
RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMESEDGAR FISHER AND NÁNDOR SIEBENAbstra
t. In a polyomino set (1,2)-a
hievement game the maker and the breaker alternatelymark one and two previously unmarked 
ells respe
tively. The maker's goal is to mark a set of
ells 
ongruent to one of a given set of polyominoes. The breaker tries to prevent the makerfrom a
hieving his goal. The families of polyominoes for whi
h the maker has a winning strategy isdetermined up to size 4. In set a
hievement games, it is natural to study in�nitely large polyominoes.This enables the 
onstru
tion of super winners that 
hara
terize all winning families up to a 
ertainsize. 1. Introdu
tionA re
tangular board is the set of 
ells that are the translations of the unit square [0; 1℄ � [0; 1℄by ve
tors of Z2. Informally, a re
tangular board is the in�nite 
hessboard. Two 
ells are 
alledadja
ent if they share a 
ommon edge. A polyomino (or animal) is a subset of the re
tangularboard in whi
h the 
ells are 
onne
ted through adja
ent 
ells. Note that we allow in�nitely many
ells in a polyomino. We only 
onsider polyominoes up to 
ongruen
e, that is, the lo
ation of thepolyomino on the board is not important. The number of 
ells of a polyomino is 
alled the size ofthe polyomino.In a polyomino set (p; q)-a
hievement game two players alternately mark p and q previouslyunmarked 
ells of the board using their own 
olors. If p or q is not 1 then the game is often 
alledbiased. The player who marks a polyomino 
ongruent to one of a given set of �nite polyominoes winsthe game. In a weak set a
hievement game the se
ond player (the breaker) only tries to prevent the�rst player (the maker) from a
hieving one of the polyominoes. A set of �nite polyominoes is 
alleda winning set if the maker has a winning strategy to a
hieve this set. Otherwise the set is 
alled alosing set. Polyomino a
hievement games were introdu
ed by Harary [6, 8, 7, 9℄. Winning strategieson re
tangular boards 
an be found in [3, 13℄. Biased games are studied in [2℄ in a more generalsetting. Biased games are needed [11℄ to apply the theory of weight fun
tions [1, 5℄ to unbiasedgames on in�nite boards.In this paper we study re
tangular weak set (1; 2)-a
hievement games. Triangular unbiasedset a
hievement games were studied in [4℄. Our purpose is to further develop the theory of seta
hievement games. We have 
hosen the re
tangular game be
ause the re
tangular board is themost intuitive. The unbiased re
tangular game is very 
omplex. To handle this di�
ulty we have
hosen a biased version to limit the number of winning sets. The (1; 2) game is still ri
h enoughto un
over many of the unexpe
ted properties of set games. This approa
h also has its 
hallenges,sin
e the (1; 2) game needs new tools for �nding winning strategies.2. PreliminariesFigure 2.1 shows some polyominoes we are going to use. In this �gure, the polyominoes are instandard position. Roughly speaking, a polyomino is in standard position if its 
ells are as mu
h1991 Mathemati
s Subje
t Classi�
ation. 05B50, 91A46.Key words and phrases. a
hievement games, polyomino.1
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P1;1 P2;1 P3;1 P3;2 P4;1 P4;2 P4;3 P4;4 P4;5S1 S2 S3 L2 S4 L3 T2 C2 Z2 S1Figure 2.1. All polyominoes up to size 4 together with in�nite skinny.

