
Re
tangular polyomino set(1,2)-a
hievement gamesby Edgar Lee FisherA ThesisSubmitted in Partial Ful�llmentof the Requirements for the Degree ofMaster of S
ien
ein Mathemati
sNorthern Arizona UniversityAugust 2005
Approved:N�andor Sieben, Ph.D., ChairMi
hael Falk, Ph.D.Stephen E. Wilson, Ph.D.



Abstra
tRe
tangular polyomino set (1,2)-a
hievementgamesEdgar Lee FisherWe determine sets of re
tangular polyominoes as winning or losing inthe (1,2) weak a
hievement game. The (1,2) weak a
hievement game onthe re
tangular board is a game in whi
h two players alternately markunmarked squares on a re
tangular board. The �rst player has one markand the se
ond player has two marks. A relationship between sets isestablished to simplify the pro
ess and narrow the 
lassi�
ations to a fewimportant sets. All sets of size 4 or less are 
ompletely determined aswinning or losing. Some in�nite sets are also determined as winning orlosing as they arise naturally in the theory.
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Chapter 1Introdu
tionTi
-Ta
-Toe is a widely played game in whi
h players alternate pla
ing a mark of theirown 
olor in a previously unmarked square of a 3 � 3 re
tangular board. The �rstplayer to get three marks in a line is the winner. Hypergraph games are generalizationsof this game.A (�nite) hypergraph is a pair (X;F) where X is a �nite set, 
alled the set ofverti
es, and F is an arbitrary family of subsets of X. The elements of F are 
alledhyperedges. In a hypergraph game, two players alternate marking previously unmarkedverti
es of the hypergraph with their respe
tive 
olor. The �rst player to mark allthe verti
es of some element of F is the winner. Hypergraph games are also 
alledstrong positional games.A

ording to the strategy stealing argument the �rst player is guaranteed to eitherwin or draw. To see this let us assume �rst that the se
ond player has a winningstrategy. To begin the game, the �rst player should pla
e a random mark on theboard. Ignoring his �rst mark, the �rst player uses, \steals", the se
ond player'sstrategy. At this point, the �rst player has a winning strategy. At some point, thestrategy may require the �rst player to mark in a 
ell that is already marked byhimself. This 
ould happen if the �rst player's previous mark is in the 
ell that thestrategy requires. Then the �rst player should just make another random mark onthe board. Therefore the �rst player always has some extra mark on the board whi
h
an only help him.Our fo
us of attention is on games between perfe
t players. That is, ea
h playerknows and plays the best possible moves to win or draw in a game. If we 
onsiderless than perfe
t players, then a win is more likely for some players. Thus we arein essen
e 
onsidering the worst 
ase s
enario for the movements between players. Ifthe �rst player has a winning strategy, regardless of the other player's moves, the�rst player will win. However, if the strategy just for
es a draw, a bad play from these
ond player 
an allow the �rst player to win.1



2Sin
e the �rst player 
an always win or draw, the se
ond player 
ould insteadfo
us on keeping the �rst from winning. In this 
ase, the �rst player is 
alled themaker and the se
ond the breaker. These games are 
alled weak hypergraph gamesand will be the fo
us of this thesis. The maker wins in the standard sense while thebreaker wins if she keeps the maker from winning. In this 
ase, there is no draw gameas either the maker a
hieved the goal or the breaker kept him from doing so.Some 
onne
tions between the strong and weak games are 
lear. If the �rst playerhas a winning strategy in the strong game, then that same strategy will guarantee awin in the weak game. However, a win for the maker in the weak game 
an be
ome adraw in the strong game. Similarly, if the breaker has a winning strategy in the weakgame, then she has a drawing strategy in the strong game. However, a draw in thestrong game, for the se
ond player, 
ould be a loss in the weak game for the breaker,as in Ti
-Ta
-Toe.Sin
e both players are defensive and o�ensive in the strong game, there needs tobe a more 
ompli
ated strategy to play the games. In the weak game, the maker
an fo
us on trying to a
hieve his goal and the breaker 
an fo
us on trying to stopthe maker. This simpli�es the ideas for the di�erent strategies. Note, however, thatthis does not redu
e the problem to a trivial question. Instead it fo
uses on di�erenttypes of strategies.For 
ertain weak games, Erd}os and Selfridge found a suÆ
ient 
ondition for these
ond player's win. Given a hypergraph (X;F), ifXP2F 2�jP j < 12then the se
ond player has a winning strategy, [14℄. The argument is based on weightfun
tions that use a potential fun
tion to measure the likely out
ome of the game.The weak game in whi
h the players alternate pla
ing a single mark on the boardis 
alled the (1,1) weak game. This is where the Erd}os, Selfridge result holds. A(p; q) a
hievement game is similar to a (1,1) game, ex
ept that in ea
h turn the �rstplayer pla
es p marks and the se
ond player pla
es q marks. In [3℄, Be
k extendedthe Erd}os, Selfridge result to the (p; q) weak game as: IfXP2F(1 + q)�jP jp < 11 + qthen the se
ond player has a winning strategy. Let d be the number of verti
es in Fand e the maximum number of edges 
ontaining two verti
es of F . Be
k result [3℄says that if XP2F �1 + qp��jP j > p2q2(p+ q)3de



3
Figure 1.1: The polyomino known as Snaky.then the �rst player has a winning strategy. Note that this result 
an give us usefulresults and bounds on 
ertain items, but only when the board is �nite. The resultsfail on the in�nite board.In this thesis, we use an in�nite re
tangular board. The des
ription of the boardand polyominoes (shapes made from 
ells on the board) 
orresponding to this boardare dis
ussed further in Chapter 2. By extending the size of the board, the game inessen
e be
omes a (1,q) game for 
al
ulations. That is, we need to use Be
k's resulton (1,q) game as opposed to the (1,1) result for even rough estimates if we want touse the weight fun
tion. In this fashion, it is determined that Snaky (see Figure 1.1)is a 41-dimensional winner [38℄ although Snaky is in fa
t a 3-dimensional winner [39℄.This invites the study of biased games to help understand the in�nite board. Thatis, games where one player has more moves than the other.A
hievement games are spe
ial hypergraph games when there is a 
on
rete set orobje
t that is trying to be a
hieved. The hyperedges are then de�ned as the goalobje
ts and the set of verti
es, known as the game board, is some superset of theunion of the 
ells of the goal obje
ts.The importan
e of weak a
hievement games is due in part to Ramsey Theory. Inessen
e, Ramsey's Theorem states \For all a; b 2 N there exists an R(a; b), 
alledthe Ramsey Number, su
h that for all n � R(a; b) any simple graph G on n verti
es
ontains either a 
lique on a verti
es or an independent set of b verti
es" [18℄. Then ifthe game board were the edges of a 
omplete graph with n verti
es, Ramsey Theorymight be used to help determine results.Consider the game where players are marking the edges of the 
omplete graphKn and are trying to a
hieve Ka for some a < n. The verti
es of the 
orrespondinghypergraph (X;F) are the edges of Kn. The hyperedges are all the a element subsetsof X.If n � R(a; a) then Ramsey's Theorem guarantees that the game is not a draw. Tosee this, let the players mark edges until all the edges are marked. Then by Ramsey'sTheorem, there is a subgraph isomorphi
 to Ka marked by a single 
olor. This meansone of the players a
hieved Ka. So one of the players has a winning strategy andby the strategy stealing argument, this player must be the �rst player. In the game



4where a = 3 the �rst player wins if n � 6 = R(3; 3).Other a
hievement games 
ould be on a 
omplete graph to a
hieve a spanningtree or a on bipartite graphs [16℄. If the set of verti
es were instead the elements ofa group, then a goal 
ould be to sele
t the generator(s) of the group or subgroup [1℄.Ti
-Ta
-Toe and other polyomino games are also a
hievement games. A
hieve-ment games for polyominoes were introdu
ed by Frank Harary [22, 20, 19, 25℄. The
ells in the polyominoes are the verti
es in a graph and the edges for the hypergraphgame are the group of verti
es that make the shape of the polyomino. Sin
e allisomorphi
 polyominoes are also winners, only one representative edge (polyomino)needs to be given. There 
an be many di�erent versions of polyomino games. Theboard 
an be di�erent shapes: Platoni
 solids [6℄, a torus [21℄, hyperboli
 plane ormultidimensional [39℄. Even if the board is on the plane, it 
an have di�erent tilingsof the plane, whi
h also 
hanges the shape of the polyominoes. The tiling 
ould beby triangles [9, 26℄, re
tangles [26, 36℄, mosai
s [8, 5℄, tessellations [10℄ or hexagons[7, 37℄.A 
onsideration for the in�nite board is taken into a

ount for this thesis. Sin
ethe board is in�nite the play 
ontinues until either the maker has a
tually a
hievedthe goal or the breaker has proven 
on
lusively to the maker that regardless of hismoves, she 
an keep him from winning. Larger board size gives an advantage to themaker as the breaker must now have a strategy that does not just stall the maker butin fa
t stops him. Thus the win of the breaker is a matter of proof sin
e the maker
an play forever.For this reason, the unbiased single polyomino game is diÆ
ult on the in�niteboard. When sets of polyominoes are 
onsidered, it be
omes even more 
omplex.To balan
e the game, we add bias in favor of the breaker. That is, we 
onsider thegame where the breaker gets two marks after every one mark of the maker's. In thisfashion, the number of singleton winning sets is limited.In Chapter 3 the terminology for a single polyomino to be winning or losing forthe (1,1) and (1,2) a
hievement games is dis
ussed. Then Chapter 4 extends theseideas to sets of polyominoes and establishes a relationship between sets to simplifythe 
lassi�
ation of ea
h set as winning or losing. Some basi
 fa
ts about sets are alsodis
ussed. Chapter 5 uses the information from Chapters 3 and 4 to 
lassify all setsup to size 4 as winning or losing. Following this, Chapter 6 gives some basi
 resultsfor size 5 sets and establishes some limitations on sets with spe
i�
 attributes thatmight be larger. The in�nite sized polyominoes and sets are dis
ussed in Chapter 7.Finally, Chapter 8 explores the programs and algorithms that were used to establishsome results and generate the graphi
s throughout the thesis.



Chapter 2Preliminaries
2.1 Game BoardIn this thesis we fo
us on a single board, the re
tangular board. Other boards that
ould have been used are triangular, hexagonal or 
ubi
 (3-dimensional re
tangular)boards [7, 8, 9, 28, 33, 37, 39℄.De�nition 2.1 The re
tangular game board is Z� Z. The geometri
 representationof the game board is the set f[x � 12 ; x + 12 ℄ � [y � 12 ; y + 12 ℄ j (x; y) 2 Z� Zg. Theelements of the board are 
alled 
ells.The re
tangular board is based on a Eu
lidean tiling of the plane. We 
an thinkof it as an in�nite 
hessboard. See Figure 2.1 for a visual representation of the gameboard with 
oordinates imposed.De�nition 2.2 Let 
1 = (x1; y1) and 
2 = (x2; y2) be 
ells of the game board. Wesay 
1 � 
2 if one of the following two 
onditions holds:(a) x1 < x2;(b) x1 = x2 and y1 � y2.This gives the usual lexi
ographi
 ordering of the 
ells of the game board.2.2 PolyominoesIn [17℄, Golomb de�nes a polyomino as \shapes made by 
onne
ting 
ertain numbersof equal-sized squares, ea
h joined together with at least one other square along anedge." However in the games with polyominoes, as des
ribed in [36, 37, 33, 27℄,5
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(-1,-1) (0,-1) (1,-1) (2,-1)

(-1,0) (0,0) (1,0) (2,0)

(-1,1) (0,1) (1,1) (2,1)

(-1,2) (0,2) (1,2) (2,2)

Figure 2.1: Game board with 
oordinates imposed.there are some added 
onstraints to the de�nition. For 
larity, we will de�ne thepolyominoes in the algebrai
 setting.De�nition 2.3 Two 
ells (x1; y1) and (x2; y2) are adja
ent if jx1�x2j+ jy1�y2j = 1.Note that this means one of the 
oordinates of the 
ells are the same and the other
oordinates di�er by one. An equivalent geometri
 des
ription is that the 
ells sharean edge.De�nition 2.4 A path of 
ells is a �nite sequen
e (
1; 
2; : : : ; 
n) of 
ells whose 
on-se
utive 
ells are adja
ent. We say that the path 
onne
ts 
1 to 
n.De�nition 2.5 A subset P of the game board is 
onne
ted if for any two 
ells 
; d 2 Pthere is a path of 
ells in P that 
onne
ts 
 to d.De�nition 2.6 An animal is a �nite 
onne
ted set of 
ells whose 
omplement is also
onne
ted. A polyomino is the geometri
 representation of an animal.This de�nition eliminates polyominoes that are 
onne
ted only through a 
orneror have a hole in them. This is the standard de�nition [36, 39, 9, 34℄ of a polyomino fora
hievement games. In per
olation theory, the term animal is also used to representadja
ent 
ells to simplify the physi
s. Thus the idea of an animal is not new to thes
ienti�
 
ommunity, but in this 
ase is being applied dire
tly to shapes. With thisrestri
tion of the polyominoes, the set of polyominoes to 
onsider is redu
ed to amanageable size. Therefore the questions that arise are not 
ompletely out of rea
h.



