Rectangular polyomino set
(1,2)-achievement games

by Edgar Lee Fisher

A Thesis
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science
in Mathematics

Northern Arizona University
August 2005

Approved:

Nandor Sieben, Ph.D., Chair

Michael Falk, Ph.D.

Stephen E. Wilson, Ph.D.

Abstract

Rectangular polyomino set (1,2)-achievement
games

Edgar Lee Fisher

We determine sets of rectangular polyominoes as winning or losing in
the (1,2) weak achievement game. The (1,2) weak achievement game on
the rectangular board is a game in which two players alternately mark
unmarked squares on a rectangular board. The first player has one mark
and the second player has two marks. A relationship between sets is
established to simplify the process and narrow the classifications to a few
important sets. All sets of size 4 or less are completely determined as
winning or losing. Some infinite sets are also determined as winning or
losing as they arise naturally in the theory.

i

Acknowledgements

[am grateful to Dr. Nandor Sieben for all of his ideas, help and support through-
out this thesis. The topic was interesting enough for him to bring it to me and I
enjoyed the discoveries that were made. His knowledge in the area made it possible
for me to go to him whenever [had a question and get a good answer or a thought
provoking question.

[thank my family for all of their support in my Graduate career through their
thoughts and prayers. Just as important are the friends who cared enough for me to
talk to me, even though I was too busy to talk to them.

Thanks to Dr. Judy Clarke and Dr. Dennis Nemgzer for encouraging me to con-
tinue my schooling and providing moral and written support.

1

Contents

List of Tables vi
List of Figures e viii
Dedication ix
Chapter 1 Introduction 1
Chapter 2 Preliminaries 5
2.1 Game Board)
2.2 Polyominoes 5t
Chapter 3 Single Animal Achievement Games 10
3.1 Winning Animals 10
3.2 Losing Animals 13
3.2.1 (1,1)-Achievement Game 15

3.2.2 (1,2)-Achievement Game 15
Chapter 4 Set Polyomino Games 18
4.1 Set Gameso 18
4.2 Partial Order 19
4.3 General Results 20
Chapter 5 Classification of Families 22
5.1 Size One Families 22
5.2 Size Two Families o 23
5.3 Size Three Families 24
5.4 Size Four Families. 28
Chapter 6 Further Results 30
6.1 Size Five Families 30
6.2 General Results 31

iv

Chapter 7 Infinitude of Animals and Sets
7.1 Transfamilies
7.2 Infinite Families L

Chapter 8 Programs
8.1 Polyomino Creation
8.2 Paving Creation
8.3 Paving Checking o

Bibliography

Appendix A C++ Code
A.1 Postscript Generating Code
A.2 Paving Code for a Specific Family
A.3 Created Paving Postscript Code
A.4 Paving Checking Code
A41 Checking Code o
A.4.2 Paving File Generator
A5 PERL Code
A.5.1 Paving Generation
A.5.2 Polyominoes
A.5.3 Paving pictures

Appendix B Polyomino information

34
34
35

39
39
40
41

45

49
49
56
62
64
65
68
69
70
70
70

72

List of Tables

2.1

5.1
5.2
5.3
5.4

6.1

B.1
B.2

The number of non-equivalent animals up to size 15.

Characterizing set C; of winners and losers for size one families.
Characterizing set C, of winners and losers for size two families.
Characterizing set Cs of winners and losers for size three families.
Characterizing set of winners and losers for size four families.

ps«(k) and the number of possible marks of the breaker in the (1,2)-
achievement game for 1 < k<4,

Polyominoes and the double pavings that defeat them.
Polyomino ancestry for next immediately sized polyominoes.

vi

List of Figures

1.1

2.1
2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

5.1

5.2
5.3

6.1

The polyomino known as Snaky.

Game board with coordinates imposed.
Polyominoes up to size 5 in normal position, ordered by size and then
by lexicographic order.o Lo oL
Squiggle up tosize 6.o

Deletions of situations which have been used to create 1-good joins in
Figure 3.2.
A winning position sequence for the maker in the (1,1)-achievement
game. Notice that any situation s; has a row in the table. For example,
in s, we can achieve s; by marking the capital letters A or B. .
P57 defeated by SPa oo
Winners for the (1,1) (weak) achievement game.
Pavings for the (1,1)-achievement game. The dark pairs form S while
the lighter pairs are copies by translation through u,v and u 4+ v. The
arrows are the vectorsin V. o oo
P 5 defeated by DPa. Note that each cell here in DP, is related to two
other cells while those in SPp are related to only one.
Some examples of double pavings. The arrows are the elements in V
while the dark pairs form S. The light pairs are the copies of S through
w,vand w4 v, ...

A set of infinite polyominoes that does not have a legalization.

Double pavings that are used to classify certain families as losers in
this chapter
Winning strategy for the family F = {P,,, Ps»}.
Winning strategy for W3,1 = {P3,1; P4,4, P475}

All polyominoes P € P, such that |0(P)| = ps(n) for n < 4. The
boundary consists of the empty cells.

vil

16

6.2
6.3

7.1
7.2
7.3
7.4

8.1

8.2
8.3

8.4
B.1

B.2

B.3

Game board position after being able to achieve only P,;.
Infinite board situation for a winning strategy of F,.

A winning transfamily. 0oL
Two infinite losing families.
Positions for the infinite transfamily winning strategy.
A winning infinite transfamily, Z,.

A paving generated by the paving program on a 30x30 board for
P4’3, P4,4, P475, P571 and P575
Two pavings that can be extracted from Figure 8.1
The fundamental vectors of a 2-paving and their relation to constructs
in the paving checking program. Note that |vx| = (Jxgl, lyk|) - - - - .
2-paving as reference for problem locations in a paving.

All congruence classes of polyominoes up to size 4, ordered by size and
then by lexicographic order.
Congruence classes of polyominoes of size 5, ordered by lexicographic
order. e e
Congruence classes of polyominoes of size 6, ordered by lexicographic
order. L e e e

viil

35

42
42

43
43

73

73

To Julie,
For all of your patience and experience which made it easier for me to do this. I love
you.

1X

Chapter 1

Introduction

Tic-Tac-Toe is a widely played game in which players alternate placing a mark of their
own color in a previously unmarked square of a 3 x 3 rectangular board. The first
player to get three marks in a line is the winner. Hypergraph games are generalizations
of this game.

A (finite) hypergraph is a pair (X,F) where X is a finite set, called the set of
vertices, and F is an arbitrary family of subsets of X. The elements of F are called
hyperedges. In a hypergraph game, two players alternate marking previously unmarked
vertices of the hypergraph with their respective color. The first player to mark all
the vertices of some element of F is the winner. Hypergraph games are also called
strong positional games.

According to the strategy stealing argument the first player is guaranteed to either
win or draw. To see this let us assume first that the second player has a winning
strategy. To begin the game, the first player should place a random mark on the
board. Ignoring his first mark, the first player uses, “steals”, the second player’s
strategy. At this point, the first player has a winning strategy. At some point, the
strategy may require the first player to mark in a cell that is already marked by
himself. This could happen if the first player’s previous mark is in the cell that the
strategy requires. Then the first player should just make another random mark on
the board. Therefore the first player always has some extra mark on the board which
can only help him.

Our focus of attention is on games between perfect players. That is, each player
knows and plays the best possible moves to win or draw in a game. If we consider
less than perfect players, then a win is more likely for some players. Thus we are
in essence considering the worst case scenario for the movements between players. If
the first player has a winning strategy, regardless of the other player’s moves, the
first player will win. However, if the strategy just forces a draw, a bad play from the
second player can allow the first player to win.

Since the first player can always win or draw, the second player could instead
focus on keeping the first from winning. In this case, the first player is called the
maker and the second the breaker. These games are called weak hypergraph games
and will be the focus of this thesis. The maker wins in the standard sense while the
breaker wins if she keeps the maker from winning. In this case, there is no draw game
as either the maker achieved the goal or the breaker kept him from doing so.

Some connections between the strong and weak games are clear. If the first player
has a winning strategy in the strong game, then that same strategy will guarantee a
win in the weak game. However, a win for the maker in the weak game can become a
draw in the strong game. Similarly, if the breaker has a winning strategy in the weak
game, then she has a drawing strategy in the strong game. However, a draw in the
strong game, for the second player, could be a loss in the weak game for the breaker,
as in Tic-Tac-Toe.

Since both players are defensive and offensive in the strong game, there needs to
be a more complicated strategy to play the games. In the weak game, the maker
can focus on trying to achieve his goal and the breaker can focus on trying to stop
the maker. This simplifies the ideas for the different strategies. Note, however, that
this does not reduce the problem to a trivial question. Instead it focuses on different
types of strategies.

For certain weak games, Erdos and Selfridge found a sufficient condition for the
second player’s win. Given a hypergraph (X, F), if

22P|<%

PeF

then the second player has a winning strategy, [14]. The argument is based on weight
functions that use a potential function to measure the likely outcome of the game.

The weak game in which the players alternate placing a single mark on the board
is called the (1,1) weak game. This is where the Erdds, Selfridge result holds. A
(p, q) achievement game is similar to a (1,1) game, except that in each turn the first
player places p marks and the second player places ¢ marks. In [3], Beck extended
the Erdds, Selfridge result to the (p,q) weak game as: If

S 497 < ——

PeF I+q

then the second player has a winning strategy. Let d be the number of vertices in F
and e the maximum number of edges containing two vertices of F. Beck result [3]

says that if
q =|P| P2
> (1 " _) . P,
r p (»+9)

Figure 1.1: The polyomino known as Snaky.

then the first player has a winning strategy. Note that this result can give us useful
results and bounds on certain items, but only when the board is finite. The results
fail on the infinite board.

In this thesis, we use an infinite rectangular board. The description of the board
and polyominoes (shapes made from cells on the board) corresponding to this board
are discussed further in Chapter 2. By extending the size of the board, the game in
essence becomes a (1,g) game for calculations. That is, we need to use Beck’s result
on (1,q) game as opposed to the (1,1) result for even rough estimates if we want to
use the weight function. In this fashion, it is determined that Snaky (see Figure 1.1)
is a 41-dimensional winner [38] although Snaky is in fact a 3-dimensional winner [39].
This invites the study of biased games to help understand the infinite board. That
is, games where one player has more moves than the other.

Achievement games are special hypergraph games when there is a concrete set or
object that is trying to be achieved. The hyperedges are then defined as the goal
objects and the set of vertices, known as the game board, is some superset of the
union of the cells of the goal objects.

The importance of weak achievement games is due in part to Ramsey Theory. In
essence, Ramsey’s Theorem states “For all a,b € N there exists an R(a,b), called
the Ramsey Number, such that for all n > R(a,b) any simple graph G on n vertices
contains either a clique on a vertices or an independent set of b vertices” [18]. Then if
the game board were the edges of a complete graph with n vertices, Ramsey Theory
might be used to help determine results.

Consider the game where players are marking the edges of the complete graph
K,, and are trying to achieve K, for some a < n. The vertices of the corresponding
hypergraph (X, F) are the edges of K,,. The hyperedges are all the a element subsets
of X.

If n > R(a,a) then Ramsey’s Theorem guarantees that the game is not a draw. To
see this, let the players mark edges until all the edges are marked. Then by Ramsey’s
Theorem, there is a subgraph isomorphic to K, marked by a single color. This means
one of the players achieved K,. So one of the players has a winning strategy and
by the strategy stealing argument, this player must be the first player. In the game

where a = 3 the first player wins if n > 6 = R(3,3).

Other achievement games could be on a complete graph to achieve a spanning
tree or a on bipartite graphs [16]. If the set of vertices were instead the elements of
a group, then a goal could be to select the generator(s) of the group or subgroup [1].

Tic-Tac-Toe and other polyomino games are also achievement games. Achieve-
ment games for polyominoes were introduced by Frank Harary [22, 20, 19, 25]. The
cells in the polyominoes are the vertices in a graph and the edges for the hypergraph
game are the group of vertices that make the shape of the polyomino. Since all
isomorphic polyominoes are also winners, only one representative edge (polyomino)
needs to be given. There can be many different versions of polyomino games. The
board can be different shapes: Platonic solids [6], a torus [21], hyperbolic plane or
multidimensional [39]. Even if the board is on the plane, it can have different tilings
of the plane, which also changes the shape of the polyominoes. The tiling could be
by triangles [9, 26|, rectangles [26, 36], mosaics [8, 5], tessellations [10] or hexagons
[7, 37].

A consideration for the infinite board is taken into account for this thesis. Since
the board is infinite the play continues until either the maker has actually achieved
the goal or the breaker has proven conclusively to the maker that regardless of his
moves, she can keep him from winning. Larger board size gives an advantage to the
maker as the breaker must now have a strategy that does not just stall the maker but
in fact stops him. Thus the win of the breaker is a matter of proof since the maker
can play forever.

For this reason, the unbiased single polyomino game is difficult on the infinite
board. When sets of polyominoes are considered, it becomes even more complex.
To balance the game, we add bias in favor of the breaker. That is, we consider the
game where the breaker gets two marks after every one mark of the maker’s. In this
fashion, the number of singleton winning sets is limited.

In Chapter 3 the terminology for a single polyomino to be winning or losing for
the (1,1) and (1,2) achievement games is discussed. Then Chapter 4 extends these
ideas to sets of polyominoes and establishes a relationship between sets to simplify
the classification of each set as winning or losing. Some basic facts about sets are also
discussed. Chapter 5 uses the information from Chapters 3 and 4 to classify all sets
up to size 4 as winning or losing. Following this, Chapter 6 gives some basic results
for size 5 sets and establishes some limitations on sets with specific attributes that
might be larger. The infinite sized polyominoes and sets are discussed in Chapter 7.
Finally, Chapter 8 explores the programs and algorithms that were used to establish
some results and generate the graphics throughout the thesis.