Figure 2.2. Two polyominoes whi
h are an
estors of ea
h other.to the left and to the bottom as possible. The exa
t de�nition involves the lexi
ographi
 orderof the list of 
oordinates of the 
ells of the polyomino pushed against the 
oordinate axes in the�rst quadrant. The naming 
onvention 
omes from the ordering of the polyominoes by size and bylexi
ographi
 order of their standard position.We use spe
ial names for several important 
lass of polyominoes. These names are also given inthe �gure. Sn = Pn;1 stands for the skinny polyomino of size n. Cn, Ln, Tn and Zn are 
hosenbe
ause the shape of those polyominoes is similar to the shape of letters. Note that only one endof S1 is in�nitely long.De�nition 2.1. A set of polyominoes is 
alled bounded if it 
ontains only �nite polyominoes. It is
alled unbounded if it 
ontains at least one in�nite polyomino.Note that an in�nite set of �nite polyominoes is still 
alled bounded even though the size of apolyomino in the set 
an be arbitrarily large.De�nition 2.2. We say the polyomino P is an an
estor of the polyomino Q if Q 
an be 
onstru
tedfrom P by adding some (possibly none) extra 
ells. We use the notation P v Q. A set F ofpolyominoes is 
alled a family if no element of F is the an
estor of another element of F .It is easy to see that the an
estor relation is re�exive and transitive. It is not antisymmetri
, thepolyominoes in Figure 2.2 are an
estors of ea
h other. On the set of �nite polyominoes the relationis antisymmetri
 and so is a partial order.So far we have not de�ned the term winner for an unbounded set of polyominoes. An in�nitepolyomino 
annot be marked during a �nite game. We still want to talk about unbounded winnersto simplify the theory, even though we do not intend to play any games with unbounded sets.De�nition 2.3. Let T be an unbounded set of polyominoes. Let FT be a �nite an
estor of T forall T 2 T . Then F = fFT j T 2 T g is 
alled a bounded restri
tion of T . An unbounded set ofpolyominoes is 
alled a winner if ea
h bounded restri
tion of the set is a winner.3. PreorderThere are two ways to make it easier to a
hieve a set of polyominoes. We 
an make some of thepolyominoes smaller or we 
an in
lude more polyominoes in the set. This motivates the followingde�nition.De�nition 3.1. Let S and T be sets of polyominoes. We say S is simpler than T if for all Q 2 Tthere is a P 2 S su
h that P v Q. We use the notation S � T .



RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMES 3The terminology at least and at most was used in [4℄ for what we 
all simpler. Note that Sis simpler then T if S is simpler to a
hieve than T . It is easy to see that the simpler relation isre�exive and transitive and so is a preorder. It is also easy to see that a bounded restri
tion ofan unbounded set of polyominoes is simpler than the original set. The following result shows theimportan
e of the preorder.Proposition 3.2. Let S and T be sets of polyominoes su
h that S � T . If T is a winner then sois S. If S is a loser then so is T .Proof. First assume that S and T are bounded. If T is a winner then during a game the maker isable to mark the 
ells of some Q 2 T . There is a P 2 S su
h that P v Q, so by the time the makermarks the 
ells of Q he also marked the 
ells of P , possibly at an earlier stage.Next assume that S is bounded and T is unbounded. For ea
h T 2 T de�ne FT = T if T is �niteand de�ne FT to be an element of S su
h that FT v T if T is in�nite. Then F = fFT j T 2 T g isa bounded restri
tion of T . S is simpler than F and F is a winner and so S is also a winner.Finally assume that S is unbounded. Let E be a bounded restri
tion of S. Then E � S � T andso E is a winner whi
h implies that S is a winner.The se
ond statement of the proposition is the 
ontrapositive of the �rst statement. �De�nition 3.3. Let S be a bounded set of polyominoes. The set L(S) of minimal elements of Sin the partial order is 
alled the legalization of S.It is 
lear that L(S) is a family.Proposition 3.4. Let S be a bounded set of polyominoes. S is a winner if and only if L(S) is awinner.Proof. Sin
e L(S) is a subset of S, we must have S � L(S). On the other hand, 
onsider Q 2 S. IfQ is minimal then Q 2 L(S). If Q is not minimal then there is a minimal R 2 S su
h that R v Qand so R 2 L(S). This shows that S � L(S). The result now follows from Proposition 3.2. �Note that the existen
e of the minimal R in the proof is not guaranteed if S is unbounded.There 
ould be an in�nite 
hain Q1 w Q2 w � � � of simpler and simpler polyominoes without aminimal polyomino. This means that we 
annot talk about the legalization of an unbounded set ofpolyominoes.Proposition 3.4 allows us to 
on
entrate on families instead of sets of polyominoes in order to
lassify sets of �nite polyominoes as winners or losers.4. Winning families of all sizesThe exterior perimeter of a polyomino is the number of empty 
ells adja
ent to the polyomino.The minimum exterior perimeter of the polyominoes in a �nite set F is denoted by "(F). The fullfamily Fs is the set 
ontaining all polyominoes of size s.Proposition 4.1. The full family Fs is a winner for s � 4. In fa
t the maker 
an win after smarks.Proof. The maker 
an win after s marks with the random neighbor strategy [10℄, whi
h requires himto pla
e his mark at a randomly 
hosen 
ell adja
ent to one of his previous marks. The strategyworks be
ause "(F1) = 4, "(F2) = 6, "(F3) = 7 and "(F4) = 8 and so "(Fs) is not larger than thenumber of 
ells marked by the breaker, whi
h is 2s after s moves. �It is not hard to see that F4 remains a winner if we repla
e S4 by a larger skinny polyomino.