7Some of the 
on
epts in this paper were presented originally in a geometri
 setting.However, the algebrai
 representation 
an be more 
onvenient. Therefore we will useboth representations throughout. The polyomino is the geometri
 representation andan animal is the algebrai
 representation. Sin
e polyominoes and animals are in abije
tive 
orresponden
e, they 
an almost always be used inter
hangeably. Hen
e, ifa statement is made about a polyomino or animal then it has a version for the otherunless there is a spe
i�
 di�eren
e noted.De�nition 2.7 The size of an animal P is the number of 
ells within the animal.This we denote by jP j.De�nition 2.8 Two animals P and Q are equivalent if their polyomino representa-tions are 
ongruent. We denote this by P � Q. Note that this is an equivalen
erelation.To 
lassify ea
h equivalen
e 
lass, we need to pi
k a representative in some normalposition from ea
h 
lass. This requires a few de�nitions.De�nition 2.9 Let 
 = (
1; 
2; : : : ; 
m) and d = (d1; d2; : : : ; dn) be �nite sequen
es of
ells. We say 
 < d in the lexi
ographi
 order if one of the following holds:(a) 
i = di for all 1 � i � m and m < n;(b) There exists a k � m su
h that 
i = di for all 1 � i < k and 
k < dk.We say 
 � d if 
 < d or 
 = d.De�nition 2.10 Given two animals P and Q, with lexi
ographi
ally ordered se-quen
es of 
ells (p1; : : : ; pm) and (q1; : : : ; qn) respe
tively. We say that P � Q if(p1; : : : ; pm) � (q1; : : : ; qn) in the lexi
ographi
 order.For the following de�nition we use the notation W = f0; 1; 2; : : :g for the set ofwhole numbers to distinguish from the set of natural numbers N = f1; 2; : : :g.De�nition 2.11 Let P be an animal. The set A = fQ � W � W j Q � Pg is wellordered by �. The minimum element of A is the normal position of P . It is also
alled the normalization of P .To determine the normal position of an animal, all the rotations, re
e
tions and
ombinations of rotations and re
e
tions of the polyomino are determined. Theseare then pla
ed so that all the 
oordinates are non-negative. This is e�e
tively push-ing the polyominoes as "
lose to the axes" as possible. The lexi
ographi
 order ofthese pla
ements is then established. The normal position is the pla
ement with the
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P1;1 P2;1 P3;1 P3;2 P4;1 P4;2 P4;3 P4;4 P4;5L2 L3 T2 C2 Z2

P5;1 P5;2 P5;3 P5;4 P5;5 P5;6L4 C3
P5;7 P5;8 P5;9 P5;10 P5;11 P5;12T3 Z3Figure 2.2: Polyominoes up to size 5 in normal position, ordered by size and then bylexi
ographi
 order.smallest lexi
ographi
 order. Note that sin
e the polyomino is always within the �rstquadrant, all of the 
ells will have non-negative 
oordinates. The algorithm for thispro
edure is dis
ussed in Chapter 8.1.In Figure 2.2 we have a representative in normal position of all the polyominoequivalen
e 
lasses up to size �ve.De�nition 2.12 We denote the set of animals of size n in normal position by Pn =fPn;i j i = 1; 2; : : : ; kng, where kn is the number of animals of size n. The indi
es are
hosen su
h that Pn;i < Pn;j whenever i < j.De�nition 2.13 We 
all the 
olle
tion of animals with n linearly adja
ent 
ellsskinny polyominoes.Note that an animal P is skinny if and only if P � Pn;1 for some n. Also notethat for n = 1 or 2, Pn = fPn;1g.
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� � �Figure 2.3: Squiggle up to size 6.n kn n kn1 1 9 12482 1 10 44603 2 11 160944 5 12 589375 12 13 2171176 35 14 8054757 107 15 30012118 363Table 2.1: The number of non-equivalent animals up to size 15.De�nition 2.14 We 
all the 
olle
tion of animals equivalent to the polyominoesdepi
ted in Figure 2.3 squiggle animals.The total number of non-equivalent polyominoes of a given size has no known
losed formula. From [17℄ we get the table in Figure 2.1 whi
h gives kn for n � 15.Using the algorithm des
ribed in Chapter 8.1, we veri�ed the numbers for n � 7.De�nition 2.15 An animal P is an an
estor of the animal Q, if there is an animalR su
h that R � P and R � Q. This is denoted by P v Q.Proposition 2.16 The an
estor relation is a partial order of the set of normalizedanimals.Proof: It is 
lear that P v P for any animal P . Transitivity is also 
lear.To verify antisymmetry, let P and Q be normalized animals su
h that P v Q andQ v P . Then there exists an R su
h that R � P and R � Q. Also there exists anS � Q su
h that S � P . Therefore we have that P � R � Q � S � P whi
h impliesthat P � Q.Sin
e both P and Q are normalized, this means that P = Q. Therefore therelation is re
exive, transitive and antisymmetri
 and as su
h is a partial order of thenormalized animals. �



Chapter 3Single Animal A
hievement Games
3.1 Winning AnimalsTo 
lassify an animal as a winner, a strategy needs to be determined for the maker tofollow. This strategy must enable the maker to a
hieve the animal regardless of thebreaker's moves, even if the breaker knows the maker's strategy. One way to des
ribea winning strategy is to 
onsider situations, de�ned below. This se
tion fo
uses onthe (1,k)-a
hievement game. That is, the breaker marks k 
ells after every mark ofthe maker.De�nition 3.1 A situation s is a pair (Cs; Ns) where the 
ore Cs and the neighbor-hood Ns are sets of 
ells su
h that Cs \Ns = ;.A situation 
aptures the essen
e of the game board after the maker's move. The
ore 
ontains the maker's marks while the neighborhood is some set of unmarked
ells. This neighborhood 
ontains all the future moves of the maker, thus, the 
ellsare 
ru
ial to the strategy of the maker. See Figure 3.2 for an illustration of somesituations. The 
ore is indi
ated by dark 
ells, while the neighborhood 
onsists of all
ells with letters in them.Capital letters denote 
ells that 
ould be the next mark for the maker. Lower
aseversions of a 
apital letter identify 
ells that must be va
ant in order for the maker'smark on that 
apital letter to be strategi
. Thus the 
hoi
e of moves for the makeris limited by the breaker's moves within the neighborhood.On
e the maker pla
es a mark, he has established a new situation. The 
ore of thisnew situation is some subset of the previous 
ore along with the most re
ent mark.The neighborhood of this new situation is the set of 
ells 
ontaining the lower
aseversion of the 
apital letter marked by the maker.10



11The 
ells outside of the neighborhood are not displayed in a pi
ture of a situationas they do not a�e
t the playability of that situation. Ea
h mark the breaker pla
esoutside the neighborhood, gives the maker more freedom for his next move.De�nition 3.2 Let (C;N) be a situation. If 
 2 C, then (Cnf
g; N [ f
g) is 
alleda deletion of the situation.Noti
e that (Cnf
g)\(N [f
g) = ; so a deletion of a situation is itself a situation.De�nition 3.3 Let S be a set of situations. If C = Ss2S Cs and N = Ss2S Ns aredisjoint then the situation (C;N) is 
alled the join of S. A set K of 
ells is a k-killerset for S if jKj � k and for all s 2 S, K \ Ns 6= ;. If there is no k-killer set for S,then we say the join of S is k-good.In essen
e, a k-killer set is a set of 
ells the breaker intends to mark to preventthe maker from attaining any future situations.De�nition 3.4 A winning position sequen
e for an animal P in the (1,k)-a
hieve-ment game is a �nite sequen
e (sn; sn�1; : : : ; s1; s0) of situations with the following
riteria:(a) Cs0 is the goal animal, P ;(b) For all i, the situation si is a k-good join of situations that are equivalent todeletions of some situations from fs0; s1; : : : ; si�1g;(
) jCsnj = 1.The deletions and joins are 
reated from situations that represent a future state ofthe game board. We start with the animals we want to a
hieve and 
reate deletionsand joins until we have k-good joins. Eventually we want a situation with a singleton
ore. This singleton 
ore is the �rst mark of the maker.See Figure 3.2 for an example of a winning position sequen
e. Figure 3.1 showsthe details to 
reate this winning position sequen
e. It shows deletions, the situationsfrom whi
h these deletions originated and the joins for whi
h they will be used. Thejoins of these deletions are derived by overlapping their 
ores. Sin
e we are playingthe (1,1) game, ea
h join is a 1-good join.Consider situation s1 in Figure 3.2. This is a 1-good join of two deletions of s0be
ause there is no singleton set of 
ells that interse
ts the neighborhoods of bothdeletions. This means that there is no single 
ell the breaker 
an mark to ruin bothof the desired moves of the maker. We 
ould easily 
reate up to a 4-good join withfour deletions of s0. However, this is unne
essary sin
e the breaker only has one markin the (1,1) game. Using a k-good join for k > 1 
reates a situation with a larger



12Original s0 s1 s2
Deletions A

a A a

a a a

A
a a a

B b B b b b
b B b
b b

c c
c C c
c cJoin s1 s2 s3Figure 3.1: Deletions of situations whi
h have been used to 
reate 1-good joins inFigure 3.2.neighborhood that is harder to a
hieve. Future 1-good joins based on deletions ofthese more 
ompli
ated situations would be harder or impossible to 
reate.Now 
onsider situation s3. We 
an see 
ells that have multiple letters in them. Thisis the �rst situation in this winning position sequen
e in whi
h this o

urs. Suppose weonly join the �rst two of the deletions with letters A and B in their neighborhoods.This join is not 1-good sin
e the 
ell 
ontaining \ab" is in the interse
tion of theneighborhoods of both deletions. That is, the breaker 
an mark this 
ell and preventthe maker from a
hieving s2. We 
annot 
reate a 1-good join from any other twodeletions sin
e there is at least one 
ell that ruins any two of the three deletions.Therefore a third deletion is needed to 
reate a 1-good join. There is no need to addfurther deletions to the situation s3 sin
e all we need is a 1-good join in the (1,1)game.In this thesis, the winning position sequen
es are represented with geometri
 il-lustrations of situations. Along with the situations are a table and a 
ow
hart. Thetable shows possible future situations based on the maker's mark. Ea
h row in thetable lists di�erent situations a
hievable from a situation s. If all of a parti
ular letterare free from a breaker's mark, then the maker 
an mark the 
ell with the upper 
aseletter and the situation with that letter in the table has been a
hieved. The 
ow
hartshows the possible paths of the game as it is played.Let us 
onsider a game played using this strategy for the (1,1) game. We shall playthe maker, starting with situation s3, after a single mark. Assume that the breaker
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A B b B b