Chapter 2

Preliminaries

2.1 Game Board

In this thesis we focus on a single board, the rectangular board. Other boards that
could have been used are triangular, hexagonal or cubic (3-dimensional rectangular)
boards [7, 8, 9, 28, 33, 37, 39].

Definition 2.1 The rectangular game board is Z x Z. The geometric representation
of the game board is the set {[z — 1,2+ 3] X [y — 5,y + 3] | (z,y) € Z x Z}. The
elements of the board are called cells.

The rectangular board is based on a Euclidean tiling of the plane. We can think
of it as an infinite chessboard. See Figure 2.1 for a visual representation of the game
board with coordinates imposed.

Definition 2.2 Let ¢; = (x1,41) and ¢o = (x2,y2) be cells of the game board. We
say ¢; < ¢y if one of the following two conditions holds:

(a) 1 < x9;
(b) z1 = x9 and y; < ys.

This gives the usual lexicographic ordering of the cells of the game board.

2.2 Polyominoes

In [17], Golomb defines a polyomino as “shapes made by connecting certain numbers
of equal-sized squares, each joined together with at least one other square along an
edge.” However in the games with polyominoes, as described in [36, 37, 33, 27|,

(-1,2) (0,20 (L2 |(22

(-11) |01 (11 (21

(-10) |(00) |10 [(20

(-1-1) 1 (0,-1) | (1,-D) | (2-1)

Figure 2.1: Game board with coordinates imposed.

there are some added constraints to the definition. For clarity, we will define the
polyominoes in the algebraic setting.

Definition 2.3 Two cells (z1,y;) and (2, y2) are adjacent if |x; — z5| + |y1 — yo| = 1.

Note that this means one of the coordinates of the cells are the same and the other
coordinates differ by one. An equivalent geometric description is that the cells share
an edge.

Definition 2.4 A path of cells is a finite sequence (¢, ¢y, ..., ¢,) of cells whose con-
secutive cells are adjacent. We say that the path connects c; to c,.

Definition 2.5 A subset P of the game board is connected if for any two cells ¢, d € P
there is a path of cells in P that connects ¢ to d.

Definition 2.6 An animalis a finite connected set of cells whose complement is also
connected. A polyomino is the geometric representation of an animal.

This definition eliminates polyominoes that are connected only through a corner
or have a hole in them. This is the standard definition [36, 39, 9, 34] of a polyomino for
achievement games. In percolation theory, the term animal is also used to represent
adjacent cells to simplify the physics. Thus the idea of an animal is not new to the
scientific community, but in this case is being applied directly to shapes. With this
restriction of the polyominoes, the set of polyominoes to consider is reduced to a
manageable size. Therefore the questions that arise are not completely out of reach.

Some of the concepts in this paper were presented originally in a geometric setting.
However, the algebraic representation can be more convenient. Therefore we will use
both representations throughout. The polyomino is the geometric representation and
an animal is the algebraic representation. Since polyominoes and animals are in a
bijective correspondence, they can almost always be used interchangeably. Hence, if
a statement is made about a polyomino or animal then it has a version for the other
unless there is a specific difference noted.

Definition 2.7 The size of an animal P is the number of cells within the animal.
This we denote by |P|.

Definition 2.8 Two animals P and @) are equivalent if their polyomino representa-
tions are congruent. We denote this by P ~ (). Note that this is an equivalence
relation.

To classify each equivalence class, we need to pick a representative in some normal
position from each class. This requires a few definitions.

Definition 2.9 Let ¢ = (¢, ¢o,...,¢p) and d = (dy,do, . . ., d,) be finite sequences of
cells. We say ¢ < d in the lexicographic order if one of the following holds:

(a) ¢ =d; forall 1 <i<m and m < n;
(b) There exists a k < m such that ¢; = d; for all 1 <i < k and ¢, < dy.

We say c < dif c<dorc=d.

Definition 2.10 Given two animals P and (), with lexicographically ordered se-
quences of cells (p1,...,pm) and (qi,...,q,) respectively. We say that P < @ if
(1, y0m) < (q1,---,¢y) in the lexicographic order.

For the following definition we use the notation W = {0, 1,2,...} for the set of
whole numbers to distinguish from the set of natural numbers N = {1,2,...}.

Definition 2.11 Let P be an animal. The set A ={Q C W x W | Q ~ P} is well
ordered by <. The minimum element of A is the normal position of P. It is also
called the normalization of P.

To determine the normal position of an animal, all the rotations, reflections and
combinations of rotations and reflections of the polyomino are determined. These
are then placed so that all the coordinates are non-negative. This is effectively push-
ing the polyominoes as ”close to the axes” as possible. The lexicographic order of
these placements is then established. The normal position is the placement with the

- -
m = = u
u o |m EN EE EE
L] L] m mm m EE =
Py P2,1 P3,1 P3,2 P4,1 Pys P4,3 P4,4 P4,5
LZ L3 T2 02 ZZ
L1 — -
a (m Ll _ _
LTl] u u mm (m
1] 01 0]]
1] 0 EEm EEE
P5,1 P5,2 P5,3 P5,4 P5,5 P5,6
L4 C'3
i LI -
u (0 u H u u
EEE N EEE EE EEE HEEN
L] L] L] L] L] L]
P5,7 P5,8 P5,9 P5,10 P5,11 P5,12
T3 ZS

Figure 2.2: Polyominoes up to size 5 in normal position, ordered by size and then by
lexicographic order.

smallest lexicographic order. Note that since the polyomino is always within the first
quadrant, all of the cells will have non-negative coordinates. The algorithm for this
procedure is discussed in Chapter 8.1.

In Figure 2.2 we have a representative in normal position of all the polyomino
equivalence classes up to size five.

Definition 2.12 We denote the set of animals of size n in normal position by P, =
{P..|i=1,2,...,k,}, where k, is the number of animals of size n. The indices are
chosen such that P,; < P, ; whenever 7 < j.

Definition 2.13 We call the collection of animals with n linearly adjacent cells
skinny polyominoes.

Note that an animal P is skinny if and only if P ~ P, ; for some n. Also note
that forn =1or 2, P, = { P}

Figure 2.3: Squiggle up to size 6.

k.l n ky,
1 9 1248
1] 10 4460
2| 11 16094

5 || 12 28937
12 | 13 217117
35 || 14 805475

107 || 15 3001211
363

O~ O Ui WS

Table 2.1: The number of non-equivalent animals up to size 15.

Definition 2.14 We call the collection of animals equivalent to the polyominoes
depicted in Figure 2.3 squiggle animals.

The total number of non-equivalent polyominoes of a given size has no known
closed formula. From [17] we get the table in Figure 2.1 which gives k, for n < 15.
Using the algorithm described in Chapter 8.1, we verified the numbers for n < 7.

Definition 2.15 An animal P is an ancestor of the animal @), if there is an animal
R such that R ~ P and R C (). This is denoted by P C Q.

Proposition 2.16 The ancestor relation is a partial order of the set of normalized
animals.

Proof: 1t is clear that P C P for any animal P. Transitivity is also clear.

To verify antisymmetry, let P and () be normalized animals such that P C () and
@@ C P. Then there exists an R such that R ~ P and R C (). Also there exists an
S ~ (@) such that S C P. Therefore we have that P ~ R C QQ ~ S C P which implies
that P ~ Q.

Since both P and @) are normalized, this means that P = (). Therefore the
relation is reflexive, transitive and antisymmetric and as such is a partial order of the
normalized animals. U

Chapter 3

Single Animal Achievement Games

3.1 Winning Animals

To classify an animal as a winner, a strategy needs to be determined for the maker to
follow. This strategy must enable the maker to achieve the animal regardless of the
breaker’s moves, even if the breaker knows the maker’s strategy. One way to describe
a winning strategy is to consider situations, defined below. This section focuses on
the (1,k)-achievement game. That is, the breaker marks k cells after every mark of
the maker.

Definition 3.1 A situation s is a pair (Cs, N,) where the core Cy and the neighbor-
hood N are sets of cells such that Cy N Ny = (.

A situation captures the essence of the game board after the maker’s move. The
core contains the maker’s marks while the neighborhood is some set of unmarked
cells. This neighborhood contains all the future moves of the maker, thus, the cells
are crucial to the strategy of the maker. See Figure 3.2 for an illustration of some
situations. The core is indicated by dark cells, while the neighborhood consists of all
cells with letters in them.

Capital letters denote cells that could be the next mark for the maker. Lowercase
versions of a capital letter identify cells that must be vacant in order for the maker’s
mark on that capital letter to be strategic. Thus the choice of moves for the maker
is limited by the breaker’s moves within the neighborhood.

Once the maker places a mark, he has established a new situation. The core of this
new situation is some subset of the previous core along with the most recent mark.
The neighborhood of this new situation is the set of cells containing the lowercase
version of the capital letter marked by the maker.

10

11

The cells outside of the neighborhood are not displayed in a picture of a situation
as they do not affect the playability of that situation. Each mark the breaker places
outside the neighborhood, gives the maker more freedom for his next move.

Definition 3.2 Let (C, N) be a situation. If ¢ € C, then (C\{c}, N U {¢c}) is called
a deletion of the situation.

Notice that (C\{c})N(NU{c}) = 0 so a deletion of a situation is itself a situation.

Definition 3.3 Let S be a set of situations. If C' = (J,.¢Cs and N = J 4 N are
disjoint then the situation (C, N) is called the join of S. A set K of cells is a k-killer
set for S if |K| < k and for all s € S, K N N # (). If there is no k-killer set for S,
then we say the join of S is k-good.

In essence, a k-killer set is a set of cells the breaker intends to mark to prevent
the maker from attaining any future situations.

Definition 3.4 A winning position sequence for an animal P in the (1,k)-achieve-
ment game is a finite sequence (s, S, 1,...,51, o) of situations with the following
criteria:

(a) Cj, is the goal animal, P;

(b) For all i, the situation s; is a k-good join of situations that are equivalent to
deletions of some situations from {sg, s1,...,$;_1};

(¢) |G| = 1.

The deletions and joins are created from situations that represent a future state of
the game board. We start with the animals we want to achieve and create deletions
and joins until we have k-good joins. Eventually we want a situation with a singleton
core. This singleton core is the first mark of the maker.

See Figure 3.2 for an example of a winning position sequence. Figure 3.1 shows
the details to create this winning position sequence. It shows deletions, the situations
from which these deletions originated and the joins for which they will be used. The
joins of these deletions are derived by overlapping their cores. Since we are playing
the (1,1) game, each join is a 1-good join.

Consider situation s; in Figure 3.2. This is a 1-good join of two deletions of sg
because there is no singleton set of cells that intersects the neighborhoods of both
deletions. This means that there is no single cell the breaker can mark to ruin both
of the desired moves of the maker. We could easily create up to a 4-good join with
four deletions of sy. However, this is unnecessary since the breaker only has one mark
in the (1,1) game. Using a k-good join for k > 1 creates a situation with a larger

12

Original So $1 S
B alafal

| A

m| @AR] n

A = |

Am " [alala]
Deletions | [1 b| |b]
[] [] b /mBb
mg| | bBbl| b b
c | c |
c|Clmc
€| €|

Join S1 S S3

Figure 3.1: Deletions of situations which have been used to create 1-good joins in
Figure 3.2.

neighborhood that is harder to achieve. Future 1-good joins based on deletions of
these more complicated situations would be harder or impossible to create.

Now consider situation s3. We can see cells that have multiple letters in them. This
is the first situation in this winning position sequence in which this occurs. Suppose we
only join the first two of the deletions with letters A and B in their neighborhoods.
This join is not 1-good since the cell containing “ab” is in the intersection of the
neighborhoods of both deletions. That is, the breaker can mark this cell and prevent
the maker from achieving s,. We cannot create a 1-good join from any other two
deletions since there is at least one cell that ruins any two of the three deletions.
Therefore a third deletion is needed to create a 1-good join. There is no need to add
further deletions to the situation ss since all we need is a 1-good join in the (1,1)
game.

In this thesis, the winning position sequences are represented with geometric il-
lustrations of situations. Along with the situations are a table and a flowchart. The
table shows possible future situations based on the maker’s mark. Each row in the
table lists different situations achievable from a situation s. If all of a particular letter
are free from a breaker’s mark, then the maker can mark the cell with the upper case
letter and the situation with that letter in the table has been achieved. The flowchart
shows the possible paths of the game as it is played.

Let us consider a game played using this strategy for the (1,1) game. We shall play
the maker, starting with situation s3, after a single mark. Assume that the breaker

13

a |a |a
— aAlal [Thale b
— [| [|
Ll m m Cb/Hl|Bc|b
= [| [|
AmB|] Db Blb] abla |ac|b
1]
S0 51 52 53
s||lA|B|C
S1 || So | So
S9 S1 | S1
S3 S9 | S2 | S2
53 52 51 S0

Figure 3.2: A winning position sequence for the maker in the (1,1)-achievement game.
Notice that any situation s; has a row in the table. For example, in s, we can achieve
s1 by marking the capital letters A or B.

marks in the cell with C'b. Then the situations corresponding to B and C' are not
attainable. Therefore we mark in the cell containing A. In the table from Figure 3.2,
this corresponds to s, seen in Figure 3.1 in the upper right corner. So we have now
achieved s, and it is the breaker’s move again. Assume the breaker marks in the cell
containing A. Then the situation corresponding to A is not attainable so we mark
in the cell containing B. From the table in Figure 3.2 we have achieved s;. For the
breaker’s final move, assume she marks the cell containing B. Then we mark the cell
containing A and have achieved sy = P9, the goal animal.