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� � �Sn+1 C2 C3 Cn
� � �T2 Z2 Z3 ZnFigure 4.1. The winner Wn.
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) (d)Figure 4.2. Situations to a
hieve Wn.Proposition 4.2. The family Wn = fSn+1; T2; C2; : : : ; Cn; Z2; : : : ; Zng is a winner for all n � 3.Proof. Figure 4.1 shows the polyominoes in Wn. The maker 
an mark one of the polyominoes inF4 = fS4; L3; T2; C2; Z2g after four marks by Proposition 4.1. If this polyomino is T2, C2 or Z2 thenthe maker a
hieved Wn and we are done.First 
onsider the 
ase when the marked polyomino is S4. We show by indu
tion that even inthis 
ase the maker is able to a
hieve Sn+1 and win or a
hieve Lk for some 4 � k � n. ConsiderFigure 4.2(a) that shows the situation before the �fth move of the maker. If the breaker has nomarks in the 
ells 
ontaining the letter A, then the maker 
an mark one of those 
ells and a
hieveT2. If the breaker has no marks in the 
ells 
ontaining the letter B then the maker 
an mark one ofthose 
ells and a
hieve L4. So we 
an assume that the eight marks of the breaker are the 
ells withthe letters A and B. This 
ompletes the base step of the indu
tion. Now assume that we are in thesituation shown in Figure 4.2(b) where the the maker already marked Sj�1 and the small emptysquares show the marks of the breaker. The maker now 
an mark the 
ell 
ontaining the letter A.If the breaker does not answer by marking the two 
ells 
ontaining the letter B then the maker 
anmark one of these 
ells and a
hieve Lj. On the other hand if the breaker marks these two 
ells thenwe are again in the situation shown in Figure 4.2(b) but the size of the polyomino Sj marked bythe maker is in
reased by one. Hen
e the maker eventually a
hieves Sn+1 or Lk.It su�
es to 
onsider the situation shown in Figure 4.2(
) where the maker marked Lk after k+1marks. If the breaker has no marks in the 
ells 
ontaining the letter A, then the maker 
an markone of those 
ells and a
hieve T2. If the breaker has no mark in the 
ell 
ontaining the letter B, then
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Figure 4.3. P5;6.the maker 
an mark that 
ell and a
hieve Z2. If the breaker has no marks in the 
ells 
ontainingthe letter C, then the maker 
an mark one of those 
ells and a
hieve Ck or Zk. So we 
an assumethat we are in the situation shown in Figure 4.2(d). Note that the breaker 
an have 2k + 2 markson the board while only 2k+1 of those marks are shown as for
ed moves. Without this extra mark,the maker would have two ways to �nish the game. He 
ould mark the 
ell 
ontaining the letter Aand mark 
ells to the right of his previous mark until he 
an make a turn up or down. He 
ouldalso mark the 
ell 
ontaining the letter B and mark 
ells below his previous mark until he make aturn left or right. An indu
tive argument similar to the one above shows that either way he 
ana
hieve Sn+1 without a turn or he 
an a
hieve Cj or Zj for some 3 � j � n. The one extra markof the breaker 
annot ruin both of these ways to win sin
e the 
ells involved are disjoint. �Corollary 4.3. The unbounded familyW = fS1; T2g [ fCn j n � 2g [ fZn j n � 2gis a winner.Proof. The bounded restri
tions of W are all simpler than Wn for some n. �Corollary 4.4. The families fP2;1g, fPn;1; P3;2g for n � 3 and fP3;1; P4;4; P4;5g are winners.Proof. The �rst and the third family is simpler than W3. The se
ond family is simpler than Wn�1.�Note that W2 is not a family but L(W2) = fS3; C2; Z2g = fP3;1; P4;4; P4;5g is a winning familyand so W2 is a winning set.Corollary 4.5. There is a winning family of size s for all s 2 N ex
ept for s = 4.Proof. The families in Corollary 4.4 are of size 1, 2 and 3. The family in Proposition 4.1 has size5. It is 
lear that W 0n =Wn [ fP5;6g is a family for n � 3 (see Figure 4.3). W 0n is a winner sin
e itis simpler than Wn. Sin
e jWnj = 2n and jW 0nj = 2n+ 1, we have a winning family of size s for alls � 6. �5. Losing familiesDe�nition 5.1. A 2-paving of the board is an irre�exive relation on the set of 
ells where ea
h 
ellis related to at most two other 
ells.Example 5.2. Figure 5.1 visualizes some 2-pavings. Related 
ells are 
onne
ted by a tile. Thedark 
ells show a fundamental set of tiles. All the tiles are translations of the dark tiles by a linear
ombination of the two given ve
tors with integer 
oe�
ients. A 2-paving determines the followingstrategy for the breaker. In ea
h turn, the breaker marks the unmarked 
ells related to the 
ell lastmarked by the maker. If there are fewer than two su
h 
ells then she uses her remaining marksrandomly.De�nition 5.3. The strategy des
ribed above is 
alled the paving strategy based on a 2-paving.