a A a

c ab a ac b

c Cb Bc b

c b A c b

a a a

s0 s1 s2 s3s A B Cs1 s0 s0s2 s1 s1s3 s2 s2 s2s3 // s2 // s1 // s0Figure 3.2: A winning position sequen
e for the maker in the (1,1)-a
hievement game.Noti
e that any situation si has a row in the table. For example, in s2 we 
an a
hieves1 by marking the 
apital letters A or B.marks in the 
ell with Cb. Then the situations 
orresponding to B and C are notattainable. Therefore we mark in the 
ell 
ontaining A. In the table from Figure 3.2,this 
orresponds to s2, seen in Figure 3.1 in the upper right 
orner. So we have nowa
hieved s2 and it is the breaker's move again. Assume the breaker marks in the 
ell
ontaining A. Then the situation 
orresponding to A is not attainable so we markin the 
ell 
ontaining B. From the table in Figure 3.2 we have a
hieved s1. For thebreaker's �nal move, assume she marks the 
ell 
ontaining B. Then we mark the 
ell
ontaining A and have a
hieved s0 = P4;2, the goal animal.Proposition 3.5 An an
estor of a winning animal is a winner.Proof: Let P and Q be animals su
h that P v Q and Q is a winning animal. Thenthere exists a winning strategy for Q. Using this same strategy the maker 
an a
hieveP at the same time or before he a
hieves Q. �3.2 Losing AnimalsFor an animal to be a loser, the breaker must have a strategy to keep the maker froma
hieving the target animal. The most frequently used tool to de�ne this strategy isa paving.
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Figure 3.3: P5;7 defeated by SPADe�nition 3.6 A k-paving is a symmetri
 relation on Z� Z in whi
h no 
ell in theboard is related to itself and ea
h 
ell is related to at most k other 
ells. Two 
ellsthat are related are 
alled a pair.Remark 3.7 A domino is a pair of adja
ent 
ells. A paving is 
alled a domino pavingif all of its pairs are dominoes. We use the term single paving for a 1-paving and doublepaving for a 2-paving. See Figures 3.5 and 3.7 for illustrations.De�nition 3.8 A fundamental region F of a k-paving is a pair (V; S) where V =fu; vg is a set of two integer ve
tors 
alled the fundamental ve
tors and S is a set ofpairs, the fundamental set. If p is a pair of the paving, then p is in the orbit of anelement of S through a translation by integer linear 
ombinations of the ve
tors inV . The group generated by V a
ts on S and propagates the paving over Z� Z.The fundamental region 
aptures the idea of the paving in two ve
tors and a setof pairs. These pairs are 
opied a
ross the plane to 
reate the paving for an in�niteboard. Assume that p̂ is a pair in the paving, then there exists a p 2 S su
h thatp̂ = mv1 + nv2 + p where m;n 2 Z.In the illustrations for a k-paving, see Figures 3.5, 3.7, V is the two ve
torsas shown by the arrows and S is the set of dark pairs. The designation SP� is asingle paving while DP� is a double paving, where � is some letter. Ea
h illustrationrepresents four 
opies of the fundamental region. The dark pairs are the identity
opy and the light pairs are the 
opies translated by u; v and u+ v. For 
larity andsimpli
ity, we have tried to �nd the smallest fundamental region to represent ea
hpaving.De�nition 3.9 A k-paving kills an animal P if for every animal R su
h that R � Pthere is a pair from the paving in R. An animal P is said to be immune to a k-pavingif it is not killed by the k-paving. In Figure 3.3 we see single paving SPA killing P5;7.De�nition 3.10 The strategy based on a paving, whi
h is a strategy for the breaker,is to mark in all 
ells that are paired with the 
ell that the maker marked. If fewer
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Figure 3.4: Winners for the (1,1) (weak) a
hievement game.than k unmarked 
ells are paired with the maker's move, the breaker should mark allof these and pla
e her remaining marks in any unmarked 
ell. Note this extra markwill always be in favor of the breaker.Theorem 3.11 If a k-paving A kills an animal P , then the strategy based on A willkeep the maker from a
hieving P .Proof: Suppose the maker a
hieved P . Sin
e A kills P , there is a pair within P , 
allthem 
i and 
j. Without loss of generality, let us assume that 
i was marked before
j. Then when the maker marked 
i, the breaker marked 
j. Thus the maker 
ouldnot have a
hieved P . �Proposition 3.12 A des
endant of a loser is a loser.Proof: This is the 
ontrapositive of Proposition 3.5. �3.2.1 (1,1)-A
hievement GameFor the (1,1)-a
hievement game, all but one question has been answered about whethera given animal is a winner or a loser [27℄. The known winners are in Figure 3.4. Therest of the polyominoes are losers ex
ept possibly for Snaky, P6;11, see Figure 1.1. Itis not known if Snaky is a winner or a loser, see [25, 32, 31℄ for further results.Figure 3.5 has some examples of single pavings. Some strategies for the breakerfor the (1,1) game are de�ned from these pavings. Note that ea
h of these pavings isa domino paving.3.2.2 (1,2)-A
hievement GameFor the (1,2)-a
hievement game, the breaker gets two marks and the paving shouldre
e
t this.A useful way to 
reate a double paving is to 
ombine two single pavings. Thisis dis
ernible in DPA. See Figure 3.6 for an example of a double paving defeating apolyomino.
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SPA SPB SPC SPDFigure 3.5: Pavings for the (1,1)-a
hievement game. The dark pairs form S while thelighter pairs are 
opies by translation through u; v and u + v. The arrows are theve
tors in V .

Figure 3.6: P3;2 defeated by DPA. Note that ea
h 
ell here in DPA is related to twoother 
ells while those in SPA are related to only one.Proposition 3.13 All animals Pn;i, for n � 3, are losers in the (1; 2)-a
hievementgame.Proof: P3;1 and P3;2 are losers [36℄. Every animal Pn;i for n > 3 is a des
endant ofeither P3;1 or P3;2. Therefore they are all losers by Proposition 3.12. �
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DPA DPB DPC DPD

DPI DPJFigure 3.7: Some examples of double pavings. The arrows are the elements in V whilethe dark pairs form S. The light pairs are the 
opies of S through u; v and u+ v.



Chapter 4Set Polyomino Games
4.1 Set GamesSet games are polyomino a
hievement games in whi
h a set of polyominoes be
omesthe goal of the game.De�nition 4.1 A set of animals is a winning set if the maker 
an always a
hieve atleast one of the animals in the set. A set is a losing set if it is not a winning set.The following are reformulations of de�nitions for single animals.De�nition 4.2 A winning strategy for a setM of animals, with jM j = j in the (1,k)-a
hievement game is a �nite sequen
e (sn; sn�1; : : : ; s1; s0; s�1; : : : ; s1�j) of situationswith the following 
riteria:(a) Csi is a goal animal for i = 0;�1; : : : ; 1� j;(b) For all i > 0, the situation si is a k-good join of situations that are equivalentto deletions of situations s1�j; s2�j; : : : ; si�1;(
) jCsnj = 1.De�nition 4.3 A k-paving kills a set if every animal in the set is killed by the k-paving.If a set is a winning set then regardless of the breaker's moves, the maker isguaranteed to be able to mark 
ells until one of the animals in the set has beena
hieved.If a set is a losing set then the breaker 
an keep the maker from a
hieving any ofthe animals in the set. The most 
ommon way to determine that a set is losing is to�nd a k-paving that defeats all the animals in the set.We refer to a set as 
lassi�ed if it is determined as winning or losing.18



194.2 Partial OrderNow we establish a relationship between sets of animals. This relationship enables usto simplify the pro
ess of �nding all winning sets. To make a set easier to a
hieve,we 
an repla
e a member animal by an an
estor or add more members to the set.This motivates the following de�nition whi
h has been adapted from [9℄ where it was
alled at least and at most.De�nition 4.4 If F = fP1; P2; : : : ; Pmg and G = fQ1; Q2; : : : ; Qng are sets of poly-ominoes, then F is simpler than G if for all Q 2 G there exists a P 2 F su
h thatP v Q. We use the notation F � G.The following proposition is the main reason for De�nition 4.4.Proposition 4.5 Let F � G. If G is a winner, then so is F . If F is a loser then sois G.Proof: Let F � G be families of polyominoes and suppose that G is a winner. Thenthe maker is able to mark one of the animals Q 2 G after �nitely many moves. Byde�nition, there exists a polyomino P 2 F su
h that P v Q. Thus P is marked atthe same time or earlier than Q and therefore F is a winning family.The se
ond part of the proposition is the 
ontrapositive of the �rst part. �Although the se
ond part of the proposition is merely the 
ontrapositive of the�rst it is a
tually the most frequently used portion of the proposition. It is easier toprove something is a loser than a winner.De�nition 4.6 A family of animals is a non-empty set of animals su
h that nomember is an an
estor of any other member.De�nition 4.7 Let M be a set of animals. A set L(M) is the legalization of M ifL(M) 
onsists of the minimal animals of M in the ordering v.Proposition 4.8 The legalization L(M) of a set M is a family.Proof: Suppose L(M) is not a family. Then there exist distin
t animals P and Qin L(M) su
h that P v Q. However, this means that Q is not minimal, whi
h is a
ontradi
tion. �The notion of legalization relies heavily on the �niteness of polyominoes. If apolyomino were in�nite, then there 
ould be many problems, one of whi
h is thatanother in�nite polyomino is an an
estor and a des
endant, see Figure 4.1 for anexample.
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Figure 4.1: A set of in�nite polyominoes that does not have a legalization.Remark 4.9 IfM and N are sets of polyominoes su
h that N �M, thenM� N .That is, a set is simpler than any of its subsets.Proposition 4.10 Let L be the legalization of a set of polyominoes M. Then L is awinner if and only if M is a winner.Proof: First assume that L is a winner. Sin
e L � M then M� L, by Remark 4.9,and therefore M is a winner by Proposition 4.5.Next assume that M is a winner. By the de�nition of L, for all Q 2 M thereexists a P 2 L su
h that P v Q. Therefore L � M and so L is a winner byProposition 4.5. �Proposition 4.11 The relation � is a partial ordering of families of animals instandard position.Proof: It is 
lear that � is re
exive and transitive.To verify antisymmetry, let F and G be families su
h that F � G and G � F . Nowif P 2 F then there exists a Q 2 G su
h that Q v P sin
e G � F . Sin
e F � G thenthere exists a ~P 2 F su
h that ~P v Q. Therefore we have that ~P v Q v P . Thismeans that ~P v P and sin
e F is a family it follows that ~P = P . Thus P = Q 2 Gso F � G. Similarly, G � F and so F = G. This means the relation is re
exive,transitive and antisymmetri
 and is therefore a partial order. �Remark 4.12 Noti
e that � is not a partial ordering of sets, even if the animals arein standard position. A 
ounterexample exists in the proof of 4.10 where it is shownthat M � L and L � M. However, if M has a polyomino that is a des
endant ofanother member polyomino then L 6=M.4.3 General ResultsProposition 4.13 If a family F is a winner, then Pn;1 2 F , for some n.Proof: If Pn;1 =2 F for any n 2 N then fP3;2g � F . P3;2 is a loser by the strategy basedon DPA, see Figure 3.7 for the visualization. Thus F is a loser by Proposition 4.5. �



21Proposition 4.14 A family of size four or greater does not have any polyominoes ofsize 3 or less.Proof: If P1;1 or P2;1 were in F , then F would 
onsist of only that animal.Now, there are two polyominoes of size three. If both of these polyominoes werein a family F , then the size of the family would be two. Let us therefore assume thatthere is only one polyomino of size three in F .Let us �rst assume that P3;1 2 F . Sin
e F is a family, then no an
estors of P3;1are in F . The only polyominoes that are not an
estors of P3;1 are n-Squiggle andP4;4. If n-Squiggle 2 F for some n, then no other n-Squiggle is in F . Therefore ifP3;1 2 F , then the size of F is at most three.Now assume that P3;2 2 F . Sin
e F is a family, no an
estors of P3;2 2 F . Theonly polyominoes that are not an
estors of P3;2 are skinny. Therefore if P3;2 2 F ,then the size of F is at most two. �Remark 4.15 The previous proposition gives us that if F is a family, then if P3;1 2 Fthen jFj = 3 and if P3;2 2 F then jFj = 2.