Proposition 3.5 An ancestor of a winning animal is a winner.

Proof: Let P and @) be animals such that P C @) and () is a winning animal. Then
there exists a winning strategy for (). Using this same strategy the maker can achieve
P at the same time or before he achieves (). O

3.2 Losing Animals

For an animal to be a loser, the breaker must have a strategy to keep the maker from
achieving the target animal. The most frequently used tool to define this strategy is
a paving.

14

Figure 3.3: P57 defeated by SPa

Definition 3.6 A k-paving is a symmetric relation on Z x Z in which no cell in the
board is related to itself and each cell is related to at most k other cells. Two cells
that are related are called a pair.

Remark 3.7 A domino is a pair of adjacent cells. A paving is called a domino paving
if all of its pairs are dominoes. We use the term single paving for a 1-paving and double
paving for a 2-paving. See Figures 3.5 and 3.7 for illustrations.

Definition 3.8 A fundamental region F' of a k-paving is a pair (V,S) where V =
{u,v} is a set of two integer vectors called the fundamental vectors and S is a set of
pairs, the fundamental set. If p is a pair of the paving, then p is in the orbit of an
element of S through a translation by integer linear combinations of the vectors in
V. The group generated by V acts on S and propagates the paving over Z x Z.

The fundamental region captures the idea of the paving in two vectors and a set
of pairs. These pairs are copied across the plane to create the paving for an infinite
board. Assume that p is a pair in the paving, then there exists a p € S such that
p = mwvy + nvy + p where m,n € Z.

In the illustrations for a k-paving, see Figures 3.5, 3.7, V is the two vectors
as shown by the arrows and S is the set of dark pairs. The designation SP, is a
single paving while DP,, is a double paving, where « is some letter. Each illustration
represents four copies of the fundamental region. The dark pairs are the identity
copy and the light pairs are the copies translated by u, v and u + v. For clarity and
simplicity, we have tried to find the smallest fundamental region to represent each
paving.

Definition 3.9 A k-paving kills an animal P if for every animal R such that R ~ P
there is a pair from the paving in R. An animal P is said to be immune to a k-paving
if it is not killed by the k-paving. In Figure 3.3 we see single paving SP killing P; 7.

Definition 3.10 The strategy based on a paving, which is a strategy for the breaker,
is to mark in all cells that are paired with the cell that the maker marked. If fewer

15

CICICIC]

.

Figure 3.4: Winners for the (1,1) (weak) achievement game.

than £ unmarked cells are paired with the maker’s move, the breaker should mark all
of these and place her remaining marks in any unmarked cell. Note this extra mark
will always be in favor of the breaker.

Theorem 3.11 If a k-paving A kills an animal P, then the strategy based on A will
keep the maker from achieving P.

Proof: Suppose the maker achieved P. Since A kills P, there is a pair within P, call
them ¢; and ¢;. Without loss of generality, let us assume that ¢; was marked before
¢;. Then when the maker marked c;, the breaker marked ¢;. Thus the maker could
not have achieved P. O

Proposition 3.12 A descendant of a loser is a loser.

Proof: This is the contrapositive of Proposition 3.5. U

3.2.1 (1,1)-Achievement Game

For the (1,1)-achievement game, all but one question has been answered about whether
a given animal is a winner or a loser [27]. The known winners are in Figure 3.4. The
rest of the polyominoes are losers except possibly for Snaky, F% 11, see Figure 1.1. It
is not known if Snaky is a winner or a loser, see [25, 32, 31] for further results.

Figure 3.5 has some examples of single pavings. Some strategies for the breaker
for the (1,1) game are defined from these pavings. Note that each of these pavings is
a domino paving.

3.2.2 (1,2)-Achievement Game

For the (1,2)-achievement game, the breaker gets two marks and the paving should
reflect this.

A useful way to create a double paving is to combine two single pavings. This
is discernible in DPp. See Figure 3.6 for an example of a double paving defeating a
polyomino.

16

Figure 3.5: Pavings for the (1,1)-achievement game. The dark pairs form S while the
lighter pairs are copies by translation through w,v and u 4+ v. The arrows are the
vectors in V.

Figure 3.6: P35 defeated by DPa. Note that each cell here in DP4 is related to two
other cells while those in SP, are related to only one.

Proposition 3.13 All animals P, ;, for n > 3, are losers in the (1,2)-achievement
game.

Proof: P3; and Pj are losers [36]. Every animal P,; for n > 3 is a descendant of
either P, or P39. Therefore they are all losers by Proposition 3.12. O

17

L]

DPa DPg DPc DPp

i

e [
Wil oo

DP, DP,

Figure 3.7: Some examples of double pavings. The arrows are the elements in V' while
the dark pairs form S. The light pairs are the copies of S through w, v and u + v.

Chapter 4

Set Polyomino Games

4.1 Set Games

Set games are polyomino achievement games in which a set of polyominoes becomes
the goal of the game.

Definition 4.1 A set of animals is a winning set if the maker can always achieve at
least one of the animals in the set. A set is a losing set if it is not a winning set.

The following are reformulations of definitions for single animals.

Definition 4.2 A winning strategy for a set M of animals, with |M| = j in the (1,k)-
achievement game is a finite sequence (s, Sp—1, ..., S1, S0, S—1, - . ., S1—;) of situations
with the following criteria:

(a) C, is a goal animal for i =0, —-1,...,1 — j;

(b) For all i > 0, the situation s; is a k-good join of situations that are equivalent
to deletions of situations si_;, so_j, ..., Si_1;

(¢) G| = 1.

Definition 4.3 A k-paving kills a set if every animal in the set is killed by the k-
paving.

If a set is a winning set then regardless of the breaker’s moves, the maker is
guaranteed to be able to mark cells until one of the animals in the set has been
achieved.

If a set is a losing set then the breaker can keep the maker from achieving any of
the animals in the set. The most common way to determine that a set is losing is to
find a k-paving that defeats all the animals in the set.

We refer to a set as classified if it is determined as winning or losing.

18

19

4.2 Partial Order

Now we establish a relationship between sets of animals. This relationship enables us
to simplify the process of finding all winning sets. To make a set easier to achieve,
we can replace a member animal by an ancestor or add more members to the set.
This motivates the following definition which has been adapted from [9] where it was
called at least and at most.

Definition 4.4 If F = {P, P,,...,P,} and G = {Q1,Qs,...,Q,} are sets of poly-
ominoes, then F is simpler than G if for all) € G there exists a P € F such that
P C Q. We use the notation F < G.

The following proposition is the main reason for Definition 4.4.

Proposition 4.5 Let F < G. If G is a winner, then so ws F. If F is a loser then so
15 G.

Proof: Let F < G be families of polyominoes and suppose that G is a winner. Then
the maker is able to mark one of the animals () € G after finitely many moves. By
definition, there exists a polyomino P € F such that P C @). Thus P is marked at
the same time or earlier than () and therefore F is a winning family.

The second part of the proposition is the contrapositive of the first part. O

Although the second part of the proposition is merely the contrapositive of the
first it is actually the most frequently used portion of the proposition. It is easier to
prove something is a loser than a winner.

Definition 4.6 A family of animals is a non-empty set of animals such that no
member is an ancestor of any other member.

Definition 4.7 Let M be a set of animals. A set £(M) is the legalization of M if
L(M) consists of the minimal animals of M in the ordering L.

Proposition 4.8 The legalization L(M) of a set M is a family.

Proof: Suppose L(M) is not a family. Then there exist distinct animals P and
in £(M) such that P C). However, this means that) is not minimal, which is a
contradiction. U

The notion of legalization relies heavily on the finiteness of polyominoes. If a
polyomino were infinite, then there could be many problems, one of which is that
another infinite polyomino is an ancestor and a descendant, see Figure 4.1 for an
example.

20

Figure 4.1: A set of infinite polyominoes that does not have a legalization.

Remark 4.9 If M and N are sets of polyominoes such that N' C M, then M < N.
That is, a set is simpler than any of its subsets.

Proposition 4.10 Let L be the legalization of a set of polyominoes M. Then L is a
winner if and only if M s a winner.

Proof: First assume that £ is a winner. Since £ C M then M < L, by Remark 4.9,
and therefore M is a winner by Proposition 4.5.

Next assume that M is a winner. By the definition of £, for all) € M there
exists a P € L such that P C). Therefore L < M and so £ is a winner by
Proposition 4.5. U

Proposition 4.11 The relation < is a partial ordering of families of animals in
standard position.

Proof: 1t is clear that < is reflexive and transitive.

To verify antisymmetry, let 7 and G be families such that 7 < G and G < F. Now
if P € F then there exists a () € G such that () C P since G < F. Since F < G then
there exists a P € F such that P C @. Therefore we have that P C @ C P. This
means that P C P and since F is a family it follows that P =P. Thus P = Qeg
so F C G. Similarly, G C F and so F = ¢G. This means the relation is reflexive,
transitive and antisymmetric and is therefore a partial order. U

Remark 4.12 Notice that < is not a partial ordering of sets, even if the animals are
in standard position. A counterexample exists in the proof of 4.10 where it is shown
that M <X £ and £ < M. However, if M has a polyomino that is a descendant of
another member polyomino then £ # M.

4.3 General Results

Proposition 4.13 If a family F is a winner, then P, € F, for some n.

Proof: If P,,; ¢ F for any n € N then {P;5} < F. P;5is aloser by the strategy based
on DPj, see Figure 3.7 for the visualization. Thus F is a loser by Proposition 4.5. [

21

Proposition 4.14 A family of size four or greater does not have any polyominoes of
size 3 or less.

Proof: It P, or P,; were in F, then F would consist of only that animal.

Now, there are two polyominoes of size three. If both of these polyominoes were
in a family F, then the size of the family would be two. Let us therefore assume that
there is only one polyomino of size three in F.

Let us first assume that P;; € F. Since F is a family, then no ancestors of P,
are in F. The only polyominoes that are not ancestors of Ps; are n-Squiggle and
P, 4. If n-Squiggle € F for some n, then no other n-Squiggle is in F. Therefore if
Ps, € F, then the size of F is at most three.

Now assume that P35 € F. Since F is a family, no ancestors of P, € F. The
only polyominoes that are not ancestors of P, are skinny. Therefore if P35, € F,
then the size of F is at most two. O

Remark 4.15 The previous proposition gives us that if F is a family, then if P;; € F
then |F| =3 and if P35 € F then |F| = 2.

Chapter 5

Classification of Families

For the remainder of the thesis we will only be considering the (1,2) game. We will
classify all families of size n, for 1 < n < 4. In each section we will describe a
characterizing set of families C,, containing winners which are less simple than any
size n winner and losers which are simpler than any size n losers. Thus we will show
that for any family F of size n, F is either simpler than a winner from C,, or a losing
family from C,, is simpler than F.

The characterizing set of families will be listed in a table with names and then as
polyominoes to help understand why the families are important. For the families of
size n, the winning families are all size n, while the losing families are at most size
n. Note that these might not necessarily be the simplest families that classify the
size n families. Rather they are the families that are easiest to compare to the size n
families.

5.1 Size One Families

The characterizing set of families for size one families is listed in Table 5.1.

W Ly
Wia | Lig | Lip
Py | Py | P3o

aHE

Table 5.1: Characterizing set C; of winners and losers for size one families.

22

23

> — | -
.2
G
Y
AJ’,AAAAJ’,AA

DPg DPe DPg

Figure 5.1: Double pavings that are used to classify certain families as losers in this
chapter

W, Ly
Wan Lo Lo Lo
Poo1,Pso | Pso | P31, Paa | P31, s
L]

e

Table 5.2: Characterizing set Cy of winners and losers for size two families.

Size one families are completely determined for the (1,2)-achievement game in [36].
It states that the only winning animals are P, ; and P ;. These are both simpler than
Wi 1. Now L, is the set of size three polyominoes. This means that anything of size
three or larger has a member of £, simpler than it. Therefore they are all losers by
Proposition 4.5. Hence W, and L, classify all size one families.

5.2 Size Two Families

The characterizing set of families for size two families is listed in Table 5.2. Note that
Lo1 = L2 and so is a loser.
In Table 5.2 there are infinitely many winning families, one for each n > 3. This

24

topic is discussed and explored further in Chapter 7.
Proposition 5.1 The family Wa, = {Po12.1, P32} is a winner for alln. The families
Loo=A{Ps1,Pia} and Log = {P31,Pys} are losing families.

Proof: W, is winning by the strategy in Figure 5.2. The families £,5 and L, 3 are
defeated by DPp and DPg respectively, see Figure 5.1. 0

Proposition 5.2 FEvery family of size two is completely determined as winning or
losing by comparison to Cs.

Proof: Let F be a family of size two. First note that if P,; ¢ F for some n € N,
then F is a loser by Proposition 4.13. Therefore let us assume that F = {P,1,Q}
for some n > 3.

We will consider cases based on the size of the animals in F.

Case 1: |Q| < 4.
Then @ € {Ps2, Pio, P13, Pya, Pis} since the animals in {Py 1, Poq, P31, Pa1}
are related to P, ; (see Figure B.1).
Case l.a: If Q = P55 then F =Wy, .
Case 1.b: If Q € {Py2, Py3} then Loy, Lo 2 F.
Case 1.c: If Q = Py4 then Lo, < F.
Case 1.d: If Q = P, 5 then Lo35 < F.