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PA PB PC PD PEFigure 5.1. 2-pavings. Ea
h pi
ture shows four 
opies of the fundamental set of tiles.PA PB PC PD PES3 � �L2 �S4 � � � �L3 � � � �T2 � � � �C2 � � � �Z2 � � � �Figure 5.2. Polyominoes and their killer 2-pavings. S1 and S2 are not listed sin
ethose polyominoes are winners.Proposition 5.4. If the breaker follows the paving strategy then the maker 
annot mark two related
ells during a game.Proof. Suppose that it is the maker's turn and there is an empty 
ell 
 related to the 
ell d markedby the maker. But then 
ell 
 was empty after the maker marked 
ell d. So the breaker should havebeen able to use one of her two marks on 
ell 
 sin
e 
ell d is not related to more than two other
ells. This is a 
ontradi
tion. �This result allows the breaker to win against 
ertain sets of polyominoes.De�nition 5.5. If P is a 2-paving su
h that every pla
ement of the polyomino Q on the board
ontains a pair of related 
ells then we say that Q is killed by P. If every element of a set S ofpolyominoes is killed by a 2-paving P then we say that S is killed by P.Note that if P v Q and P is killed by a 2-paving, then Q is also killed by the same 2-paving.The following is an easy 
onsequen
e of Proposition 5.4.Proposition 5.6. A set of polyominoes killed by a 2-paving is a losing set, the breaker 
an win withthe paving strategy.Example 5.7. Figure 5.2 shows the polyominoes up to size 4 with their killer 2-pavings. The tablehelps de
ide if a family is a loser. For example fS3; C2g is a loser be
ause it is killed by PC .It is easy but tedious to 
he
k that a given 2-paving in fa
t kills a polyomino. We used a 
omputerprogram to verify our hand 
al
ulations.We used another 
omputer program to �nd useful killer 2-pavings. This program uses ba
ktra
k-ing to pi
k more and more related 
ells to �nd a 2-paving that kills a set of polyominoes on a �niteregion of the board. The program pla
es every polyomino inside the �nite region in every position
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Y1 N1;1 N1;2fS2g fS3g fL2gPB PAFigure 6.1. Chara
terizing families for size 1. Killer 2-pavings are listed for losing families.that does not have a pair of related 
ells yet. If one of these pla
ements does not have two 
ellsthat 
an be made related then the program ba
ktra
ks. Otherwise the program pi
ks the pla
ementthat has the least number of 
ells that 
an be made related and tries to 
onsider every su
h pairing.The program stops if the set 
annot be killed by a 2-paving or if a killer 2-paving is found. If a set
annot be killed by a 2-paving on a �nite region then of 
ourse it 
annot be killed on the in�niteboard either. In this 
ase the set is 
alled a paving winner. The 2-pavings found by the program areoften 
haoti
 
lose to the boundary of the �nite region, but in most 
ases a pattern or sometimesseveral patterns 
an be dis
overed in some portion of a su�
iently large region.Proposition 5.8. There is a losing family of size s for all s 2N [ f1g.Proof. The families fC2; : : : ; Cs+1g and fC2; C3; : : :g are killed by PA. �Proposition 5.9. If F is a winning family then Sn 2 F for some n.Proof. If Sn is not in F for any n then fL2g � F . Hen
e F is a loser sin
e L2 is killed by PA. �Proposition 5.10. A set S 