Chapter 5Classi�
ation of FamiliesFor the remainder of the thesis we will only be 
onsidering the (1,2) game. We will
lassify all families of size n, for 1 � n � 4. In ea
h se
tion we will des
ribe a
hara
terizing set of families Cn 
ontaining winners whi
h are less simple than anysize n winner and losers whi
h are simpler than any size n losers. Thus we will showthat for any family F of size n;F is either simpler than a winner from Cn or a losingfamily from Cn is simpler than F .The 
hara
terizing set of families will be listed in a table with names and then aspolyominoes to help understand why the families are important. For the families ofsize n, the winning families are all size n, while the losing families are at most sizen. Note that these might not ne
essarily be the simplest families that 
lassify thesize n families. Rather they are the families that are easiest to 
ompare to the size nfamilies.5.1 Size One FamiliesThe 
hara
terizing set of families for size one families is listed in Table 5.1.W1 L1W1;1 L1;1 L1;2P2;1 P3;1 P3;2
Table 5.1: Chara
terizing set C1 of winners and losers for size one families.22
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DPB DPC DPD
DPE DPF DPGFigure 5.1: Double pavings that are used to 
lassify 
ertain families as losers in this
hapter W2 L2W2;n L2;1 L2;2 L2;3Pn+2;1; P3;2 P3;2 P3;1; P4;4 P3;1; P4;5

Table 5.2: Chara
terizing set C2 of winners and losers for size two families.Size one families are 
ompletely determined for the (1,2)-a
hievement game in [36℄.It states that the only winning animals are P1;1 and P2;1. These are both simpler thanW1;1. Now L1 is the set of size three polyominoes. This means that anything of sizethree or larger has a member of L1 simpler than it. Therefore they are all losers byProposition 4.5. Hen
e W1 and L1 
lassify all size one families.5.2 Size Two FamiliesThe 
hara
terizing set of families for size two families is listed in Table 5.2. Note thatL2;1 = L1;2 and so is a loser.In Table 5.2 there are in�nitely many winning families, one for ea
h n � 3. This



24topi
 is dis
ussed and explored further in Chapter 7.Proposition 5.1 The family W2;n = fPn+2;1; P3;2g is a winner for all n. The familiesL2;2 = fP3;1; P4;4g and L2;3 = fP3;1; P4;5g are losing families.Proof: W2;n is winning by the strategy in Figure 5.2. The families L2;2 and L2;3 aredefeated by DPD and DPB respe
tively, see Figure 5.1. �Proposition 5.2 Every family of size two is 
ompletely determined as winning orlosing by 
omparison to C2.Proof: Let F be a family of size two. First note that if Pn;1 =2 F for some n 2 N ,then F is a loser by Proposition 4.13. Therefore let us assume that F = fPn;1; Qgfor some n � 3.We will 
onsider 
ases based on the size of the animals in F .Case 1: jQj � 4.Then Q 2 fP3;2; P4;2; P4;3; P4;4; P4;5g sin
e the animals in fP1;1; P2;1; P3;1; P4;1gare related to Pn;1 (see Figure B.1).Case 1.a: If Q = P3;2 then F =W2;n�2.Case 1.b: If Q 2 fP4;2; P4;3g then L2;2;L2;3 � F .Case 1.
: If Q = P4;4 then L2;2 � F .Case 1.d: If Q = P4;5 then L2;3 � F .Case 2: jQj > 4.Then Q 6= Pk;1 for k � 5. So P4;i v Q for some i � 2. Hen
e fPn;1; P4;ig � Fand so F is a loser by Case 1. �5.3 Size Three FamiliesThe 
hara
terizing set of families for size three families is listed in Table 5.3. In thetable, L3;1 = L1;2 and L3;2 = L2;3 and so they are both losers.Proposition 5.3 W3;1 = fP3;1; P4;4; P4;5g is a winning family.Proof: The winning strategy in Figure 5.3 shows that W3;1 is a winning family. �
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27W3 L3W3;1 L3;1 L3;2 L3;3 L3;4P3;1; P4;4; P4;5 P3;2 P3;1; P4;5 P3;1; P4;4; P5;10 P4;1; P4;4; P4;5
Table 5.3: Chara
terizing set C3 of winners and losers for size three families.Proposition 5.4 The families L3;3 = fP3;1; P4;4; P5;10g and L3;4 = fP4;1;P4;4; P4;5g are losing families.Proof: L3;3 and L3;4 are defeated by DPC and DPE respe
tively, see Figure 5.1. There-fore they are both losing families.�Proposition 5.5 Every family of size three is 
ompletely determined as winning orlosing by 
omparison to C3.Proof: Let F be a family of size three. If Pn;1 =2 F for some n 2 N , then L3;1 � F .So let us assume that F = fPn;1; Q;Rg for some n � 3.We will 
onsider 
ases based on the sizes of Q and R. Note that by Remark 4.15,Q and R 6= P3;2.Case 1: jQj = 4 and jRj = 4Then Q;R � fP4;2; P4;3; P4;4; P4;5g sin
e the animals in fP1;1; P2;1; P3;1;P4;1g are related to Pn;1 (see Figure B.1).Case 1.a: If Q = P4;2 and R = P4;3 then L3;2 � fP3;1g � F .Case 1.b: If Q 2 fP4;2; P4;3g and R = P4;4 then L3;3 � fP3;1; P4;4g � F .Case 1.
: If Q 2 fP4;2; P4;3g and R = P4;5 then L3;2 � F .Case 1.d: If Q = P4;4 and R = P4;5 then if n = 3 we have F = W3;1. If n � 4 thenL3;4 � F .Case 2: jQj � 4 and jRj � 5Sin
e Q and R are not skinny, there is a S � fP4;2; P4;3; P4;4; P4;5g with jSj � 2su
h that S � fQ;Rg. Then E = L(fPn;1g [ S) � fPn;1g [ S � F with1 � E � 3.



28L4L4;1 L4;2 L4;3 L4;4 L4;5P3;2 P3;1; P4;5 P3;1; P4;4; P5;10 P4;1; P4;2; P4;4; P4;5 P4;1; P4;3; P4;4; P4;5
Table 5.4: Chara
terizing set of winners and losers for size four families.Case 2a: jEj = 1Then L3;2 � E � F .Case 2b: jEj = 2Then by Proposition 5.2 and the fa
t that E has a polyomino of size four,L2;1;L2;2 or L2;3 � E . Then L3;1 = L2;1;L3;3 = L2;2 and L3;2 = L2;3.Therefore L3;i � L2;j � E � F for some i and j.Case 2
: jEj = 3If E 6=W3;1 then L3;i � E � F for some i by Case 1. Then let us 
onsiderwhen E =W3;1. Then there exists a Q0 v Q and R0 v R su
h that jQ0j = 4and jR0j = 5. From Figures B.1, B.2, B.3 we 
an see that either Q0 = P4;5and R0 = P5;4 or Q0 = P4;4 and R0 2 fP5;4; P5;8; P5;9; P5;10g. In the �rst
ase L3;2 � fPn;1; P4;5; P5;4g � F . In the se
ond 
ase, one of the followingo

urs:L3;3;L3;4 � fPn;1; P4;4; P5;4g � FL3;4 � fPn;1; P4;4; P5;8g � F (n � 4 sin
e Pn;1 � P5;8)L3;4 � fPn;1; P4;4; P5;9g � F (n � 4 sin
e Pn;1 � P5;9)L3;3 � fPn;1; P4;4; P5;10g � F . �5.4 Size Four FamiliesThe 
hara
terizing set of families for size four families is listed in Table 5.4. Thereare no winners of size four, thus the 
hara
terizing set 
onsists of only losers. Notethat L4;1 = L3;1;L4;2 = L3;2 and L4;3 = L3;3 and so are losers.Proposition 5.6 The familiesL4;4 = fP4;1; P4;2; P4;4; P4;5g;L4;5 = fP4;1; P4;3; P4;4; P4;5g



29are losing families.Proof: L4;4 and L4;5 are defeated by DPF and DPG respe
tively, see Figure 5.1. There-fore they are losing families.�Proposition 5.7 Every family of size four is a losing family by 
omparison to C4.Proof: Let F be a family of size four. If Pn;1 =2 F for some n 2 N , then L3;1 � F . Solet us assume that F = fPn;1; P; Q;Rg for some n � 3.By Proposition 4.14 we 
an assume that n; jP j; jQj; jRj � 4. Then there is anS � fP4;2; P4;3; P4;4; P4;5g with jSj � 3 su
h that S � fP;Q;Rg. Then E = L(fPn;1g[S) � fPn;1g [ S � F and 1 � jEj � 4.Case 1: jEj = 1.Then L4;2;L4;3 � E � F .Case 2: jEj = 2.Then one of the following holds:L4;2;L4;3;L4;4 � fPn;1; P4;2g = E � FL4;2;L4;3;L4;5 � fPn;1; P4;3g = E � FL4;3;L4;4;L4;5 � fPn;1; P4;4g = E � FL4;2;L4;4;L4;5 � fPn;1; P4;5g = E � F .Case 3: jEj = 3.Then one of the following holds:L4;2;L4;3 � fPn;1; P4;2; P4;3g = E � FL4;3;L4;4 � fPn;1; P4;2; P4;4g = E � FL4;2;L4;4 � fPn;1; P4;2; P4;5g = E � FL4;3;L4;5 � fPn;1; P4;3; P4;4g = E � FL4;2;L4;5 � fPn;1; P4;3; P4;5g = E � FL4;4;L4;5 � fPn;1; P4;4; P4;5g = E � F .Case 4: jEj = 4.Then one of the following holds:L4;3 � fPn;1; P4;2; P4;3; P4;4g = E � FL4;2 � fPn;1; P4;2; P4;3; P4;5g = E � FL4;4 � fPn;1; P4;2; P4;4; P4;5g = E � FL4;5 � fPn;1; P4;3; P4;4; P4;5g = E � F . �



Chapter 6Further Results
6.1 Size Five FamiliesDe�nition 6.1 An exterior boundary 
ell of an animal is an empty 
ell that is adja-
ent to a 
ell in the animal. The boundary �(P ) (whi
h is 
alled the exterior boundaryin the literature) is the set of boundary 
ells. The perimeter of an animal is the sizej�(P )j of the animal's boundary. For Pn, the family of polyominoes of size n, we usethe notation p?(n) = minfj�(P )j j P 2 Png.

P1;1 P2;1 P3;2 P4;3 P4;4 P4;5Figure 6.1: All polyominoes P 2 Pn su
h that j�(P )j = p?(n) for n � 4. Theboundary 
onsists of the empty 
ells.De�nition 6.2 A polyomino is an e
onomi
al winner if the maker 
an a
hieve thepolyomino in as many moves as the size of the polyomino.De�nition 6.3 A family is an e
onomi
al winner if the maker 
an win within asmany moves as the size of the largest polyomino in the family.Proposition 6.4 The family P4 is an e
onomi
al winner for the (1; 2) game.30



31Proof: The maker's strategy is to pla
e his mark adja
ent to a previous mark of hisown. Let Mk represent the animal a
hieved by the maker after the kth move. Wewill show that j�(Mk)j is greater than the number of possible marks available to thebreaker. Thus a polyomino of size k + 1 
an be a
hieved, see Figure 6.1. Table 6.1has the polyominoes P 2 Pn su
h that j�(P )j = p?(n) for n � 4, along with thenumber of possible marks of the breaker. From the table we 
an see that a size fourpolyomino is always a
hievable. �k p?(k) Breaker's marks1 4 22 6 43 7 64 8 8Table 6.1: p?(k) and the number of possible marks of the breaker in the (1,2)-a
hievement game for 1 � k � 4.Proposition 6.5 The family Fn = fPn;1 [ (P4nP4;1)g = fPn;1; P4;2; P4;3; P4;4; P4;5g isa winning family for n � 4.Proof: Let the maker's strategy through the �rst four marks be to mark 
ells adja
entto a previous mark of his own. Sin
e P4 is a winner, the maker the 
an a
hieve oneof P4;2; P4;3; P4;4 or P4;5 and win or a
hieve P4;1 in four moves. If the breaker pla
esher marks in su
h a way as to leave an open spa
e beside P4;1 then the maker shouldmark in that open spa
e to win. If there is no pla
e to mark, then the marks looklike Figure 6.2. Note that the 
ells with the white boxes represent the marks of thebreaker. Then the maker 
an a
hieve the situation in Figure 6.3. If either A or B arenot marked by the breaker, the maker 
an then a
hieve P4;2 and thus will win. If thebreaker marks in both A and B then the maker 
an 
ontinue to a
hieve the situationin Figure 6.3 and will eventually a
hieve n-Skinny after n moves or P4;2 at some timewhen the breaker leaves an opening. �Note that for n � 3;Fn is not a family.6.2 General ResultsThese results are all for the (1,2) a
hievement game on the re
tangular board.Proposition 6.6 If a family G 
onsists of animals of size �ve or greater, then it isa losing family.
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B

A

Figure 6.2: Game board position after being able to a
hieve only P4;1.
C

A BFigure 6.3: In�nite board situation for a winning strategy of Fn.Proof: If F = fP3;1; P4;5g, then F � G. Sin
e F is a loser, by Proposition 5.1, G is aloser by Proposition 4.5. �This limitation at size �ve helps redu
e the number of possibly di�erent winningfamilies. Now the only 
ases to 
onsider are families that have some of the animalswith size less that �ve. We will study 
ases for families that have a spe
i�
 numberof animals with size less than �ve.Proposition 6.7 If F is a family of size greater than one that has only one polyominoP su
h that jP j < 5 then F is 
lassi�ed.Proof: In our 
ases we will determine that F is winning or we will �nd a simpler familyS that is losing to 
lassify F as a loser. Note that P1;1 and P2;1 are not 
andidatesfor any families of size greater than one.If Pm;1 =2 F for some m, then F is a loser by Proposition 4.13. Thus assumePm;1 2 F for some m. We have the following 
ases:Case A: P = P3;1.Then F = fP3;1; n-squiggleg. So S = fP3;1; P4;5g � F .Case B: P = P3;2.Then F = fPn;1; P3;2g and therefore F is a winner.