Case 2: |Q]| > 4.

Then Q # Py, for k > 5. So Py; T @ for some ¢ > 2. Hence {P, 1, Py} < F
and so F is a loser by Case 1.

O

5.3 Size Three Families

The characterizing set of families for size three families is listed in Table 5.3. In the
table, L3, = L1 and L39 = L, 3 and so they are both losers.

Proposition 5.3 Ws 1 = {Ps 1, Pya, Pis} is a winning family.

Proof: The winning strategy in Figure 5.3 shows that W5 is a winning family. [

25

@ A] Alb Alb b
: - mEEEE| EE-EEEBbL| mm - EEBDbLD,|
u C Chb Cbb
01 —
S_1 So S 59 S3
Alb b] Abb] b]
‘m/m]--m[Bb b b] m/mBb |-[bb]
Chbb| |b] Chbb| |b]
Sk Sp—2
b
b b |b
b b |b
a a |ab |Bf |bc |c c
\AIB a |a -la |AFe] Cdejc |.--ic |c
mcC a a |adf |DEf|cde |c c
Sn—1 Sn
A B C D E F
S1 So S_1 So
S92 So S1 So
Sk S0 Sk—-1 | So
Sn—2 || So Spn—3 | So
Sp—1 || So S0 S0
Sn Sn—2 | Sn—2 | Sn—2 | Sn—1 | Sp—1 | Sn—1
Sn Sn—2 s Sk s S2 S1 S—1
SnM}SO

Figure 5.2: Winning strategy for the family F = {P, 1, P32}.

26

Al Al
1 A Em Bm Bm
Bm AmB 0 1]
EE EE Clam C C C
EE N = = =
S_9 S_1 So S1 S9 S3 Sq4
ade ade |dgi |cdi
ade |ADE ade | adeg Ef'gh cohij | cd

c« W 0 oy | b con

a
b |Be |bd a A ab |abef BFH befi |bcfi
agl
B/'mm[C
b a ab |bfh |bef
S5 S6 S7

S1 S_92 | S_1 | S=2
S9 S_1 | So S_9
S3 S_92 | S—1 | S=1
S4 S_9 | S_1 | S—9
Sy Sq4 S_9 | S_9
S S1 S9 S_9 | S3 | S4
S7 Sy Sy Sy S5 | Se | S6 | S6 | S6 | S6 | Se

1
LS,
=<t

Figure 5.3: Winning strategy for Wiy = {P31, Py, Pis}

27

Ws Ls
W3,1 53,1 53,2 53,3 53,4
P3,17 P4,47 P4,5 P3,2 P3,17 P4,5 P3,17 P4,47 P5,10 P4,17 P4,47 P4,5
[
m| | 0 |
EE EE | (N 0 EE EE EE BN
EE N 01 | EE N EE N

Table 5.3: Characterizing set C3 of winners and losers for size three families.

PI’OpOSitiOH 5.4 The families 53,3 = {P3,1, P474, P5,10} and 6374 = {P471,
Py 4, Pys} are losing families.

Proof: L33 and L3 4 are defeated by DP¢ and DPg respectively, see Figure 5.1. There-

fore they are both losing families.
O

Proposition 5.5 FEvery family of size three is completely determined as winning or
losing by comparison to Cs.

Proof: Let F be a family of size three. If P, ¢ F for some n € N, then L3, < F.
So let us assume that F = {P,,Q, R} for some n > 3.

We will consider cases based on the sizes of () and R. Note that by Remark 4.15,
Q and R 7£ P3,2.

Case 1: |Q| =4 and |R| =14

Then Q, R C {P472, P4,3, P474, P4,5} since the animals in {Pl,la P271, P3,1,
Py} are related to P, ; (see Figure B.1).

Case l.a: If Q = Pyo and R = Py 3 then L3 <X {P5,1} X F.
Case 1.b: If Q € {P472, P4,3} and R = P474 then £373 < {P371, P4,4} < F.
Case l.c: If Q € {P472, P4,3} and R = P475 then 6372 < F.

Case 1.d: If) = P4 and R = P, 5 then if n = 3 we have F = Ws ;. If n > 4 then
Lss X F.

Case 2: |Q| >4 and |R| >5
Since @ and R are not skinny, there is a S C { Py, Py3, Py4, Pys} with |S] < 2
such that & < {Q,R}. Then & = L({P,,}US) X {P,1}US <X F with
1<€ <3,

28

Ly
£4,1 £4,2 £4,3 £4,4 £4,5
P3,2 P3,17P4,5 P3,17P4,47P5,10 P4,17P4,27P4,47P4,5 P4,15P4,37P4,47P4,5
_ I L. _
- u 01 | u u u
n L EE En n Bl BN ..‘.. L
SCRCIC mmm SCooic m mmm

Table 5.4: Characterizing set of winners and losers for size four families.

Case 2a: |E| =1
Then 6372 j bt j F.

Case 2b: |£] =2
Then by Proposition 5.2 and the fact that £ has a polyomino of size four,
52,1,6272 or 6273 j €. Then 6371 = 52,1,6373 = 52,2 and 53,2 = 52,3.
Therefore L3; < Ly; = € X F for some ¢ and j.

Case 2¢: |€] =3
If £ # Ws, then L3; < € < F for some ¢ by Case 1. Then let us consider
when &€ = W ;. Then there exists a ' C () and R' T R such that |Q'| =4
and |R'| = 5. From Figures B.1, B.2, B.3 we can see that either Q)' = P 5
and R = P5,4 or Q, = P474 and R S {P574,P5,8,P579,P5,10}. In the first
case L39 = {Pn1,Pis, Psa} < F. In the second case, one of the following
occurs:
Ls3,Ls4 2 A{Pp1, Pia, Psa} 2 F
Lsq 2 A{Pu1,Pya, Psg} = F (n>4since P,y <X Psg)
L34 < {Pn1,Psa,Pso} = F (n>4since P, < Pso)
L33 < {Pn1,Pia, P10} X F .

5.4 Size Four Families

The characterizing set of families for size four families is listed in Table 5.4. There
are no winners of size four, thus the characterizing set consists of only losers. Note
that L4 = L31,L42 = L32 and L4353 = L33 and so are losers.

Proposition 5.6 The families
Lag=A{Ps1, Pro, Pra, Pys}, Las = {Pu1, Pr3, Paa, Pis}

are losing families.

Proof: L44 and L4 5 are defeated by DPg and DPg respectively, see Figure 5.1. There-

fore they are losing families.

O

Proposition 5.7 Every family of size four is a losing family by comparison to Cy.

Proof: Let F be a family of size four. If P,; ¢ F for some n € N, then £3; < F. So
let us assume that F = {P, 1, P,Q, R} for some n > 3.

By Proposition 4.14 we can assume that n,|P|,|Q|,|R| > 4. Then there is an
S C{Py2, Py3, Pya, Pys} with |S| < 3such that S < {P,Q, R}. Then & = L({P,1}U

S) < {P,}US < Fand1< €] <4

Case 1:

Case 2:

Case 3:

Case 4:

€] = 1.
Then £4,2, £473 j & j F.

€| = 2.
Then one of the following holds:

Ly, La3, Lya S AP, P2} =EF
Ly2,L43,Lss X A{Pp1,Pa3} =EXF
Lig, Lag, Loy < {Pp1,Paa} =EXF
Lyo,Laa,Las =2 {Pp1,Pas} =€ F.

€| = 3.
Then one of the following holds:

Lio,Laz 2 A{Pp1,Pap, Pigt=E X F
Lig, Lag 2 A{Pp1, Pag, Pia} =6 F
Lig, Lag 2 A{Pp1,Pap, Pist=E X F
Lyz, Las 2 {Pp1, Pus, Pia} =6 F
Lyo,Las 2 {Pp1, Pus, Pist =€ F
Lya,Las 2 {Pp1, Pua, Pist =& X F.

€| = 4.

Then one of the following holds:

Ly3 2 A{Pu1, Pra, Pus, Pra} = X F
Lio 2APuy, Puo, Pus, Pisy =& X F

Lyg 2APuy, Pra, Pua, Pist =& X F
£4,5 = {Pn,la Py3, Pyy, P4,5} =& F.

Chapter 6

Further Results

6.1 Size Five Families

Definition 6.1 An exterior boundary cell of an animal is an empty cell that is adja-
cent to a cell in the animal. The boundary O(P) (which is called the exterior boundary
in the literature) is the set of boundary cells. The perimeter of an animal is the size
|0(P)| of the animal’s boundary. For P,, the family of polyominoes of size n, we use
the notation p,(n) = min{|0(P)| | P € P,}.

- [] [] [[
u u EE | HE HE

- m| | u (0 u HE u
P1,1 P2,1 P3,2 P4,3 P4,4 P4,5

Figure 6.1: All polyominoes P € P, such that |0(P)| = p«(n) for n < 4. The
boundary consists of the empty cells.

Definition 6.2 A polyomino is an economical winner if the maker can achieve the

polyomino in as many moves as the size of the polyomino.

Definition 6.3 A family is an economical winner if the maker can win within as
many moves as the size of the largest polyomino in the family.

Proposition 6.4 The family P, is an economical winner for the (1,2) game.

30

31

Proof: The maker’s strategy is to place his mark adjacent to a previous mark of his
own. Let M) represent the animal achieved by the maker after the k™ move. We
will show that |0(M)| is greater than the number of possible marks available to the
breaker. Thus a polyomino of size k 4+ 1 can be achieved, see Figure 6.1. Table 6.1
has the polyominoes P € P, such that |0(P)| = pi(n) for n < 4, along with the
number of possible marks of the breaker. From the table we can see that a size four

polyomino is always achievable. U
k | p«(k) | Breaker’s marks
1 4 2
2 6 4
3 7 6
4 8 8

Table 6.1: p,(k) and the number of possible marks of the breaker in the (1,2)-
achievement game for 1 < k < 4.

PI’OpOSitiOH 6.5 The famzly fn = {Pn,l U (P4\P471)} = {Pn,b P4,2, P4,3, P474, P4,5} 18
a winning family for n > 4.

Proof: Let the maker’s strategy through the first four marks be to mark cells adjacent
to a previous mark of his own. Since P, is a winner, the maker the can achieve one
of Pyy, Py3, P4 or Py and win or achieve Py; in four moves. If the breaker places
her marks in such a way as to leave an open space beside P ; then the maker should
mark in that open space to win. If there is no place to mark, then the marks look
like Figure 6.2. Note that the cells with the white boxes represent the marks of the
breaker. Then the maker can achieve the situation in Figure 6.3. If either A or B are
not marked by the breaker, the maker can then achieve P, , and thus will win. If the
breaker marks in both A and B then the maker can continue to achieve the situation
in Figure 6.3 and will eventually achieve n-Skinny after n moves or Py at some time
when the breaker leaves an opening. U
Note that for n < 3, F, is not a family.

6.2 General Results

These results are all for the (1,2) achievement game on the rectangular board.

Proposition 6.6 If a family G consists of animals of size five or greater, then it is
a losing family.

32

OO |0 O]

D000
omE--mEC

Figure 6.2: Game board position after being able to achieve only P, ;.

LIim)
O

OO

>

il
HB |
C

Figure 6.3: Infinite board situation for a winning strategy of F,.

Proof: It F = {P31, Py}, then F < G. Since F is a loser, by Proposition 5.1, G is a
loser by Proposition 4.5. O

This limitation at size five helps reduce the number of possibly different winning
families. Now the only cases to consider are families that have some of the animals
with size less that five. We will study cases for families that have a specific number
of animals with size less than five.

Proposition 6.7 If F is a family of size greater than one that has only one polyomino
P such that |P| < 5 then F is classified.

Proof: In our cases we will determine that F is winning or we will find a simpler family
S that is losing to classify F as a loser. Note that P ; and %, are not candidates
for any families of size greater than one.

If P, ¢ F for some m, then F is a loser by Proposition 4.13. Thus assume
P, . € F for some m. We have the following cases:

Case A: P = Ps;.
Then F = {P;1, n-squiggle}. So S = {Ps,, Pys} < F.

Case B: P = Ps,.
Then F = {P, 1, P52} and therefore F is a winner.

33

Case C: P € {P4,1, P472,P4,3}.
Then if n-Squiggle ¢ F, S = {P;1} = F. If n-Squiggle € F, then S =
{Ps1,Pis} X F.

Case D: P =P, 4.
Then if n-Squiggle ¢ F then S = {Ps1, P14} < F. If n-Squiggle € F, then
S={Ps1,Pu4,P510} 2 F.

Case E: P = Py5.
Then § = {P3717P4,5} j F.

In each case where S < F,S is a loser, and therefore F is a loser by Proposition 4.5.
Every possible case for F has been determined. O

Chapter 7

Infinitude of Animals and Sets

In this chapter we extend the definition of animal to include polyominoes with in-
finitely many cells. We also extend the defintion of families to allow for these infinite
animals. The relation C is extended in this setting, but as seen in Figure 4.1 this leads
to some unexpected consequences. For example, the infinite animals in the figure are
surprisingly ancestors of each other.

7.1 Transfamilies

Definition 7.1 A transfamily is a family with at least one infinite animal. A family
that has no infinite animals is called a regular family.

The relation < is also extended to this more general setting.

Definition 7.2 A transfamily 7 is a winner if S is a winner for all regular families
S such that S <X T.

