( (double)i/N, (double)ji/M ),
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froxxemese Use these two lines when only the numbers are wanted =*********/
for(i=0; i<=M-2; i+=(M/10))

fprintf(writefile,"u[%2d] = %12.9f  Actual = %12.9f Error =
%12 .9An" i,uli],actualf((double)(i)/M),ufil-actualf({double)(i)/M));

/****************************************************************************************’

fclose(writefile);

ki

I*********************** Inltial Value funCthﬂ ********************************i********’

double initialf(double X)

{

return sin{pi * X);

!****************************************************************************************l
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