33Case C: P 2 fP4;1; P4;2; P4;3g.Then if n-Squiggle =2 F , S = fP3;1g � F . If n-Squiggle 2 F , then S =fP3;1; P4;5g � F .Case D: P = P4;4.Then if n-Squiggle =2 F then S = fP3;1; P4;4g � F . If n-Squiggle 2 F , thenS = fP3;1; P4;4; P5;10g � F .Case E: P = P4;5.Then S = fP3;1; P4;5g � F .In ea
h 
ase where S � F ;S is a loser, and therefore F is a loser by Proposition 4.5.Every possible 
ase for F has been determined. �



Chapter 7In�nitude of Animals and SetsIn this 
hapter we extend the de�nition of animal to in
lude polyominoes with in-�nitely many 
ells. We also extend the de�ntion of families to allow for these in�niteanimals. The relationv is extended in this setting, but as seen in Figure 4.1 this leadsto some unexpe
ted 
onsequen
es. For example, the in�nite animals in the �gure aresurprisingly an
estors of ea
h other.7.1 TransfamiliesDe�nition 7.1 A transfamily is a family with at least one in�nite animal. A familythat has no in�nite animals is 
alled a regular family.The relation � is also extended to this more general setting.De�nition 7.2 A transfamily T is a winner if S is a winner for all regular familiesS su
h that S � T .De�nition 7.3 Let T be a transfamily. For ea
h in�nite animal T 2 T pi
k RT tobe a �nite animal su
h that RT v T . The set R = fRT j T is an in�nite animal inT g [ fP 2 T j P is a �nite animalg is 
alled a �nite restri
tion of T .Proposition 7.4 A transfamily T is a winner if and only if every �nite restri
tionof T is a winner.Proof: If T is a winner, then every simpler regular family is a winner. Now every�nite restri
tion R is simpler than T , and therefore is a winner.Let us assume that every �nite restri
tion is a winner and let S be a regular familysu
h that S � T . Then for ea
h T 2 T de�ne RT = T if T is �nite otherwise de�neRT to be an element of S su
h that RT v T . If R = fRT j T 2 T g, then S � R.34
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Figure 7.1: A winning transfamily.

� � �
� � �Figure 7.2: Two in�nite losing families.Now R is a �nite restri
tion of T and therefore is a winner. Thus by Proposition 4.5,S is a winner and hen
e T is a winner. �Example 7.5 The family in Figure 7.1 is a winning transfamily by Theorem 5.1 andProposition 7.4.7.2 In�nite FamiliesExample 7.6 The families in Figure 7.2 are in�nite losing families by DPA.De�nition 7.7 In Figure 7.2 the polyominoes in the �rst row are 
alled Ck and thepolyominoes in the se
ond row are 
alled Zk. Their sizes are de�ned as jZkj = jCkj =k + 2.Proposition 7.8 If Fn is a �nite restri
tion of I4, see Figure 7.4 with Pn;1 2 Fnthen Fn is a winner.Proof: From Proposition 6.4, F4 is a winner. Therefore for ea
h Fn for n � 4 we 
aneither a
hieve P4;1 or P4;2 or win with P4;3; P4;4 or P4;5.
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(a) (b) (
) (d)Figure 7.3: Positions for the in�nite transfamily winning strategy.Let us �rst 
onsider the 
ase when we have a
hieved P4;1. Using indu
tion we willshow that we 
an either a
hieve Pn+1;1 or Lk for some 4 � k � n. Figure 7.3(a) showsthe situation before the �fth move of the maker. If the breaker has not marked a 
ell
ontaining the letter A, then the maker 
an mark that 
ell and a
hieve P4;3. If thebreaker has not marked a 
ell 
ontaining the letter B, then the maker 
an mark that
ell and a
hieve L4. Thus we 
an assume the eight marks by the breaker are in the
ells with the letters A and B. Now let us assume that we are in situation Figure 7.3(b)where the maker has marked Pj�1;1 and the empty squares denote the marks of thebreaker. The maker should now mark the 
ell 
ontaining A. If the breaker does notthen mark the 
ells 
ontaining B, the maker 
an a
hieve Lj by marking one of these.However, if the breaker does mark both B's, we are again in situation Figure 7.3(b)but with Pj;1 now a
hieved. Thus we will either a
hieve Pn+1;1 or Lk.Let us now 
onsider the 
ase in Figure 7.3(
) where the maker has a
hieved Lk.If the breaker has no mark in a 
ell 
ontaining the letter A, then the maker 
an markthat 
ell and a
hieve P4;3.If the breaker has no mark in the 
ell 
ontaining the letterB, then the maker 
an mark that 
ell and a
hieve P4;5 or Z2.If the breaker has nomark in a 
ell 
ontaining the letter C, then the maker 
an mark that 
ell and a
hieveCk or Zk. Thus we 
an assume we are in the situation in Figure 7.3(d). Noti
e thatthe breaker has 2k + 2 marks to pla
e on the board while only 2k + 1 marks arefor
ed moves. Thus the breaker 
annot stop the maker from marking either A or Bsin
e 
ells A and B are disjoint. In both 
ases, the maker marks 
ells to the right ofA or below B, depending on whi
h 
ell he marked, until he 
an turn. An indu
tiveargument similar to the one above shows that in either 
ase he will a
hieve Pn+1;1 ifhe 
annot turn, or he will a
hieve Ck or Zk for some 4 � k � n. �Corollary 7.9 The in�nite transfamily I4 is a winner.Sin
e a family exists that is an in�nite winning family, the goal of listing all�nite winning families is not obtainable. Instead, we should try and �nd a way to
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Figure 7.4: A winning in�nite transfamily, I4.
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hara
terize them. This prompts the following de�nition.De�nition 7.10 A family I is a super n-winning family if for all winning families Fwith jFj � n, we have F � I.Proposition 7.11 The transfamily I4 in Figure 7.4 is a super 4-winning family.Proof: The winning families of size 1 are an
estors of every polyomino greater thansize 1 and thus are simpler than any winning or losing family. The size 2 winningfamily F2, in Figure 5.2, is 
learly simpler than I4. The size 3 winning family F3, inFigure 5.3, is also 
learly simpler than I4. Sin
e there are no winning size 4 families,I4 is thus a super 4-winning family. �Proposition 7.12 There is a winning family for ea
h size n 2 N ex
ept for n = 4.Proof: Let us �rst note that the previous 
hapters determine winning families for sizes1,2,3 and 5. Now from Proposition 7.8 we 
an see that Fn = fPn;1; P4;3g [ fUk; Zk j1 � k � n� 2g. De�ne Gn = Fn [ fP5;6g.It is 
lear that P5;6 is not related to any animal in Fn. Thus Gnis a family.Furthermore Gn is a winning family be
ause Gn � Fn. Note that for n = 3;F3 =G3 =W3;1. Therefore we are going to fo
us on those families where n � 4.It is easy to see that jFnj = 2(n� 1) and that jGnj = 2(n� 1)+1 for n � 4. ThusFn is a winning family of even size for all even numbers greater than or equal to 6.Similarly Gn is a winning family of odd size for all odd numbers greater than or equalto 7. Therefore the only family size for whi
h there is no winner is size 4. �



Chapter 8Programs
8.1 Polyomino CreationThis program is a support fun
tion that is used by other programs. It generates a listof the polyominoes up to a given size, n. These are ordered by lexi
ographi
 orderwithin ea
h size.To generate all the polyominoes up to size n, we merely need to add a 
ell ontoa polyomino of size n� 1. However, we need to 
onsider all possible polyominoes, sowe 
an't just add a 
ell in a single lo
ation to ea
h polyomino. Instead we must adda 
ell to all possible pla
es that might generate a di�erent polyomino. However, wedon't want to in
lude too many polyominoes, so we need to normalize ea
h one thatis 
reated and see if we have a
quired a new one.The polyominoes are stored in a ve
tor where ea
h element of the ve
tor is aduple of 
oordinates. Ea
h duple signi�es the lo
ation of ea
h 
ell in the polyomino.For the list of polyominoes, there is a ve
tor of the polyomino ve
tors ordered bylexi
ographi
 order within ea
h size.To 
reate a new polyomino, the program takes a polyomino of size k and for ea
h
ell in the polyomino, adds a 
ell adja
ent to it. On the re
tangular board, there arefour ways to be adja
ent and ea
h of them is 
onsidered. In some 
ases, a 
ell wasadded in the same lo
ation as a previously existing 
ell. When this happens, the sizeof the polyomino has not 
hanged, and therefore a new polyomino 
ould not havebeen 
reated.Let us assume that the 
ell was pla
ed in a lo
ation that did not 
ontain another
ell. This possibly new polyomino is put into standard position and then insertedinto a set. If there is already a polyomino with that standard position then there isonly one 
opy be
ause of the properties of sets. This allows us to not worry aboutgenerating 
opies of the same polyomino.39



40The program begins with P1;1, follows the indi
ated pro
edure until all the animalsof size n� 1 have been 
onsidered as generators.There are a few things that 
ould be improved with this program. It 
urrentlydoes not 
he
k to make sure that the polyominoes 
reated do not have holes. This isnot a major 
on
ern for this thesis be
ause the polyominoes 
onsidered are all size 6or less. Size 7 is the �rst size for whi
h there is a polyomino with a hole in it.Also many of the polyominoes have some symmetry. However, this program doesnot take that into a

ount. Therefore many of the adja
ent pla
ements 
ould beignored if we 
ould in some way use the symmetry to narrow down the options. Sin
ethe polyominoes used here are smaller, this has not been a major 
on
ern. Yet if it
ould be sped up, it would be easier to 
he
k di�erent things.8.2 Paving CreationThe most important program that we 
reated sear
hes for a paving to a set of polyomi-noes. The program attempts to generate a double paving based on a size parameterand a list of polyominoes under 
onsideration. The paving that is generated is outputto a data �le that 
an be used to generate a pi
ture.Required for the program to run is input that is read from the 
onsole. We use a�le that 
ontains all the data to in
rease the speed of input and simplify the pro
ess.The �le 
onsists of integers in a spe
i�
 order. First are two integers that representthe size of the board the x size then y size. After that is a list of the polyominoesunder 
onsideration. These integers represent the polyominoes in the list generatedby a separate 
lass des
ribed in the previous se
tion.The polyominoes are retrieved from the program and all 
ips, rotations and re-
e
tions for ea
h polyomino are stored in a ve
tor, say Fam. Then there is a pairpla
ed in the 
enter of the board. Ea
h of these 
ells is then pla
ed in a ve
tor 
alledSingle whi
h stores all the 
ells that are related to a single other 
ell. Sin
e this is adouble paving, there is also a ve
tor 
alled Double that 
ontains the 
ells related totwo other 
ells.Now the program 
onsiders all pla
ements of the polyominoes in Fam that share apaired 
ell. This ensures that we 
onsider only pla
ements that relate to the portion ofthe paving that has already been 
reated. For ea
h of these pla
ements, the program
al
ulates the number of pairs that 
an be pla
ed within the polyomino and thus killit. It also 
al
ulates the distan
e from the 
enter of the board to the 
enter of thepolyomino. Then the pla
ement that has the least number of options for pairs and is
losest to the 
enter is 
onsidered. That is, the �rst of the killing pairs is suggestedfor pla
ement in the paving.When a pair is in line for pla
ement in the paving, the 
ells of the pairs are going