Definition 7.3 Let 7 be a transfamily. For each infinite animal 7" € T pick Ry to
be a finite animal such that Ry T T. The set R = {Ry | T is an infinite animal in
T}U{P €T | Pis a finite animal} is called a finite restriction of T.

Proposition 7.4 A transfamily T s a winner if and only if every finite restriction
of T is a winner.

Proof: If T is a winner, then every simpler regular family is a winner. Now every
finite restriction R is simpler than 7, and therefore is a winner.

Let us assume that every finite restriction is a winner and let S be a regular family
such that S < 7. Then for each 7" € T define Ry = T if T is finite otherwise define
Ry to be an element of S such that Ry CT. f R ={Ry | T € T}, then § < R.

34

35

E

Figure 7.1: A winning transfamily.

Figure 7.2: Two infinite losing families.

Now R is a finite restriction of 7 and therefore is a winner. Thus by Proposition 4.5,
S is a winner and hence 7T is a winner. O

Example 7.5 The family in Figure 7.1 is a winning transfamily by Theorem 5.1 and
Proposition 7.4.

7.2 Infinite Families

Example 7.6 The families in Figure 7.2 are infinite losing families by DP,.

Definition 7.7 In Figure 7.2 the polyominoes in the first row are called Cj and the
polyominoes in the second row are called Zj. Their sizes are defined as |Zy| = |Cy| =
k+ 2.

Proposition 7.8 If F, is a finite restriction of I, see Figure 7.4 with P,, € F,
then F,, s a winner.

Proof: From Proposition 6.4, F, is a winner. Therefore for each F,, for n > 4 we can
either achieve P471 or P4,2 or win with P473, P4,4 or P475.

36

DD‘
AlB| [OmmA
BIAB Amm DOm0
emBe| W Almal
A EA NI i 1
A mA S:S AmA|] DOm0
B|mB clmC B

u C/m|] u .
(a) (b) (c) (d)

Figure 7.3: Positions for the infinite transfamily winning strategy.

Let us first consider the case when we have achieved P, ;. Using induction we will
show that we can either achieve P,y or Ly for some 4 < k < n. Figure 7.3(a) shows
the situation before the fifth move of the maker. If the breaker has not marked a cell
containing the letter A, then the maker can mark that cell and achieve Py 3. If the
breaker has not marked a cell containing the letter B, then the maker can mark that
cell and achieve L,. Thus we can assume the eight marks by the breaker are in the
cells with the letters A and B. Now let us assume that we are in situation Figure 7.3(b)
where the maker has marked P;_;; and the empty squares denote the marks of the
breaker. The maker should now mark the cell containing A. If the breaker does not
then mark the cells containing B, the maker can achieve L; by marking one of these.
However, if the breaker does mark both B’s, we are again in situation Figure 7.3(b)
but with P;; now achieved. Thus we will either achieve P, 1 or Ly.

Let us now consider the case in Figure 7.3(c) where the maker has achieved Ly.
If the breaker has no mark in a cell containing the letter A, then the maker can mark
that cell and achieve P, 3.If the breaker has no mark in the cell containing the letter
B, then the maker can mark that cell and achieve P, 5 or Z,.If the breaker has no
mark in a cell containing the letter C, then the maker can mark that cell and achieve
Cy or Zj,. Thus we can assume we are in the situation in Figure 7.3(d). Notice that
the breaker has 2k + 2 marks to place on the board while only 2k + 1 marks are
forced moves. Thus the breaker cannot stop the maker from marking either A or B
since cells A and B are disjoint. In both cases, the maker marks cells to the right of
A or below B, depending on which cell he marked, until he can turn. An inductive
argument similar to the one above shows that in either case he will achieve P,y ; if
he cannot turn, or he will achieve Cj or Z, for some 4 < k < n. O

Corollary 7.9 The infinite transfamily Zy is a winner.

Since a family exists that is an infinite winning family, the goal of listing all
finite winning families is not obtainable. Instead, we should try and find a way to

0

0

O
HE

Figure 7.4: A winning infinite transfamily, Z,.

37

38

characterize them. This prompts the following definition.

Definition 7.10 A family Z is a super n-winning family if for all winning families F
with |F| < n, we have F < T.

Proposition 7.11 The transfamily Z, in Figure 7.4 is a super 4-winning family.

Proof: The winning families of size 1 are ancestors of every polyomino greater than
size 1 and thus are simpler than any winning or losing family. The size 2 winning
family F5, in Figure 5.2, is clearly simpler than Z,. The size 3 winning family F3, in
Figure 5.3, is also clearly simpler than Z,. Since there are no winning size 4 families,
7, is thus a super 4-winning family. O

Proposition 7.12 There is a winning family for each size n € N except for n = 4.

Proof: Let us first note that the previous chapters determine winning families for sizes
1,2,3 and 5. Now from Proposition 7.8 we can see that F,, = {P, 1, Pi3} U {Us, Z |
1 SI{ISTL—2} Define gn:FnU{P5,6}

It is clear that Psg is not related to any animal in F,. Thus G,is a family.
Furthermore G, is a winning family because G, < F,. Note that for n = 3, F; =
Gs = Ws 1. Therefore we are going to focus on those families where n > 4.

It is easy to see that |F,| = 2(n —1) and that |G, | = 2(n—1)+1 for n > 4. Thus
F, is a winning family of even size for all even numbers greater than or equal to 6.
Similarly G, is a winning family of odd size for all odd numbers greater than or equal
to 7. Therefore the only family size for which there is no winner is size 4. U

Chapter 8

Programs

8.1 Polyomino Creation

This program is a support function that is used by other programs. It generates a list
of the polyominoes up to a given size, n. These are ordered by lexicographic order
within each size.

To generate all the polyominoes up to size n, we merely need to add a cell onto
a polyomino of size n — 1. However, we need to consider all possible polyominoes, so
we can’t just add a cell in a single location to each polyomino. Instead we must add
a cell to all possible places that might generate a different polyomino. However, we
don’t want to include too many polyominoes, so we need to normalize each one that
is created and see if we have acquired a new one.

The polyominoes are stored in a vector where each element of the vector is a
duple of coordinates. Each duple signifies the location of each cell in the polyomino.
For the list of polyominoes, there is a vector of the polyomino vectors ordered by
lexicographic order within each size.

To create a new polyomino, the program takes a polyomino of size k£ and for each
cell in the polyomino, adds a cell adjacent to it. On the rectangular board, there are
four ways to be adjacent and each of them is considered. In some cases, a cell was
added in the same location as a previously existing cell. When this happens, the size
of the polyomino has not changed, and therefore a new polyomino could not have
been created.

Let us assume that the cell was placed in a location that did not contain another
cell. This possibly new polyomino is put into standard position and then inserted
into a set. If there is already a polyomino with that standard position then there is
only one copy because of the properties of sets. This allows us to not worry about
generating copies of the same polyomino.

39

40

The program begins with P ;, follows the indicated procedure until all the animals
of size n — 1 have been considered as generators.

There are a few things that could be improved with this program. It currently
does not check to make sure that the polyominoes created do not have holes. This is
not a major concern for this thesis because the polyominoes considered are all size 6
or less. Size 7 is the first size for which there is a polyomino with a hole in it.

Also many of the polyominoes have some symmetry. However, this program does
not take that into account. Therefore many of the adjacent placements could be
ignored if we could in some way use the symmetry to narrow down the options. Since
the polyominoes used here are smaller, this has not been a major concern. Yet if it
could be sped up, it would be easier to check different things.

8.2 Paving Creation

The most important program that we created searches for a paving to a set of polyomi-
noes. The program attempts to generate a double paving based on a size parameter
and a list of polyominoes under consideration. The paving that is generated is output
to a data file that can be used to generate a picture.

Required for the program to run is input that is read from the console. We use a
file that contains all the data to increase the speed of input and simplify the process.
The file consists of integers in a specific order. First are two integers that represent
the size of the board the x size then y size. After that is a list of the polyominoes
under consideration. These integers represent the polyominoes in the list generated
by a separate class described in the previous section.

The polyominoes are retrieved from the program and all flips, rotations and re-
flections for each polyomino are stored in a vector, say Fam. Then there is a pair
placed in the center of the board. Each of these cells is then placed in a vector called
Single which stores all the cells that are related to a single other cell. Since this is a
double paving, there is also a vector called Double that contains the cells related to
two other cells.

Now the program considers all placements of the polyominoes in Fam that share a
paired cell. This ensures that we consider only placements that relate to the portion of
the paving that has already been created. For each of these placements, the program
calculates the number of pairs that can be placed within the polyomino and thus kill
it. It also calculates the distance from the center of the board to the center of the
polyomino. Then the placement that has the least number of options for pairs and is
closest to the center is considered. That is, the first of the killing pairs is suggested
for placement in the paving.

When a pair is in line for placement in the paving, the cells of the pairs are going

41

to be associated with another cell. Thus if either cell is in the Double vector, they
are already associated with two cells and can not have a third association. Therefore
that pair would be invalidated. If neither of the cells are in Double, then they are
moved from Single to Double or into Single, whichever is appropriate.

If there are no pairs, then there is a placement of a polynomial from Fam within
the boarders of the paving which has no pairs which will kill it. This means that the
paving will not defeat the polynomial and therefore the paving is no good. At this
time, the program goes back a level and tries a different pair from the most recent
set of possible pairs.

If there are no placements which do not have a killing pair in them, then the
paving is done and the program exits. However, the outer border of the paving that
is generated is not always killing for every polyomino. This is because the program
exits at the first opportunity and so does not check all of the polyominoes from
Fam. In Figure 8.1 there is an example of output from the program designed to
defeat Py 3, Py 4, Pys, P51 and Ps 5. Notice that there are different patterns within the
paving that was created. Some of them are the same pattern with just a rotation or
skewed and some are completely different. After a paving of this sort is created, we
then go through, look for a pattern that is within the center of the paving (ignoring
about 2 boundary cells) and try to generate a double paving from the idea in the
paving.

In Figure 8.2 there are two pavings that came from Figure 8.1. The first is DPg
which defeats the family that was used to generate the paving, see Table B.1. The
other paving is not given a name because it is not as useful as DPg. When both of the
pavings are run through the paving checking program (see next section), DPg defeats
all but two animals of size four to five. The other one defeats all but five, and two of
the five not defeated are the ones that DPg didn’t defeat. Therefore, the other paving
is not as powerful as DPE.

8.3 Paving Checking

The code in this section is used to determine whether a paving defeats a specific set.

Notation 8.1 |v;| := (|x, |vs|)
(v2,0,) = fon] + e
|P|; := width of a polyomino P in standard position.
|P|, := height of a polyomino P in standard position.

In Figure 8.3 we see vectors that represent the fundamental vectors of a paving.
A paving can be represented by any of 4 pairs of fundamental vectors, a positive
and negative for each of two vectors. Thus there are 4 candidates for the pair of

42

Other paving

I restrict the consideration for fundamental

HEd 1 - lglyl =

“ ﬁl.ll} ﬁ..l.‘ rllllk r.lJ “ .l‘
fJ H " -‘..H ...J ‘....J- " -...J- .%“
..l.‘ B -ﬁllllJ ﬁ..l.‘ r..J- B r..J- B %‘.“ m ||
.l.l.l.‘ B ﬁ..‘ rJ ‘....J B r..J B r. ‘B -
ﬁl.J ‘..J “ “ ‘..l.‘ rllllk r..J “ i L AL .‘
Fan T8 A T T T . e X KT
rk rllk rllk rllll‘ r.. “ L) i L) L]
S NN NN NN SR BN . fJ flx- 5 - ‘BN ll‘
Famin Il zzie 11 2= 2V Ak Ve THEVS THEVED
=AHLTHENHLF, vﬂ&mr.vwnm.r.vwn

L L . J ‘ ‘J .J .J
L L r”x r‘ -xlk m -xlk m]
] | JI | L
= |y |y e VAHF.2VIHEF. Xk
P D T TG T THEX X X o
MHEHAAHLTH %-ll-ll-ll-
L] “ “ “ ‘k rllllJ) i =) B! - LB L) L]
'] r.. rllllJ ﬁ‘ L ‘B L) ‘BN - ‘B .‘
L] [N S N . .J “ rJ B ! .* i L) B! L . xl‘
LA T dHF el T aza0 T azma iz 20 I
L] “ r* “ ﬁ‘ rJ “ rlllll AL L I B! L) AL L) L]
] “ rllllk “ ‘..J 5 - ‘BN L ‘B L) .l‘
L] ...J “ “ ‘k -%.“ m- L L) . %%xl‘
M == = «Wi« lﬁww il

DPe

A paving generated by the paving program on a 30x30 board for

Py3, Pya, Pys, Psy and Ps s

Figure 8.2: Two pavings that can be extracted from Figure 8.1

fundamental vectors for any paving.

Figure 8.1:

43

|or] + [0a] = (ve,vy)
7

Figure 8.3: The fundamental vectors of a 2-paving and their relation to constructs in
the paving checking program. Note that |vg| = (|zkl, |yk|)

]
-
A‘ |
[=1=
o

Figure 8.4: 2-paving as reference for problem locations in a paving.

vectors to those vectors whose angles v are such that 0 < o < 7. This restriction
leaves only two vectors. The vector with the smallest angle « is v; and the other
vy. Therefore there is a unique representation of the fundamental vectors of a paving
that is used by this program.

The size of the board is critical to the success of the program. The board must be
large enough to accommodate all placements of all configurations of each polyomino
under consideration. A problem area with a paving is often found in the boundaries
and corners of adjacent copies of a fundamental region of the paving. In Figure 8.4
the fundamental region of the paving is apparently strong, but in the corner of four
copies, Py 4 can be placed and therefore the paving does not kill P, 4. Thus the board
must be at least twice as tall and twice as wide as any paving to include the corners
and the boundaries in the search region.