41to be asso
iated with another 
ell. Thus if either 
ell is in the Double ve
tor, theyare already asso
iated with two 
ells and 
an not have a third asso
iation. Thereforethat pair would be invalidated. If neither of the 
ells are in Double, then they aremoved from Single to Double or into Single, whi
hever is appropriate.If there are no pairs, then there is a pla
ement of a polynomial from Fam withinthe boarders of the paving whi
h has no pairs whi
h will kill it. This means that thepaving will not defeat the polynomial and therefore the paving is no good. At thistime, the program goes ba
k a level and tries a di�erent pair from the most re
entset of possible pairs.If there are no pla
ements whi
h do not have a killing pair in them, then thepaving is done and the program exits. However, the outer border of the paving thatis generated is not always killing for every polyomino. This is be
ause the programexits at the �rst opportunity and so does not 
he
k all of the polyominoes fromFam. In Figure 8.1 there is an example of output from the program designed todefeat P4;3; P4;4; P4;5; P5;1 and P5;5. Noti
e that there are di�erent patterns within thepaving that was 
reated. Some of them are the same pattern with just a rotation orskewed and some are 
ompletely di�erent. After a paving of this sort is 
reated, wethen go through, look for a pattern that is within the 
enter of the paving (ignoringabout 2 boundary 
ells) and try to generate a double paving from the idea in thepaving.In Figure 8.2 there are two pavings that 
ame from Figure 8.1. The �rst is DPEwhi
h defeats the family that was used to generate the paving, see Table B.1. Theother paving is not given a name be
ause it is not as useful as DPE. When both of thepavings are run through the paving 
he
king program (see next se
tion), DPE defeatsall but two animals of size four to �ve. The other one defeats all but �ve, and two ofthe �ve not defeated are the ones that DPE didn't defeat. Therefore, the other pavingis not as powerful as DPE.8.3 Paving Che
kingThe 
ode in this se
tion is used to determine whether a paving defeats a spe
i�
 set.Notation 8.1 jvij := (jxij; jyij)(vx; vy) := jv1j+ jv2jjP jx := width of a polyomino P in standard position.jP jy := height of a polyomino P in standard position.In Figure 8.3 we see ve
tors that represent the fundamental ve
tors of a paving.A paving 
an be represented by any of 4 pairs of fundamental ve
tors, a positiveand negative for ea
h of two ve
tors. Thus there are 4 
andidates for the pair of
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Figure 8.1: A paving generated by the paving program on a 30x30 board forP4;3; P4;4; P4;5; P5;1 and P5;5
DPE Other pavingFigure 8.2: Two pavings that 
an be extra
ted from Figure 8.1fundamental ve
tors for any paving. I restri
t the 
onsideration for fundamental
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v1 = jv1jjv2jv2
jv1j+ jv2j = (vx; vy)

Figure 8.3: The fundamental ve
tors of a 2-paving and their relation to 
onstru
ts inthe paving 
he
king program. Note that jvkj = (jxkj; jykj)
Figure 8.4: 2-paving as referen
e for problem lo
ations in a paving.ve
tors to those ve
tors whose angles � are su
h that 0 � � < �2 . This restri
tionleaves only two ve
tors. The ve
tor with the smallest angle � is v1 and the otherv2. Therefore there is a unique representation of the fundamental ve
tors of a pavingthat is used by this program.The size of the board is 
riti
al to the su

ess of the program. The board must belarge enough to a

ommodate all pla
ements of all 
on�gurations of ea
h polyominounder 
onsideration. A problem area with a paving is often found in the boundariesand 
orners of adja
ent 
opies of a fundamental region of the paving. In Figure 8.4the fundamental region of the paving is apparently strong, but in the 
orner of four
opies, P4;4 
an be pla
ed and therefore the paving does not kill P4;4. Thus the boardmust be at least twi
e as tall and twi
e as wide as any paving to in
lude the 
ornersand the boundaries in the sear
h region.To determine the size of the board, a variable max is 
reated su
h that max =maxfvx; vy; jP jx; jP jyg for ea
h polyomino P in the set under 
onsideration. Thus thelargest measure of any polyomino is a fa
tor in determining the size of the board.On
e this max is generated, the board is generated as a square with sides of length2 �max+ 1. This is at least twi
e as tall as the largest polyomino in the set and thelargest measure on the paving. The addition of one more unit allows a little extraroom along the edges for 
he
king, but not so mu
h that time is wasted in redundantpla
ements.



44On
e the size has been determined, the paving is 
opied along its fundamentalve
tors an appropriate number of times in appropriate pla
es so that every 
ell onthe board is related as de�ned by the fundamental set. Through this pro
ess, 
ellsoutside the required region 
ould have been related. To help with pro
ess time, theprogram removes any related 
ells that fall outside the de�ned square board.After this 
lean up pro
ess is 
ompleted this program pro
eeds to determine ifthe paving under 
onsideration kills the polyominoes under 
onsideration. Ea
h ofthe polyominoes is pro
essed singly with all its 
ips, rotations and re
e
tions. Ea
hof these transformations is shifted around the board. If there is a pla
ement ofa transformation that does not 
ontain a pair, then the paving does not kill thispolyomino. A data �le is output whi
h 
ontains the board and the pla
ement thatwas not killed. Then the next polyomino in the set is 
onsidered.If a transformation is killed, the next transformation is 
onsidered and shifteda
ross the board. When all transformations have been shifted and killed, then thepaving kills the polyomino and the next one in the set is 
onsidered.
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Appendix AC++ Code
A.1 Posts
ript Generating CodeThis 
ode 
reates the posts
ript �les for polyominoes and k-pavings. The 
ode readsin an input �le that has lo
ations of 
ells to be 
reated and designations for di�erentbasi
 
ells.The �rst value spe
i�es the size of the boxes to be 
reated. Then there is eithera 
ode for a paving to be 
reated or a list of 
ommands. If it is the paving 
ode, the�le has the ve
tors and the number of 
opies to generate. The rest of the �le 
ontainsthe pairs and any further marks in the pi
ture.If it is not a paving, then there is a 
ode followed by lo
ation values "x y" and ifthere is another parameter it is on the end.// 
ompile with// g++ -O boxa.C -lg2/*This program takes a file in spe
ial format and 
reates aposts
ript graphi
's fileThe file starts with an integer for magnifi
ation.Used for spa
ing to make letters fit within ea
h box.The default value of 12 is given for an integer value of 0.17 is usually used when any text in to be inside the box.The next lines need to start with a number 0-7 for thefollowing fun
tions0: An empty box with integer 
oordinates following in x,y1: A tiling of one 
olor with integer 
oordinates of thetwo boxes to be linked in x,y and x,y2: A 2nd tiling 
olor with integer 
oordinates as previous3: A box that has been marked by the maker with integer
oordinates x,y4: A box that has an empty square (to represent thebreaker's mark) with integer 
oordinates x,y5: A box with letters in it with integer 
oordinates x,y49



50followed by the letters to be pla
ed within the box6: A horizontal ellipsis with integer 
oordinates x,y7: A verti
al ellipsis with integer 
oordinates x,y8: A paving is to be 
reatedThere is no terminating line*/#in
lude <g2.h>#in
lude <g2_PS.h>#in
lude <math.h>#in
lude <set>#in
lude <string>#in
lude <ve
tor>#in
lude <stdio.h>#in
lude <iostream>#in
lude <algorithm>using namespa
e std;int dev, size;int 
olor[3℄;bool Multi_Paving = false;double X[2℄, Y[2℄;ve
tor <int> pairs;ve
tor <double> boxes;
onst double num = 1;
onst double denom = 2;
onst double xx = 10;
onst double yy = 10;void boxf(double x, double y, double s, bool filled){double points[8℄;points[0℄ = xx + x - s; //Upper left 
orner of boxpoints[1℄ = yy + y + s;points[2℄ = xx + x + s; //Upper right 
orner of boxpoints[3℄ = yy + y + s;points[4℄ = xx + x + s; //Lower right 
orner of boxpoints[5℄ = yy + y - s;points[6℄ = xx + x - s; //Lower left 
orner of boxpoints[7℄ = yy + y - s;if (!filled)g2_polygon(dev, 4, points);elseg2_filled_polygon(dev, 4, points);}void Write(double a, double b, 
har *t){int i = 0; //
ounter for length of tint j = 0; //
ounter for Capital stringint k = 0; //
ounter for lower 
ase string



51float shift; //amount to raise or lower the se
ond row
har g[6℄;
har h[6℄;for (int m = 0; m < 7; m++){g[m℄ = 0; //
lear upper
ase stringh[m℄ = 0; //
lear lower
ase string}if (t[0℄ == 0)
out << "Empty string";for (i; t[i+1℄ > '�'; i++); //
ount size of tif (i < 3) //if less that 4 
hara
tersg2_string(dev, xx + a - .4, yy + b - .25, t);else{for (int m = 0; m < i + 1; m++)if ((t[m℄ >= 'A') && (t[m℄ <= 'Z')) //If a 
apital{g[j℄ = t[m℄;j++;}else if ((t[m℄ >= 'a') && (t[m℄ <='z')){h[k℄ = t[m℄;k++;}else {}//nothingif (j != 0){g2_string(dev, xx + a - .4, yy + b + .1, g);shift = -.3; //There are 
aps, shift lower 
ase down}elseshift = -.1; //No 
aps, only shift lower 
aseg2_string(dev, xx + a - .4, yy + b + shift, h);}}void boxi(int i, int j, 
har *t){double x = i;double y = j;boxf(x, y, .5, 0); //blank boxif (t[0℄ == '!') //mark in boxboxf(x, y, .3, 1);else if (t[0℄ == '?') //breaker's mark in boxboxf(x, y, .3, 0);else if (t[0℄ != 0) //box with writingWrite(x, y, t);}



52void domino(double i, double j, double k, double l){double m = (i + k) / 2.0; // midpoint x-valuedouble n = (j + l) / 2.0; // midpoint y-valuedouble x = xx + num*(i + m) / denom; // end pointsdouble y = yy + num*(j + n) / denom;double w = xx + num*(k + m) / denom;double z = yy + num*(l + n) / denom;g2_line(dev, x, y, w, z);}void MakeDominoes(int 
olored){double p1, p2, p3, p4;int i, n, m;g2_set_line_width(dev, 4);if (
olored)g2_pen(dev, 
olor[2℄);for (i = 0; i < pairs.size(); i+=4)domino(pairs[i℄, pairs[i+1℄, pairs[i+2℄, pairs[i+3℄);if (Multi_Paving){g2_pen(dev, 
olor[2℄);n = 1;for (m = 0; m < 2; m++){for (n; n < size/2; n++)for (i = 0; i < pairs.size(); i+=4){p1 = pairs[ i ℄ + m * X[0℄ + n * Y[0℄;p2 = pairs[i+1℄ + m * X[1℄ + n * Y[1℄;p3 = pairs[i+2℄ + m * X[0℄ + n * Y[0℄;p4 = pairs[i+3℄ + m * X[1℄ + n * Y[1℄;domino(p1, p2, p3, p4);}n = 0;}g2_pen(dev, 
olor[1℄);}g2_set_line_width(dev, 1);}void Arrow(double a, double b){double four_d, first, se
nd, middle, j, k, m, n, s, df;df = xx - .5;four_d = 4.0 * sqrt(a*a + b*b);middle = 1 - sqrt(3.0)/four_d;first = a / four_d;



53se
nd = b / four_d;m = a * middle + df;n = b * middle + df;j = a + df;k = b + df;s = abs(a) + abs(b);g2_filled_triangle(dev, j, k, m + se
nd, n - first, m - se
nd,n + first);g2_line(dev, df, df, j - (a * .3)/s, k - (b * .3)/s);}void MakeRegion(){int x_min, x_max, n;double 
1, 
2;double m_x;x_min = 0;x_max = int(X[0℄ + Y[0℄);if (Y[0℄ < 0){x_min = int(Y[0℄);x_max = int(X[0℄);}m_x = X[1℄ / X[0℄;for (int b = 0; b < X[1℄ + Y[1℄; b++)for (int a = x_min; a < x_max; a++)if ((b >= m_x * a) && (b < m_x * (a - Y[0℄) + Y[1℄)&& (Y[0℄ * b <= Y[1℄ * a)&& (Y[0℄ * (b - X[1℄) > Y[1℄ * (a - X[0℄))){boxes.push_ba
k(a);boxes.push_ba
k(b);}for (int i = 0; i < boxes.size(); i+=2)boxf(boxes[i℄, boxes[i+1℄, .5, 0);n = 1;if (size > 1)for (int m = 0; m < 2; m++){for (n; n < size/2; n++)for (int i = 0; i < boxes.size(); i+=2){
1 = boxes[ i ℄ + m * X[0℄ + n * Y[0℄;
2 = boxes[i+1℄ + m * X[1℄ + n * Y[1℄;boxf(
1, 
2, .5, 0);}n = 0;}g2_set_line_width(dev, 1.2);