To determine the size of the board, a variable max is created such that max =
max{vy, vy, | P|s, | P|y} for each polyomino P in the set under consideration. Thus the
largest measure of any polyomino is a factor in determining the size of the board.
Once this max is generated, the board is generated as a square with sides of length
2xmax + 1. This is at least twice as tall as the largest polyomino in the set and the
largest measure on the paving. The addition of one more unit allows a little extra
room along the edges for checking, but not so much that time is wasted in redundant
placements.

44

Once the size has been determined, the paving is copied along its fundamental
vectors an appropriate number of times in appropriate places so that every cell on
the board is related as defined by the fundamental set. Through this process, cells
outside the required region could have been related. To help with process time, the
program removes any related cells that fall outside the defined square board.

After this clean up process is completed this program proceeds to determine if
the paving under consideration kills the polyominoes under consideration. Each of
the polyominoes is processed singly with all its flips, rotations and reflections. Each
of these transformations is shifted around the board. If there is a placement of
a transformation that does not contain a pair, then the paving does not kill this
polyomino. A data file is output which contains the board and the placement that
was not killed. Then the next polyomino in the set is considered.

If a transformation is killed, the next transformation is considered and shifted
across the board. When all transformations have been shifted and killed, then the
paving kills the polyomino and the next one in the set is considered.

Bibliography

1]

2]
3]

9]

[10]

M. Anderson and F. Harary. Achievement and avoidance games for generating
abelian groups. Internat. J. Game Theory, 16(4):321-325, 1987.

J. Beck. On 3-chromatic hypergraphs. Discrete Math., 24(2):127-137, 1978.

J. Beck. Remarks on positional games. I. Acta Math. Acad. Sci. Hungar., 40(1-
2):65-71, 1982.

J. Beck. Tic-Tac-Toe. In Contemporary combinatorics, volume 10 of Bolyai Soc.
Math. Stud., pages 93-137. Janos Bolyai Math. Soc., Budapest, 2002.

Jens-P. Bode. Strategien Four Aufbauspiele mit mosaik-polyominos. PhD thesis,
Technichen Universitgat Braunschweig, 2000.

Jens-P. Bode and Heiko Harborth. Achievement games on Platonic solids. Bull.
Inst. Combin. Appl., 23:23-32, 1998.

Jens-P. Bode and Heiko Harborth. Hexagonal polyomino achievement. Discrete
Math., 212(1-2):5-18, 2000. Graph theory (Dérnfeld, 1997).

Jens-P. Bode and Heiko Harborth. Triangular mosaic polyomino achievement. In
Proceedings of the Thirty-first Southeastern International Conference on Com-
binatorics, Graph Theory and Computing (Boca Raton, FL, 2000), volume 144,
pages 143-152, 2000.

Jens-P. Bode and Heiko Harborth. Triangle polyomino set achievement. In Pro-
ceedings of the Thirty-second Southeastern International Conference on Combi-
natorics, Graph Theory and Computing (Baton Rouge, LA, 2001), volume 148,
pages 97-101, 2001.

Jens-P. Bode and Heiko Harborth. Achievement games for polyominoes on
Archimedean tessellations. In Mathematical properties of sequences and other
combinatorial structures (Los Angeles, CA, 2002), pages 101-112. Kluwer Acad.
Publ., Boston, MA, 2003.

45

46

[11] Fred Buckley and Frank Harary. Diameter avoidance games for graphs. Bull.
Malaysian Math. Soc. (2), 7(1):29-33, 1984.

[12] Steven C. Cater, Frank Harary, and Robert W. Robinson. One-color triangle
avoidance games. In Proceedings of the Thirty-second Southeastern International

Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA,
2001), volume 153, pages 211-221, 2001.

[13] Gary Chartrand, Frank Harary, Michelle Schultz, and Donald W. VanderJagt.
Achievement and avoidance of a strong orientation of a graph. In Proceedings
of the Twenty-sizth Southeastern International Conference on Combinatorics,
Graph Theory and Computing (Boca Raton, FL, 1995), volume 108, pages 193
203, 1995.

[14] P. Erd6s and J. L. Selfridge. On a combinatorial game. J. Combinatorial Theory
Ser. A, 14:298-301, 1973.

[15] Martin Erickson and Frank Harary. Picasso animal achievement games. Bull.
Malaysian Math. Soc. (2), 6(2):37-44, 1983.

[16] Martin Erickson and Frank Harary. Generalized Ramsey theory. XV. Achieve-
ment and avoidance games for bipartite graphs. In Graph theory, Singapore 1983,
volume 1073 of Lecture Notes in Math., pages 212-216. Springer, Berlin, 1984.

[17] Solomon G. Golomb. Polyominoes: Puzzles, Patterns, Problem and Packings.
Princeton University Press, 1965.

[18] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey theory.
John Wiley & Sons Inc., New York, 1980. Wiley-Interscience Series in Discrete
Mathematics, A Wiley-Interscience Publication.

[19] Frank Harary. Achievement and avoidance games designed from theorems. Rend.
Sem. Mat. Fis. Milano, 51:163-172 (1983), 1981.

[20] Frank Harary. Achievement and avoidance games for graphs. In Graph theory
(Cambridge, 1981), volume 13 of Ann. Discrete Math., pages 111-119. North-
Holland, Amsterdam, 1982.

[21] Frank Harary. An achievement game on a toroidal board. In Graph theory
(Lagow, 1981), volume 1018 of Lecture Notes in Math., pages 55-59. Springer,
Berlin, 1983.

[22] Frank Harary. Achievement and avoidance games on finite configurations. J.
Recreational Math., 16(3):182-187, 1983/84.

[23]

[24]

[25]
[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

47

Frank Harary. Achievement and avoidance games on finite configurations with
one color. J. Recreational Math., 17(4):253-260, 1984/85.

Frank Harary. Arithmetic progression achievement and avoidance games. Men-
emui Mat., 7(3):105-113, 1985.

Frank Harary. Is Snaky a winner? Geombinatorics, 2(4):79-82, 1993.

Frank Harary and Heiko Harborth. Extremal animals. J. Combinatorics Infor-
mation Syst. Sci., 1(1):1-8, 1976.

Frank Harary, Heiko Harborth, and Markus Seemann. Handicap achievement
for polyominoes. In Proceedings of the Thirty-first Southeastern International
Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL,
2000), volume 145, pages 65-80, 2000.

Frank Harary and Christopher Leary. Latin square achievement games. J. Recre-
ational Math., 16(4):241-246, 1983/84.

Frank Harary and Ken Plochinski. On degree achievement and avoidance games
for graphs. Math. Mag., 60(5):316-321, 1987.

Frank Harary, Wolfgang Slany, and Oleg Verbitsky. A symmetric strategy in
graph avoidance games. In More games of no chance (Berkeley, CA, 2000),
volume 42 of Math. Sci. Res. Inst. Publ., pages 369-381. Cambridge Univ. Press,
Cambridge, 2002.

Heiko Harborth and Markus Seemann. Snaky is an edge-to-edge looser. Geom-
binatorics, 5(4):132-136, 1996.

Heiko Harborth and Markus Seemann. Snaky is a paving winner. Bull. Inst.
Combin. Appl., 19:71-78, 1997.

Heiko Harborth and Markus Seemann. Handicap achievement for squares. .J.
Combin. Math. Combin. Comput., 46:47-52, 2003. 15th MCCCC (Las Vegas,
NV, 2001).

Heiko Harborth and Hartmut Weiss. Minimum sets of partial polyominoes. Aus-
tralas. J. Combin., 4:261-268, 1991. Combinatorial mathematics and combina-
torial computing (Palmerston North, 1990).

Andrés Pluhdr. Generalized Harary games. Acta Cybernet., 13(1):77-83, 1997.

Néndor Sieben. Wild polyomino weak (1,2)-achievement games. Preprint.

48

[37] Néndor Sieben. Hexagonal polyomino weak (1,2)-achievement games. Acta
Cybernet., 16(4):579-585, 2004.

[38] Néndor Sieben. Snaky is a 41-dimensional winner. Integers, 4:G5, 6 pp. (elec-
tronic), 2004.

[39] Nédndor Sieben and Elaina Deabay. Polyomino weak achievement games on 3-
dimensional rectangular boards. Discrete Mathematics, 290:61-78, 2005.

Appendix A
C++ Code

A.1 Postscript Generating Code

This code creates the postscript files for polyominoes and k-pavings. The code reads
in an input file that has locations of cells to be created and designations for different
basic cells.

The first value specifies the size of the boxes to be created. Then there is either
a code for a paving to be created or a list of commands. If it is the paving code, the
file has the vectors and the number of copies to generate. The rest of the file contains
the pairs and any further marks in the picture.

If it is not a paving, then there is a code followed by location values ”x y” and if
there is another parameter it is on the end.

// compile with
// g++ -0 boxa.C -1g2

/*
This program takes a file in special format and creates a
postscript graphic’s file

The file starts with an integer for magnification.
Used for spacing to make letters fit within each box.
The default value of 12 is given for an integer value of 0.
17 is usually used when any text in to be inside the box.

The next lines need to start with a number 0-7 for the
following functions
0: An empty box with integer coordinates following in x,y
1: A tiling of one color with integer coordinates of the
two boxes to be linked in x,y and x,y
2: A 2nd tiling color with integer coordinates as previous
3: A box that has been marked by the maker with integer
coordinates x,y
4: A box that has an empty square (to represent the
breaker’s mark) with integer coordinates x,y
5: A box with letters in it with integer coordinates X,y

49

followed by the letters to be placed within the box
6: A horizontal ellipsis with integer coordinates x,y
7: A vertical ellipsis with integer coordinates x,y
8: A paving is to be created
There is no terminating line

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include

<g2.h>
<g2_PS.h>
<math.h>
<set>
<string>
<vector>
<stdio.h>
<iostream>
<algorithm>

using namespace std;

int dev, size;

int color[3];

bool Multi_Paving = false;
double X[2], Y[2];

vector <int> pairs;
vector <double> boxes;

const double num = 1
const double denom =
const double xx = 10;
const double yy = 10

void boxf(double x, double y, double s, bool filled)
{
double points[8];

points[0] = xx + x - s; //Upper left corner of box
points[1] = yy + y + s;

points[2] = xx + x + s; //Upper right corner of box
points[3] = yy + y + s;

points[4] = xx + x + s; //Lower right corner of box
points[5] = yy + y - s;

points[6] = xx + x - s; //Lower left cormer of box
points[7] = yy + y - s;

if (!filled)

g2_polygon(dev, 4, points);
else

g2_filled_polygon(dev, 4, points);
}

void Write(double a, double b, char *t)
{
int i = 0; //counter for length of t
int j = 0; //counter for Capital string
int k = 0; //counter for lower case string

50

float shift; //amount to raise or lower the second row

char g[6];
char h[6];

for (int m = 0; m < 7; m++)

{
glm] = 0; //clear uppercase string
h[m] = 0; //clear lowercase string
}

if (¢[0] == 0)
cout << "Empty string";

for (i; t[i+1] > ’@’; i++); //count size of t

if (i < 3) //if less that 4 characters
g2_string(dev, xx + a - .4, yy + b - .25, t);
else
{
for (int m = 0; m < i + 1; m++)
if ((t[m] >= ’A’) && (t[m] <= ’Z’)) //If a capital

{
gljl = tlml;
j++;
}
else if ((t[m] >= ’a’) && (t[m] <=’2%))
{
hlk] = t[m];
k++;
}
else {}
//nothing
if (G '=0)
{
g2_string(dev, xx + a - .4, yy + b + .1, g);
shift = -.3; //There are caps, shift lower case down
}
else
shift = -.1; //No caps, only shift lower case

g2_string(dev, xx + a - .4, yy + b + shift, h);
}
}

void boxi(int i, int j, char *t)

{
double x = ij;
double y = j;

boxf(x, y, .5, 0); //blank box

if (¢[0] == ’!’) //mark in box
boxf(x, y, .3, 1);
else if (t[0] == ’7’) //breaker’s mark in box
boxf(x, y, .3, 0);
1

else if (t[0] ;
Write(x, y, t);
}

0) //box with writing

51

void domino(double i, double j, double k, double 1)
{

double m = (i + k) / 2.0; // midpoint x-value
double n = (j + 1) / 2.0; // midpoint y-value
double x = xx + num*(i + m) / denom; // end points
double y = yy + num*(j + n) / denom;

double w = xx + num*(k + m) / denom;

double z = yy + num*(1l + n) / denom;

g2_line(dev, x, y, w, z);
}

void MakeDominoes(int colored)
{
double pl, p2, p3, p4;
int i, n, m;

g2_set_line_width(dev, 4);

if (colored)
g2_pen(dev, color[2]);

for (i = 0; i < pairs.size(); i+=4)
domino(pairs[i], pairs[i+1], pairs[i+2], pairs[i+3]);

if (Multi_Paving)

{
g2_pen(dev, color[2]);
n=1;

for (m = 0; m < 2; m++)
{
for (n; n < size/2; n++)
for (i = 0; i < pairs.size(); i+=4)

{
pl = pairs[i] + m * X[0] + n * Y[0];
p2 = pairs[i+1] + m * X[1] + n * Y[1];
p3 = pairs[i+2] + m * X[0] + n * Y[0];
p4 = pairs[i+3] + m * X[1] + n * Y[1];
domino(pl, p2, p3, p4);
¥

n = 0;