54Arrow(X[0℄, X[1℄);Arrow(Y[0℄, Y[1℄);g2_set_line_width(dev, 1);}void ellipsis(double a, double b, int dir){double l, m, x, y;x = xx + a;y = yy + b;swit
h (dir){
ase 6: //horizontal ellipsisl = x + .25;m = x - .25;g2_filled_
ir
le(dev, l, y, .05);g2_filled_
ir
le(dev, m, y, .05);break;
ase 7: //verti
al ellipsisl = y + .25;m = y - .25;g2_filled_
ir
le(dev, x, l, .05);g2_filled_
ir
le(dev, x, m, .05);break;}g2_filled_
ir
le(dev, x, y, .05);}void readin(){typedef set<
har> Situations;ve
tor <Situations> Cells;int i, j, k, l, a;int 
olored = 0;
har text[20℄;double s = 0.5;double points[8℄;double var1, var2;bool failure = false;Situations CurCell, All, temp;while (
in >> a){swit
h (a){
ase 0: //empty box
in >> i >> j;boxi(i, j, "");break;
ase 2: //1st tiling marker
olored = 1;
ase 1: //2nd tiling markerfor (j = 0; j < 4; j++){
in >> i;



55pairs.push_ba
k(i);}break;
ase 3: //Box with maker's mark
in >> i >> j;boxi(i, j, "!");break;
ase 4: //Box with breaker's mark
in >> i >> j;boxi(i, j, "?");break;
ase 5: //Box with letters
in >> i >> j >> text;boxi(i, j, text);CurCell.
lear(); //empty the setfor (int n = 0; text[n℄; n++){text[n℄ = tolower(text[n℄);CurCell.insert(text[n℄);}Cells.push_ba
k(CurCell);set_union(CurCell.begin(), CurCell.end(), All.begin(), All.end(),inserter(temp, temp.begin()));All = temp;temp.
lear(); //empty temporary setbreak;
ase 6: //horizontal ellipsis
ase 7: //verti
al ellipsis
in >> var1 >> var2;ellipsis(var1, var2, a);break;
ase 8: //paving
in >> size >> X[0℄ >> X[1℄ >> Y[0℄ >> Y[1℄;if (size > 1)Multi_Paving = true;MakeRegion();break;default:
out << "Error, in
orre
tly formatted file.\n";}}MakeDominoes(
olored);int 
ount = All.size(); //total number of lettersfor (i = 0; i < Cells.size(); i++)for (j = i + 1; j < Cells.size(); j++){set_union(Cells[i℄.begin(), Cells[i℄.end(),Cells[j℄.begin(), Cells[j℄.end(),inserter(temp,temp.begin()));if (
ount == temp.size())
out << "Not a winning strategy: " << i << " " << j << endl;temp.
lear();}}int main(){dev=g2_open_EPSF("boxa.ps");
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olor[0℄=g2_ink(dev, 0, 1, 1);//teal tile 
olor
olor[1℄=g2_ink(dev, 0, 0, 0);//bla
k tile 
olor
olor[2℄=g2_ink(dev, .6, .6, .6); //grey tile 
olorg2_set_font_size(dev, 10);double magnif;
in >> magnif;if (magnif == 0) magnif = 12;g2_set_
oordinate_system(dev, 0, 0, magnif, magnif);g2_pen(dev, 
olor[1℄);readin();g2_
lose(dev);return 0;}A.2 Paving Code for a Spe
i�
 FamilyThis 
ode generates a 2-paving for a family./*The program is designed to 
reate a double paving that willestablish a strategy for the breaker that will defeat all theanimals in a given family. This program allows for triplesof pavings, that is, three mutually joined 
ells. A file withthe following stru
ture is needed.Dimensions of region that are desired to be paved and thenumber of the animals in the family that are going to be
onsidered given in size then lexi
ographi
 order.dim_x dim_yIf a paving is found, the program outputs a file (tile1.dat)with the dimensions dim_x dim_y then the size of the pavingin number of pairs and a list of ordered pairs that 
oin
idewith the paired 
ells of a paving.*/#in
lude "state.h"#in
lude "fstream"#in
lude "
reateanimals.h"#in
lude "STLmore.h"#in
lude <iostream>
onst int xmin = 0;
onst int ymin = 0;int xmax;int ymax;int levelmax;int level = 0;int tilenum = 0;Tanimal paving;Tanimal Double;



57Tanimal Single;Tstate state;Tstates transfers;Tstatesset shiftedtransfersset;Tstates shiftedtransfers;void writetile (void){tilenum++;ofstream os ("tile1.dat");os << xmax + 1 << " " << ymax + 1 << " " << paving.size();for (int i = 0; i < paving.size (); i++)if ( i % 6 == 0)os << endl;os << paving[i℄[0℄ << " " << paving[i℄[1℄ << " ";os.
lose ();}void PavePrint(){string filename = "level-" + all2string(level) + ".dat";ofstream os (filename.
_str());os << xmax + 1 << " " << ymax + 1 << " " << paving.size();for (int i = 0; i < paving.size (); i++)if ( i % 6 == 0)os << endl;os << paving[i℄[0℄ << " " << paving[i℄[1℄ << " ";os.
lose ();string 
ommand1 = "./paving/Shader < " + filename;string 
ommand2 = "mv Pave.ps Level-" + all2string(level) + ".ps";system(
ommand1.
_str());system(
ommand2.
_str());
out << level << endl;}bool inside (
onst Tstate & state){T
ell ll = ll
orner(state);if (ll[0℄ < xmin) return false;if (ll[1℄ < ymin) return false;T
ell ur = ur
orner(state);if (ur[0℄ > xmax) return false;if (ur[1℄ > ymax) return false;return true;}bool killed (
onst Tstate & state){for (int i = 0; i < paving.size(); i++)if (binary_sear
h(BE(state.
ore), paving[i℄)){



58i++;if (binary_sear
h(BE(state.
ore), paving[i℄))return true;}elsei++;return false;}void findshifts (Tstate & state){Tstate shiftstate;int i, j;if (paving.size() == 0){T
ell mid;mid.push_ba
k((xmin + xmax) / 2);mid.push_ba
k((ymin + ymax) / 2);shiftstate = state;shift(shiftstate, mid);shiftedtransfersset.insert(shiftstate);return;}set < T
ell> 
olle
t;Tanimal::iterator it;Tanimal::iterator jt;
olle
t.
lear ();for (i = 0; i < paving.size(); i++)for (j = 0; j < state.
ore.size(); j++){T
ell 
ell = make_
ell (paving[i℄[0℄ - state.
ore[j℄[0℄,paving[i℄[1℄ - state.
ore[j℄[1℄);
olle
t.insert (
ell);}set < T
ell >::iterator itt;for (itt = 
olle
t.begin (); itt != 
olle
t.end (); itt++){ // go through the shiftsshiftstate = state;shift (shiftstate, *itt);if (inside(shiftstate) and ! killed(shiftstate))shiftedtransfersset.insert (shiftstate);}}bool InSquare(T
ell one, T
ell two){//ordered 
ells, ie two > oneint diff1 = two[0℄ - one[0℄;int diff2 = two[1℄ - one[1℄;if (diff1 > 2 || diff2 > 2)return false;return true;



59}bool Pavable(T
ell first, T
ell se
ond){if (binary_sear
h(BE(Double), first) || binary_sear
h(BE(Double), se
ond))return false;return true;}double distan
e(Tanimal & Poly){double d;double mid_x, mid_y;double 
nt_x, 
nt_y;int n = Poly.size() - 1;T
ell ll = Poly[0℄;T
ell ur = Poly[n℄;mid_x = (ll[0℄ + ur[0℄)/2.0;mid_y = (ll[1℄ + ur[1℄)/2.0;
nt_x = xmax/2.0;
nt_y = ymax/2.0;d = (mid_x - 
nt_x)*(mid_x - 
nt_x) + (mid_y - 
nt_y) * (mid_y - 
nt_y);return d;}void findkillers(
onst Tstate & animal, Tanimal & pairs,double & dist){int i, j, size;Tanimal diff, spe
tre;set_differen
e(BE(animal.
ore), BE(Double), INS(diff));size = diff.size();spe
tre = animal.
ore;dist = distan
e(spe
tre);for (i = 0; i < size - 1; i++)for ( j = i + 1; j < size; j++)if (InSquare(diff[i℄,diff[j℄)){pairs.push_ba
k(diff[i℄);pairs.push_ba
k(diff[j℄);}}void Remove(T
ell Cell){Tanimal::iterator it;it = lower_bound(BE(Double),Cell);if (it != Double.end() && *it == Cell)



60{Double.erase(it);insertsorted(Single, Cell);}else{it = lower_bound(BE(Single), Cell);Single.erase(it);}}void Store(T
ell Cell){Tanimal::iterator it;it = lower_bound(BE(Single), Cell);if (it != Single.end() && *it == Cell){Single.erase(it);insertsorted(Double, Cell);}elseinsertsorted(Single,Cell);}void redu
e(Tanimal & bestdom){int i, j;Tstate state1, state2;for (i = 0; i < bestdom.size() - 3; i++){state1.
ore.push_ba
k(bestdom[i℄);state1.
ore.push_ba
k(bestdom[i + 1℄);normal(state1);i++;for (j = i + 1; j < bestdom.size() - 1; j++){state2.
ore.push_ba
k(bestdom[j℄);state2.
ore.push_ba
k(bestdom[j + 1℄);normal(state2);j++;if (state1 == state2){j--;bestdom.erase(bestdom.begin() + j);bestdom.erase(bestdom.begin() + j);j--;}}}}void add_domino (){int i;



61level++;if (level > levelmax)levelmax = level;double dist, best_dist;Tanimal bestdominoes(100);Tanimal pairs;Tstate bestposition;shiftedtransfersset.
lear ();for (i = 0; i < transfers.size (); i++)findshifts (transfers[i℄);shiftedtransfers.
lear();set2ve
tor (shiftedtransfersset, shiftedtransfers);if (shiftedtransfers.size() == 0){writetile();//return;exit(1);}best_dist = xmax*xmax + ymax*ymax; //
lear old distan
efor (i = 0; i < shiftedtransfers.size(); i++){pairs.
lear();findkillers(shiftedtransfers[i℄, pairs, dist);if (pairs.size() > bestdominoes.size())
ontinue;if (pairs.size() == bestdominoes.size() && dist >best_dist)
ontinue;bestdominoes = pairs;best_dist = dist;if (bestdominoes.size() == 0){if (level >= levelmax)PavePrint();level--;return;}}if (paving.size() == 0){}//redu
e(bestdominoes);for (i = 0; i < bestdominoes.size(); i+=2){paving.push_ba
k(bestdominoes[i℄);paving.push_ba
k(bestdominoes[i + 1℄);Store(bestdominoes[i℄);Store(bestdominoes[i + 1℄);add_domino();paving.pop_ba
k();paving.pop_ba
k();Remove(bestdominoes[i℄);Remove(bestdominoes[i + 1℄);}



62if (level >= levelmax)PavePrint();level--;}int main (void){int dim_x, dim_y;int anim; //# for animal to paveTstates animals;Tstatesset transferset;
reateanimals (6, animals);
in >> dim_x >> dim_y;xmax = dim_x - 1;ymax = dim_y - 1;while (
in >> anim){state = animals[anim℄;transferall (state, transferset);set2ve
tor (transferset, transfers);transferset.
lear();}add_domino ();return 0;}A.3 Created Paving Posts
ript CodeThis 
ode takes output from the paving 
reation 
ode and generates a post-s
ript�le with spe
ial 
olors. These 
olors are used to determine the approximate time apair was generated by the program. The 
olors start dark and be
ome lighter as thepairs progress later into the paving. The 
olors are �rst red, then green and �nallyblue. This also helps understand if the program is a
tually 
reating a paving fromthe inside out or if it is instead going to the boundary.// 
ompile with// g++ -O3 Zpave.C -lg2/*This program takes a file in spe
ial format and 
reates aposts
ript graphi
's file of a paving file 
reated by the Paverprogram.The format is the dimensions of the region to be drawn inintegers in the following format:dim_x dim_yFollowed by the number of pairs of 
ells.