}

g2_pen(dev, color[1]);

}

g2_set_line_width(dev, 1);
}

void Arrow(double a, double b)
{

double four_d, first, secnd, middle, j, k, m, n, s, df;

df = xx - .5;

four_d 4.0 * sqrt(a*a + bxb);
middle 1 - sqrt(3.0)/four_d;
first = a / four_d;

secnd = b / four_d;

m = a * middle + df;
n = b * middle + df;
j = a+ df;
k = b + df;
s = abs(a) + abs(b);

g2_filled_triangle(dev, j, k, m + secnd, n - first, m - secnd,
n + first);

g2_line(dev, df, df, j - (a * .3)/s, k - (b * .3)/s);

}

void MakeRegion()
{
int x_min, x_max, n;
double cl, c2;
double m_x;

0;
int(X[0] + Y[0]1);

x_min
X_max

if (Y[0] < 0)

{
x_min = int(Y[0]);
x_max = int(X[0]);
}

m_x = X[1] / X[0];

for (int b = 0; b < X[1] + Y[1]; b++)
for (int a = x_min; a < x_max; a++)
if ((b >=m_x * a) & (b < m_x * (a - Y[0]) + Y[11)
&& (Y[0] * b <= Y[1] * a)
& (Y[0] * (b - X[11) > Y[1] * (a - X[01)))
{
boxes.push_back(a);
boxes.push_back(b);
}

for (int i = 0; i < boxes.size(); i+=2)
boxf (boxes[i], boxes[i+1], .5, 0);

n=1;

if (size > 1)
for (int m = 0; m < 2; mt++)
{
for (n; n < size/2; n++)
for (int i = 0; i < boxes.size(); i+=2)
{
cl = boxes[i] + m * X[0] + n * Y[0];
c2 = boxes[i+1] + m * X[1] + n * Y[1];
boxf(cl, c2, .5, 0);
¥
= 0;

n
}

g2_set_line_width(dev, 1.2);

Arrow(X[0], X[11);
Arrow(Y[0], Y[11);
g2_set_line_width(dev, 1);
}

void ellipsis(double a, double b, int dir)

{
double 1, m, x, y;

X = Xx + a;
y=yy tb;

switch (dir)
{
case 6: //horizontal ellipsis
1l =x+ .25;
m=x - .25;
g2_filled_circle(dev, 1, y, .05);
g2_filled_circle(dev, m, y, .05);

break;

case 7: //vertical ellipsis
1=y + .25
m=y - .25;

g2_filled_circle(dev, x, 1, .05);
g2_filled_circle(dev, x, m, .05);
break;
}
g2_filled_circle(dev, x, y, .05);
}

void readin()
{
typedef set<char> Situations;
vector <Situations> Cells;

int i, j, k, 1, a;

int colored = 0;

char text[20];

double s = 0.5;

double points[8];

double varl, var2;

bool failure = false;
Situations CurCell, All, temp;

while (cin >> a)
{
switch (a)
{
case 0: //empty box
cin >> i >> j;
boxi(i, j, "");
break;
case 2: //1st tiling marker
colored = 1;
case 1: //2nd tiling marker
for (j = 0; j < 4; j++)
{

cin >> i;

pairs.push_back(i);
}
break;
case 3: //Box with maker’s mark
cin > i >> j;
boxi(i, j, "!");
break;
case 4: //Box with breaker’s mark
cin > i >> j;
boxi(i, j, "7");
break;
case 5: //Box with letters
cin >> 1 >> j >> text;
boxi(i, j, text);
CurCell.clear(); //empty the set
for (int n = 0; text[n]; n++)
{
text[n] = tolower(text[n]);
CurCell.insert(text[n]);
¥
Cells.push_back(CurCell);
set_union(CurCell.begin(), CurCell.end(), All.begin(),
inserter(temp, temp.begin()));

All = temp;
temp.clear(); //empty temporary set
break;

case 6: //horizontal ellipsis
case 7: //vertical ellipsis
cin >> varl >> var2;
ellipsis(varl, var2, a);
break;
case 8: //paving
cin >> size >> X[0] >> X[1] >> Y[0] >> Y[1];
if (size > 1)
Multi_Paving = true;

MakeRegion();
break;
default:
cout << "Error, incorrectly formatted file.\n";

}
}

MakeDominoes (colored) ;
int count = All.size(); //total number of letters

for (i = 0; i < Cells.size(); i++)
for (j =1+ 1; j < Cells.size(); j++)
{
set_union(Cells[i].begin(), Cells[i].end(),
Cells[j].begin(), Cells[j].end(),
inserter(temp,temp.begin()));

if (count == temp.size())

cout << "Not a winning strategy: " << i << " " <K< j K
temp.clear();
}

}

int main()
{
dev=g2_open_EPSF("boxa.ps");

All.end(),

endl;

%)

color[0]=g2_ink(dev, 0, 1, 1);//teal tile color
color[1]=g2_ink(dev, 0, 0, 0);//black tile color
color[2]=g2_ink(dev, .6, .6, .6); //grey tile color
g2_set_font_size(dev, 10);

double magnif;

cin >> magnif;
if (magnif == 0) magnif = 12;

g2_set_coordinate_system(dev, 0, O, magnif, magnif);

g2_pen(dev, color[1]);
readin();

g2_close(dev);
return 0;

}

A.2 Paving Code for a Specific

This code generates a 2-paving for a family.

/*

The program is designed to create a double paving that will
establish a strategy for the breaker that will defeat all the
animals in a given family. This program allows for triples

of pavings, that is, three mutually joined cells. A file with
the following structure is needed.

Dimensions of region that are desired to be paved and the
number of the animals in the family that are going to be
considered given in size then lexicographic order.

dim_x dim_y

If a paving is found, the program outputs a file (tilel.dat)
with the dimensions dim_x dim_y then the size of the paving
in number of pairs and a list of ordered pairs that coincide
with the paired cells of a paving.

*/

#include "state.h"
#include "fstream"
#include '"createanimals.h"
#include "STLmore.h"
#include <iostream>

const int xmin = 0;
const int ymin = 0;
int xmax;
int ymax;

int levelmax;

int level = 0;
int tilenum = O;

Tanimal paving;
Tanimal Double;

Family

o6

Tanimal Single;

Tstate state;

Tstates transfers;

Tstatesset shiftedtransfersset;
Tstates shiftedtransfers;

void writetile (void)

{

tilenum++;

ofstream os ("tilel.dat");

os << xmax + 1 << " " << ymax + 1 << " " << paving.size();

for (int i = 0; i < paving.size (); i++)
if (1% 6==0)
os << endl;
os << paving[i][0] << " " << paving[i][1] << " ";
os.close ();

}

void PavePrint()
{

string filename = "level-" + all2string(level) + ".dat";

ofstream os (filename.c_str());
os << xmax + 1 << " " << ymax + 1 << " " << paving.size();
for (int i = 0; i < paving.size (); i++)
if (1% 6 ==20)
os << endl;
os << paving[i][0] << " " << paving[i][1] << " ";
os.close ();

string commandl = "./paving/Shader < " + filename;
string command2 = "mv Pave.ps Level-" + all2string(level) + "

system(commandl.c_str());
system(command2.c_str());
cout << level << endl;

}

bool inside (const Tstate & state)
{
Tcell 11 = llcorner(state);
if (11[0] < xmin) return false;
if (11[1] < ymin) return false;

Tcell ur = urcorner(state);
if (ur[0] > xmax) return false;
if (ur[1] > ymax) return false;

return true;

}

bool killed (const Tstate & state)
{
for (int i = 0; i < paving.size(); i++)
if (binary_search(BE(state.core), paving[i]))
{

.ps

o7

i++;
if (binary_search(BE(state.core), paving[i]))
return true;
}
else
i++;

return false;

}

void findshifts (Tstate & state)
{
Tstate shiftstate;
int i, j;

if (paving.size() == 0)
{
Tcell mid;
mid.push_back((xmin + xmax) / 2);
mid.push_back((ymin + ymax) / 2);
shiftstate = state;
shift(shiftstate, mid);
shiftedtransfersset.insert(shiftstate);
return;

}

set < Tcell> collect;
Tanimal::iterator it;
Tanimal::iterator jt;

collect.clear ();
for (i = 0; i < paving.size(); i++)
for (j = 0; j < state.core.size(); j++)
{
Tcell cell = make_cell (paving[i][0] - state.core[j1[0],
paving[i][1] - state.core[j][1]);
collect.insert (cell);

}
set < Tcell >::iterator itt;

for (itt = collect.begin (); itt != collect.end (); itt++)
{ // go through the shifts
shiftstate = state;
shift (shiftstate, *itt);
if (inside(shiftstate) and ! killed(shiftstate))
shiftedtransfersset.insert (shiftstate);
}
}

bool InSquare(Tcell one, Tcell two)
{
//ordered cells, ie two > one
int diffl = two[0] - one[0];
int diff2 = two[1l] - one[l1];

if (diffil > 2 || diff2 > 2)
return false;
return true;

bool Pavable(Tcell first, Tcell second)
{
if (binary_search(BE(Double), first) || binary_search(BE(Double), second))
return false;
return true;

}

double distance(Tanimal & Poly)
{
double d;
double mid_x, mid_y;
double cnt_x, cnt_y;

int n = Poly.size() - 1;

Tcell 11 Poly[0];
Tcell ur = Poly[n];

mid_x = (11[0] + ur[0])/2.0;
mid_y = (11[1] + ur[1])/2.0;
cnt_x = xmax/2.0;
cnt_y = ymax/2.0;

d = (mid_x - cnt_x)*(mid_x - cnt_x) + (mid_y - cnt_y) * (mid_y - cnt_y);

return d;

}

void findkillers(const Tstate & animal, Tanimal & pairs,
double & dist)

{

int i, j, size;

Tanimal diff, spectre;

set_difference(BE(animal.core), BE(Double), INS(diff));
size = diff.size();
spectre = animal.core;

dist = distance(spectre);

for (i = 0; i < size - 1; i++)
for (j =1+ 1; j < size; j++)
if (InSquare(diff[i],diff[j]))
{
pairs.push_back(diff[i]);
pairs.push_back(diff[j]);
}

void Remove(Tcell Cell)
{

Tanimal::iterator it;

it = lower_bound(BE(Double),Cell);
if (it != Double.end() && *it == Cell)

29

{
Double.erase(it);
insertsorted(Single, Cell);
¥
else
{
it = lower_bound(BE(Single), Cell);
Single.erase(it);
}
}

void Store(Tcell Cell)
{

Tanimal::iterator it;

it = lower_bound(BE(Single), Cell);

if (it != Single.end() && *it == Cell)
{
Single.erase(it);
insertsorted(Double, Cell);
¥

else
insertsorted(Single,Cell);

}

void reduce(Tanimal & bestdom)
{
int i, j;
Tstate statel, state2;

for (i = 0; i < bestdom.size() - 3; i++)
{
statel.core.push_back(bestdom[i]);
statel.core.push_back(bestdom[i + 1]);

normal(statel);

id4;

for (j =i + 1; j < bestdom.size() - 1; j++)
{

state2.core.push_back(bestdom[j]);
state2.core.push_back(bestdom[j + 1]);
normal (state2);
j++;
if (statel == state2)
{
==
bestdom.erase(bestdom.begin() + j);
bestdom.erase(bestdom.begin() + j);
J==s
}

void add_domino ()
{

int i;

level++;

if (level > levelmax)
levelmax = level;

double dist, best_dist;

Tanimal bestdominoes(100);

Tanimal pairs;

Tstate bestposition;

shiftedtransfersset.clear ();

for (i = 0; i < transfers.size (); i++)

findshifts (transfers[i]);
shiftedtransfers.clear();
set2vector (shiftedtransfersset, shiftedtransfers);

if (shiftedtransfers.size() == 0)
{
writetile();
//return;
exit(1);
¥

best_dist = xmax*xmax + ymax*ymax; //clear old distance
for (i = 0; i < shiftedtransfers.size(); i++)

{

pairs.clear();

findkillers(shiftedtransfers[i], pairs, dist);

if (pairs.size() > bestdominoes.size())
continue;
if (pairs.size() == bestdominoes.size() && dist >
best_dist)
continue;
bestdominoes = pairs;
best_dist = dist;

if (bestdominoes.size() == 0)
{
if (level >= levelmax)
PavePrint();
level--;
return;
¥
¥

if (paving.size() == 0){}
//reduce(bestdominoes) ;

for (i = 0; i < bestdominoes.size(); i+=2)
{
paving.push_back(bestdominoes[i]);
paving.push_back(bestdominoes[i + 1]);
Store(bestdominoes[i]);
Store(bestdominoes[i + 1]);
add_domino();

paving.pop_back();
paving.pop_back();

Remove (bestdominoes[i]);
Remove (bestdominoes[i + 1]);

}

62

if (level >= levelmax)
PavePrint();
level--;

}

int main (void)
{
int dim_x, dim_y;
int anim; //# for animal to pave
Tstates animals;
Tstatesset transferset;
createanimals (6, animals);

cin >> dim_x >> dim_y;

Xmax dim_x - 1;
ymax = dim_y - 1;

while (cin >> anim)
{
state = animals[anim];
transferall (state, transferset);
set2vector (transferset, transfers);
transferset.clear();

¥
add_domino ();

return 0;

}

A.3 Created Paving Postscript Code

This code takes output from the paving creation code and generates a post-script
file with special colors. These colors are used to determine the approximate time a
pair was generated by the program. The colors start dark and become lighter as the
pairs progress later into the paving. The colors are first red, then green and finally
blue. This also helps understand if the program is actually creating a paving from
the inside out or if it is instead going to the boundary.

// compile with
// g++ -03 Zpave.C -1g2

/*

This program takes a file in special format and creates a
postscript graphic’s file of a paving file created by the Paver
program.

The format is the dimensions of the region to be drawn in
integers in the following format:

dim_x dim_y

Followed by the number of pairs of cells.

Then a series of pairs of cells.

There is no terminating line

*/

#include <g2.
#include <g2_
#include <mat
#include <set
#include <std

h>
PS.h>
h.h>
>
io.h>

#include <algorithm>

#include <vec

tor>

#include <iostream>

using namespace std;

int dev;

const double
const double
const double
const double

num =
denom
XX =

yy =

7;

= 8;

10;
10;

void box(double x, double y, double s)

{

double points[8];

points[0]
points[1] =

points[2] =
points[3] =

points[4] =
points[5] =

points[6] =
points[7] =

g2_polygon(dev, 4,

}

void domino (i
{
double
double
double
double
double
double

N =< X B B
I

g2_line(dev
}

void readin()

{

= (j

=Yy

xx +
yy +

XX +
yy +

xx +
yy +

xx +
yy +

nt

(i

XX

XX
yy

o+ o+ o+ o+ o+

» Xy

x - s; //Upper left corner of box
y o+ s
x + s; //Upper right corner of box
y + s;
x + s; //Lower right corner of box
y - 8
x - s; //Lower left corner of box
y - s
points);

k) /
1/

2.0;
2.0;

(num*i +
(num*j +
(numxk +
(num*1 +

Y, W, 2);

int color, i, j, k, 1;
int width, height, length, count;
float col[3], dc;

int loc =0

H

i, int j, int k, int 1)

//midpoint x-value
//midpoint y-value
m) / denom; //end points
n) / denom;
m) / denom;
n) / denom;

63

64

cin > width >> height >> length;

count = length / 6 + 1;
dc = .8 / double(count);

for (int m = 0; m < width; m++)
for (int n = 0; n < height; nt++)
box(m, n, .5);

col[0] = .2 - dc;
col[1] = 0;
col[2] = 0;

g2_set_line_width(dev, 3);

while (cin >> i)
{
col[loc]+=dc;

cin >> j >> k > 1;

color = g2_ink(dev, col[0], col[1], col[2]);
g2_pen(dev, color);

domino(i, j, k, 1);

if (col[loc] >= 1)
{
col[loc]
loc++;
col[loc]
¥

}

}

0;

.2 - dc;

int main()
{
dev=g2_open_EPSF("Pave.ps");
g2_set_font_size(dev, 10);
double magnif;

magnif = 10;

g2_set_coordinate_system(dev, 0, O, magnif, magnif);
readin();

g2_close(dev);

return 0;

}

A.4 Paving Checking Code

This code checks a particular 2-paving with a specific animal to see if the animal is
defeated by the 2-paving.

A.4.1 Checking Code

#include <iostream>
#include <fstream>
#include <set>
#include <string>
#include <vector>
#include <algorithm>
#include "state.h"
#include "STLmore.h"

using namespace std;
set < Tstate > transs;
vector < Tcell > pairs;

vector < Tcell > paving;

int R, x[2], y[2];
int num = 0;

void FailPic(Tstate & state)

{

string name;

num++;

name = "fail" + all2string(num) + ".dat";

ofstream os (name.c_str());
os << "Q0" << endl;

for (int i = 0; i < state.core.size(); i++)
os << "3 " << state.core[i][0] << " " << state.core[i][1] << endl;

for (int i = 0; i < paving.size(); i+=2)
os << "1 " << paving[i][0] << " " << paving[iJ[1] << " "
<< paving[i+1][0] << " " << paving[i+1][1] << endl;

os.close ();

}

void CurBoard(void)
{

ofstream os ("board.dat");
os << "O\n"; //boxa

for (int i = 0; i < paving.size(); i+=2)
os << "1 " << paving[i][0] << " " << paving[iJ[1] << " "
<< paving[i+1][0] << " " << paving[i+1][1] << endl;

void CleanUp()
{
vector < Tcell >::iterator ij;
Tcell templ, temp2;

for (i = paving.begin(); i != paving.end(); i++)
{
templ = (*i);

temp2 = (x(i+1));

if ((templ[0] < O &% templ[1] < O && temp2[0] < O && temp2[1] < 0)
(temp1[0] > R && templ[1] > R && temp2[0] > R && temp2[1] > R))

{
paving.erase(i);
paving.erase(i);
i--;
}

else
it+;

}

}

void Region(void)
{
Tcell templ, temp2;
int M_x, M_y, m_y, denom;

denom = x[0] * y[1] - x[1] * y[0];
M_x = (R * (y[1] - y[0]1))/ denom + 1;

M_y (R * x[0])/ denom + 1;
my = - (R * x[1])/ denom - 1;

for (int i = 0; i < pairs.size(); i+=2)
for (int m = 0; m < M_x; mt++)
for (int n = m_y; n < M_y; n++)
{
templ = pairs[i];
temp2 = pairs[i+1];

temp1[0] = temp1[0] + m * x[0] + n * y[0];
templ[1] = templ[1] + m * x[1] + n * y[1];
paving.push_back(templ);

temp2[0] = temp2[0] + m * x[0] + n * y[0];
temp2[1] = temp2[1] + m * x[1] + n * y[1];

paving.push_back(temp2) ;
}

}

bool tiled (Tstate state)
{ // return 1 if tile works for all shifts 0 if not
Tcell C1, C2;
Tstate shstate = state;

for (int j = 0; j < R; j++) // shift the animal around
for (int k = 0; k < R; k++)
{

shstate = state;
shift (shstate, make_cell (k, j));
bool hasinshift = false;
for (int i = 0; i < paving.size (); i += 2)
{
C1l = paving[il;
C2 = paving[i+1];
if (binary_search (BE (shstate.core), C1) and

66

binary_search (BE (shstate.core), C2))
hasinshift = true;
}
if ('hasinshift)
{
FailPic(shstate);

return false;
}
}

return true;

}

bool checkanimal (Tstate & state)
{
set < Tstate >::iterator ij;
transs.clear ();
transferall (state, transs);

for (i = transs.begin (); i '= transs.end (); i++)
if ('tiled ((*1)))
return false; // the transform didn’t have a domino
return true;

}

void ReadIn()
{
int a, b;
ifstream file;
file.open ("tile.dat");

file >> x[0] >> x[1] >> y[0] >> y[1] >> R;

while (file >> a)
{
file >> b;
pairs.push_back (make_cell (a, b));
¥
file.close();

Region();
}

bool loser (Tstate state)
{

bool soreloser = false;

paving.clear();
pairs.clear();

ReadIn();

if (checkanimal (state))
soreloser = true;

return soreloser; //true if paved

}

67

void loserfam(Tfam & family)
{

bool soreloser = false;

paving.clear();
pairs.clear();

ReadIn();

for (int i = 0; i < family.size(); i++)
if (checkanimal (family[i]))
{
soreloser = true;
cout << "Paved" << endl;
}
else
cout << "Not Paved " << i << endl;

A.4.2 Paving File Generator

#include <iostream>
#include <fstream>
#include <vector>
#include "state.h"
#include "STLmore.h"
#include "Tilecheck.h"
#include '"createanimals.h"

using namespace std;

Tstates animals;
vector <Tstate> family;

void MakeFile(char filenamel[])
{
int anim;
int x[2], y[2];
int temp, max, tl, t2, t3, t4;
Tcell corner;
Tstate state;

ifstream infile (filename);
ofstream outfile ("tile.dat");

//ignore the values that are used to print the paving.
infile >> temp >> temp >> temp >> x[0] >> x[1] >> y[0] >> y[1];

if (x[0] + y[0] <= x[1] + y[11)
max = x[1] + y[1];

else
max = x[0] + y[0];

while (cin >> anim)
{

state = animals[anim];

68

69

corner= urcorner(state);

if (corner[0] > max)
max = corner[0];

else if (cornmer[1] > max)
max = corner[1];

family.push_back(state);

}
outfile << x[0] << " " << x[1] << endl;
outfile << y[0] << " " << y[1] << endl;

outfile << 2 * max + 1 << endl;

while (infile >> temp) //readin the 1

{

infile >> t1 >> t2 >> t3 >> t4;

outfile << t1 << " " << £2 << " " K< £3 << " " << t4 << endl;
}

infile.close();
outfile.close();

}

int main(void)
{
char filename[50];
bool paved;

createanimals (6, animals);

cin.getline(filename, 50);
MakeFile(filename) ;

for (int i =0; i < family.size(); i++)
{
paved = loser(family[i]);

if (paved)
cout << "Paved" << endl;
else
cout << "Not Paved " << i << endl;
}
return 0;

}

A.5 PERL Code

This is the PERL code that implemented various other code for tile creation and
checking purposes.

70

A.5.1 Paving Generation

This section contains code which is used to run the paving creating program. The
script gives the program different sized boards to consider up to a certain size. When
a the program finishes, the script creates a postscript file from the output and renames
the file to correspond to the size of the board that had been considered.

#!/usr/bin/perl
$filename = "fam.txt";

for ($i = 20;$i <= 30;$i++)
{
open FAM, ">$filename";
print FAM "$i $i 7 8 9 10 11 13 14 15 19 20";
close (FAM);
$a=qx[nice -15 ./paving/Paver < $filenamel];
print "$i - $i:$a\n";
if ($a = 1) {gx[mv tilel.dat Pave$i-$i.dat];}
else {exit();}
}

A.5.2 Polyominoes

This code is used to generate all the pictures of the polyominoes in the directory
Poly. Most of the programs that create the other pictures is the thesis are structured
similarly.

#!/usr/bin/perl
@names = <./Poly/*.txt>;

system "g++ -04 ../boxa.C -1g2";

foreach $name (@names){
$poly = $name;
$poly = " s [\.txt]1Qg;

$a=qx[./a.out < Poly/$poly.txt];

print "$poly: $a\n";

gx[mv boxa.ps poly-ps/$poly.ps];
}

‘rm boxa.ps‘;

A.5.3 Paving pictures

This code reads all the files in the Tiles directory and generates pictures of the pavings
and pictures that have pavings. Note that the same program is used for tese pictures
and the polyomino pictures.

#!/usr/bin/perl
@names = <./Tiles/*.txt>;

system "g++ -04 ../boxa.C -1g2";

foreach $name (@names){
$tile = $name;
$tile = ~ s [\.txt]1Qg;

$a=qx[./a.out < Tiles/$tile.txt];

print "$tile: $a\n";

gx[mv boxa.ps tile-ps/$tile.ps];
}

‘rm boxa.ps‘;

71

Appendix B

Polyomino information

[P.; [DPa]DPg | DPc | DP, | DPg | DP¢ | DPg | DPy | DP, | DP; |

Py, ° ° °

IS,
o0 o0

Table B.1: Polyominoes and the double pavings that defeat them.

72

73

- -
- m = =]
u o |m EN EE EE
L] L] m mm m EE =
P1,1 P2,1 P3,1 P3,2 P4,1 P4,2 —P4,3 —P4,4 —P4,5

Figure B.1: All congruence classes of polyominoes up to size 4, ordered by size and
then by lexicographic order.

m -

L] Ll Ll o o
m m u u EE =

] u HE (0 u u

J EE N (0 EE EEE
P5,1 P5,2 P5,3 P5,4 P5,5 P5,6
o u o o o
(] 0] 0 (] (]
EEE =N ERE EE EEE HEE
Ll Ll u u u Ll

P57 Psg Ps g Ps 19 Ps 11 Ps 19

Figure B.2: Congruence classes of polyominoes of size 5, ordered by lexicographic
order.

74

L] - - -
Ll Ll Ll Ll o o
Ll Ll Ll u Ll u LIL]
Ll Ll u L] u L] Ll
|] HE] 10]]
Ll L] Ll Ll UL LI] UL
P6,1 P6,2 P6,3 P6,4 P6,5 P6,6 PG,?
- - - 1
Ll u Ll LI o o
| 1] | 1]]
] 1 001 ! 1 1 00
00 | | | 1 EEE EE
P6,8 P6,9 P6,10 P6,11 P6,12 P6,13 P6,14
- - L] -
]] - -]]
10 HE 1]]] 10 HEE
]] 1] EEE EEEE N |
LI] CILIL] Ll LIl I | Ll Ll
P6,15 P6,16 P6,17 P6,18 P6,19 P6,20 P6,21
0 [- | | 0
HE 0 u H u HE u
| | EEE HEE EEE HEE HE
Ll Ll LI LI Ll Ll Ll
P6,22 P6,23 P6,24 P6,25 P6,26 P6,27 P6,28
o o u o o Ll u
]] 1]]] 1
EEE EEEE EE EEEN EEEE EEE EE
u [m N Ll Ll Ll Ll Ll
P6,29 P6,30 P6,31 P6,32 P6,33 P6,34 P6,35

Figure B.3: Congruence classes of polyominoes of size 6, ordered by lexicographic
order.

Py || Pay Pyp Py

Py, Pyo Pyz Piy Pys

Py || Bsg Psp P

Py Psy P53 Psy Pss Psg Ps7 Psg DPsy P51y

Py 3 P53 Psy Ps 7 Ps g Ps 12
Py 4 Ps 4

Pys Ps 4 Psg Psy Psi

Table B.2: Polyomino ancestry for next immediately sized polyominoes.

I6)