63Then a series of pairs of 
ells.There is no terminating line*/#in
lude <g2.h>#in
lude <g2_PS.h>#in
lude <math.h>#in
lude <set>#in
lude <stdio.h>#in
lude <algorithm>#in
lude <ve
tor>#in
lude <iostream>using namespa
e std;int dev;
onst double num = 7;
onst double denom = 8;
onst double xx = 10;
onst double yy = 10;void box(double x, double y, double s){double points[8℄;points[0℄ = xx + x - s; //Upper left 
orner of boxpoints[1℄ = yy + y + s;points[2℄ = xx + x + s; //Upper right 
orner of boxpoints[3℄ = yy + y + s;points[4℄ = xx + x + s; //Lower right 
orner of boxpoints[5℄ = yy + y - s;points[6℄ = xx + x - s; //Lower left 
orner of boxpoints[7℄ = yy + y - s;g2_polygon(dev, 4, points);}void domino(int i, int j, int k, int l){double m = (i + k) / 2.0; //midpoint x-valuedouble n = (j + l) / 2.0; //midpoint y-valuedouble x = xx + (num*i + m) / denom; //end pointsdouble y = yy + (num*j + n) / denom;double w = xx + (num*k + m) / denom;double z = yy + (num*l + n) / denom;g2_line(dev, x, y, w, z);}void readin(){int 
olor, i, j, k, l;int width, height, length, 
ount;float 
ol[3℄, d
;int lo
 = 0;



64
in >> width >> height >> length;
ount = length / 6 + 1;d
 = .8 / double(
ount);for (int m = 0; m < width; m++)for (int n = 0; n < height; n++)box(m, n, .5);
ol[0℄ = .2 - d
;
ol[1℄ = 0;
ol[2℄ = 0;g2_set_line_width(dev, 3);while (
in >> i){
ol[lo
℄+=d
;
in >> j >> k >> l;
olor = g2_ink(dev, 
ol[0℄, 
ol[1℄, 
ol[2℄);g2_pen(dev, 
olor);domino(i, j, k, l);if (
ol[lo
℄ >= 1){
ol[lo
℄ = 0;lo
++;
ol[lo
℄ = .2 - d
;}}}int main(){dev=g2_open_EPSF("Pave.ps");g2_set_font_size(dev, 10);double magnif;magnif = 10;g2_set_
oordinate_system(dev, 0, 0, magnif, magnif);readin();g2_
lose(dev);return 0;}A.4 Paving Che
king CodeThis 
ode 
he
ks a parti
ular 2-paving with a spe
i�
 animal to see if the animal isdefeated by the 2-paving.



65A.4.1 Che
king Code#in
lude <iostream>#in
lude <fstream>#in
lude <set>#in
lude <string>#in
lude <ve
tor>#in
lude <algorithm>#in
lude "state.h"#in
lude "STLmore.h"using namespa
e std;set < Tstate > transs;ve
tor < T
ell > pairs;ve
tor < T
ell > paving;int R, x[2℄, y[2℄;int num = 0;void FailPi
(Tstate & state){string name;num++;name = "fail" + all2string(num) + ".dat";ofstream os (name.
_str());os << "0" << endl;for (int i = 0; i < state.
ore.size(); i++)os << "3 " << state.
ore[i℄[0℄ << " " << state.
ore[i℄[1℄ << endl;for (int i = 0; i < paving.size(); i+=2)os << "1 " << paving[i℄[0℄ << " " << paving[i℄[1℄ << " "<< paving[i+1℄[0℄ << " " << paving[i+1℄[1℄ << endl;os.
lose ();}void CurBoard(void){ofstream os ("board.dat");os << "0\n"; //boxafor (int i = 0; i < paving.size(); i+=2)os << "1 " << paving[i℄[0℄ << " " << paving[i℄[1℄ << " "<< paving[i+1℄[0℄ << " " << paving[i+1℄[1℄ << endl;}void CleanUp(){ve
tor < T
ell >::iterator i;T
ell temp1, temp2;for (i = paving.begin(); i != paving.end(); i++){temp1 = (*i);



66temp2 = (*(i+1));if ((temp1[0℄ < 0 && temp1[1℄ < 0 && temp2[0℄ < 0 && temp2[1℄ < 0) ||(temp1[0℄ > R && temp1[1℄ > R && temp2[0℄ > R && temp2[1℄ > R)){paving.erase(i);paving.erase(i);i--;}elsei++;}}void Region(void){T
ell temp1, temp2;int M_x, M_y, m_y, denom;denom = x[0℄ * y[1℄ - x[1℄ * y[0℄;M_x = (R * (y[1℄ - y[0℄))/ denom + 1;M_y = (R * x[0℄)/ denom + 1;m_y = - (R * x[1℄)/ denom - 1;for (int i = 0; i < pairs.size(); i+=2)for (int m = 0; m < M_x; m++)for (int n = m_y; n < M_y; n++){temp1 = pairs[i℄;temp2 = pairs[i+1℄;temp1[0℄ = temp1[0℄ + m * x[0℄ + n * y[0℄;temp1[1℄ = temp1[1℄ + m * x[1℄ + n * y[1℄;paving.push_ba
k(temp1);temp2[0℄ = temp2[0℄ + m * x[0℄ + n * y[0℄;temp2[1℄ = temp2[1℄ + m * x[1℄ + n * y[1℄;paving.push_ba
k(temp2);}}bool tiled (Tstate state){ // return 1 if tile works for all shifts 0 if notT
ell C1, C2;Tstate shstate = state;for (int j = 0; j < R; j++) // shift the animal aroundfor (int k = 0; k < R; k++){shstate = state;shift (shstate, make_
ell (k, j));bool hasinshift = false;for (int i = 0; i < paving.size (); i += 2){C1 = paving[i℄;C2 = paving[i+1℄;if (binary_sear
h (BE (shstate.
ore), C1) and



67binary_sear
h (BE (shstate.
ore), C2))hasinshift = true;}if (!hasinshift){FailPi
(shstate);return false;}}return true;}bool 
he
kanimal (Tstate & state){set < Tstate >::iterator i;transs.
lear ();transferall (state, transs);for (i = transs.begin (); i != transs.end (); i++)if (!tiled ((*i)))return false; // the transform didn't have a dominoreturn true;}void ReadIn(){int a, b;ifstream file;file.open ("tile.dat");file >> x[0℄ >> x[1℄ >> y[0℄ >> y[1℄ >> R;while (file >> a){file >> b;pairs.push_ba
k (make_
ell (a, b));}file.
lose();Region();}bool loser (Tstate state){bool soreloser = false;paving.
lear();pairs.
lear();ReadIn();if (
he
kanimal (state))soreloser = true;return soreloser; //true if paved}



68void loserfam(Tfam & family){bool soreloser = false;paving.
lear();pairs.
lear();ReadIn();for (int i = 0; i < family.size(); i++)if (
he
kanimal (family[i℄)){soreloser = true;
out << "Paved" << endl;}else
out << "Not Paved " << i << endl;}A.4.2 Paving File Generator#in
lude <iostream>#in
lude <fstream>#in
lude <ve
tor>#in
lude "state.h"#in
lude "STLmore.h"#in
lude "Tile
he
k.h"#in
lude "
reateanimals.h"using namespa
e std;Tstates animals;ve
tor <Tstate> family;void MakeFile(
har filename[℄){int anim;int x[2℄, y[2℄;int temp, max, t1, t2, t3, t4;T
ell 
orner;Tstate state;ifstream infile (filename);ofstream outfile ("tile.dat");//ignore the values that are used to print the paving.infile >> temp >> temp >> temp >> x[0℄ >> x[1℄ >> y[0℄ >> y[1℄;if (x[0℄ + y[0℄ <= x[1℄ + y[1℄)max = x[1℄ + y[1℄;elsemax = x[0℄ + y[0℄;while (
in >> anim){state = animals[anim℄;
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orner= ur
orner(state);if (
orner[0℄ > max)max = 
orner[0℄;else if (
orner[1℄ > max)max = 
orner[1℄;family.push_ba
k(state);}outfile << x[0℄ << " " << x[1℄ << endl;outfile << y[0℄ << " " << y[1℄ << endl;outfile << 2 * max + 1 << endl;while (infile >> temp) //readin the 1{infile >> t1 >> t2 >> t3 >> t4;outfile << t1 << " " << t2 << " " << t3 << " " << t4 << endl;}infile.
lose();outfile.
lose();}int main(void){
har filename[50℄;bool paved;
reateanimals (6, animals);
in.getline(filename, 50);MakeFile(filename);for (int i =0; i < family.size(); i++){paved = loser(family[i℄);if (paved)
out << "Paved" << endl;else
out << "Not Paved " << i << endl;}return 0;}A.5 PERL CodeThis is the PERL 
ode that implemented various other 
ode for tile 
reation and
he
king purposes.



70A.5.1 Paving GenerationThis se
tion 
ontains 
ode whi
h is used to run the paving 
reating program. Thes
ript gives the program di�erent sized boards to 
onsider up to a 
ertain size. Whena the program �nishes, the s
ript 
reates a posts
ript �le from the output and renamesthe �le to 
orrespond to the size of the board that had been 
onsidered.#!/usr/bin/perl$filename = "fam.txt";for ($i = 20;$i <= 30;$i++){open FAM, ">$filename";print FAM "$i $i 7 8 9 10 11 13 14 15 19 20";
lose (FAM);$a=qx[ni
e -15 ./paving/Paver < $filename℄;print "$i - $i:$a\n";if ($a = 1) {qx[mv tile1.dat Pave$i-$i.dat℄;}else {exit();}}A.5.2 PolyominoesThis 
ode is used to generate all the pi
tures of the polyominoes in the dire
toryPoly. Most of the programs that 
reate the other pi
tures is the thesis are stru
turedsimilarly.#!/usr/bin/perl�names = <./Poly/*.txt>;system "g++ -O4 ../boxa.C -lg2";forea
h $name (�names){$poly = $name;$poly = ~ s [\.txt℄()g;$a=qx[./a.out < Poly/$poly.txt℄;print "$poly: $a\n";qx[mv boxa.ps poly-ps/$poly.ps℄;}̀rm boxa.ps`;A.5.3 Paving pi
turesThis 
ode reads all the �les in the Tiles dire
tory and generates pi
tures of the pavingsand pi
tures that have pavings. Note that the same program is used for tese pi
turesand the polyomino pi
tures.#!/usr/bin/perl�names = <./Tiles/*.txt>;



71system "g++ -O4 ../boxa.C -lg2";forea
h $name (�names){$tile = $name;$tile = ~ s [\.txt℄()g;$a=qx[./a.out < Tiles/$tile.txt℄;print "$tile: $a\n";qx[mv boxa.ps tile-ps/$tile.ps℄;}̀rm boxa.ps`;



Appendix BPolyomino information
Pn;i DPA DPB DPC DPD DPE DPF DPG DPH DPI DPJP3;1 � � �P3;2 �P4;1 � � � � � �P4;2 � � � � �P4;3 � � � � � �P4;4 � � � � � � � � �P4;5 � � � � � � � �P5;1 � � � � � � � � �P5;2 � � � � � � � �P5;3 � � � � � � � � �P5;4 � � � � � � � � � �P5;5 � � � � � � � � �P5;6 � � � � � � � � �P5;7 � � � � � � � � �P5;8 � � � � � � � � � �P5;9 � � � � � � � � � �P5;10 � � � � � � � � � �P5;11 � � � � � � � � �P5;12 � � � � � � � � �Table B.1: Polyominoes and the double pavings that defeat them.
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P1;1 P2;1 P3;1 P3;2 P4;1 P4;2 P4;3 P4;4 P4;5Figure B.1: All 
ongruen
e 
lasses of polyominoes up to size 4, ordered by size andthen by lexi
ographi
 order.

P5;1 P5;2 P5;3 P5;4 P5;5 P5;6
P5;7 P5;8 P5;9 P5;10 P5;11 P5;12Figure B.2: Congruen
e 
lasses of polyominoes of size 5, ordered by lexi
ographi
order.
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P6;1 P6;2 P6;3 P6;4 P6;5 P6;6 P6;7
P6;8 P6;9 P6;10 P6;11 P6;12 P6;13 P6;14
P6;15 P6;16 P6;17 P6;18 P6;19 P6;20 P6;21
P6;22 P6;23 P6;24 P6;25 P6;26 P6;27 P6;28
P6;29 P6;30 P6;31 P6;32 P6;33 P6;34 P6;35Figure B.3: Congruen
e 
lasses of polyominoes of size 6, ordered by lexi
ographi
order.
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P3;1 P4;1 P4;2 P4;3P3;2 P4;2 P4;3 P4;4 P4;5P4;1 P5;1 P5;2 P5;3P4;2 P5;2 P5;3 P5;4 P5;5 P5;6 P5;7 P5;8 P5;9 P5;11P4;3 P5;3 P5;4 P5;7 P5;9 P5;12P4;4 P5;4P4;5 P5;4 P5;8 P5;9 P5;10Table B.2: Polyomino an
estry for next immediately sized polyominoes.