ontaining polyominoes of size 5 or larger is a loser.Proof. It is easy to see that F := fS3; Z2g � S and F is killed by PB. �6. Classifi
ation of familiesIn this se
tion we �nd all winning families up to size 4. For ea
h su
h size s we present a
hara
terizing winning family Ys. Then we show that a family F of size s is a winner if and only ifit is simpler then Ys. To do this we use a 
hara
terizing 
olle
tion Ns;1; : : : ;Ns;ks of losing familiesand we show that if F is not simpler than Ys then there is a losing family in Ns;i that is simplerthan F . For size 4 families we do not have a 
hara
terizing winner sin
e there are no size 4 winningfamilies. These 
hara
terizing families are shown in Figures 6.1�6.6. Ea
h Yi is simpler than W ofCorollary 4.3 and so a winner. To show that the 
hara
terizing losing families are in fa
t losers, weprovide killer 2-pavings in the �gures.Proposition 6.1. Y1 = fS2g, N1;1 = fS3g and N1;2 = fL2g is a 
hara
terizing 
olle
tion ofwinners and losers for size 1 families.Proof. By [12℄, the only size 1 winners are fS1g and fS2g. Both of these are simpler than Y1. Everyother polyomino P has at least 3 
ells and so either S3 or L2 must be simpler then P . �Proposition 6.2. Y2 = fS1; L2g, N2;1 = fL2g, N2;2 = fS3; C2g and N2;3 = fS3; Z2g is a 
hara
-terizing 
olle
tion of winners and losers for size 2 families.Proof. Let F be a family of size 2. If Sn is not in F then N2;1 � F by the proof of Proposition 5.9.So we 
an assume that F = fSn; Qg for some n � 3. Note that if n � 2 then F 
annot be a family.
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Y2 N2;1 N2;2 N2;3fS1; L2g fL2g fS3; C2g fS3; Z2gPA PC PBFigure 6.2. Chara
terizing families for size 2. Killer 2-pavings are listed for losing families.

Y3 N3;1 N3;2 N3;3 N3;4fS3; C2; Z2g fL2g fS3; Z2g fS3; C2; P5;10g fS4; C2; Z2gPA PB PC PDFigure 6.3. Chara
terizing families for size 3. Killer 2-pavings are listed for losing families.First assume that jQj � 4. Then Q 2 fL2; L3; T2; C2; Z2g sin
e Si is related to Sn. If Q = L2then F � Y. If Q 2 fL3; T2g then N2;2;N2;3 � F . If Q = C2 then N2;2 � F . If Q = Z2 thenN2;3 � F .Next assume that jQj � 5. Then Q is not skinny and so there is an R 2 fL2; L3; T2; C2; Z2g su
hthat R v Q. Hen
e fSn; Rg � F and so F is 
hara
terized sin
e fSn; Rg is 
hara
terized as we sawin the previous 
ase. �Corollary 6.3. The only winning size 2 families are fS1; L2g and fSn; L2g for n � 3.Proposition 6.4. Y3 = fS3; C2; Z2g, N3;1 = fL2g, N3;2 = fS3; Z2g, N3;3 = fS3; C2; P5;10g andN3;4 = fS4; C2; Z2g is a 
hara
terizing 
olle
tion of winners and losers for size 3 families.Proof. Let F be a family of size 3. If Sn is not in F then N3;1 � F . So assume F = fSn; Q;Rgfor some n � 3. We do not have L2 2 F be
ause every polyomino is related to Sn or L2. ThusjQj; jRj � 4.First 
onsider the 
ase when jQj = 4 = jRj. Then fQ;Rg � fL3; T2; C2; Z2g. If fQ;Rg = fL3; T2gthen N3;2 � fS3g � F . If Q 2 fL3; T2g and R = C2 then N3;3 � fS3; C2g � F . If Q 2 fL3; T2gand R = Z2 then N3;2 � F . If fQ;Rg = fC2; Z2g then n = 3 implies F = Y3 and n � 4 impliesN3;4 � F .Next 
onsider the 
ase when jQj � 4 and jRj � 5. Sin
e Q and R are not skinny, there is an S �fP4;2; P4;3; P4;4; P4;5g with jSj � 2 su
h that S � fQ;Rg. Then E := L(fSng [ S) � fSng [ S � Fand 1 � jEj � 3.If jEj = 1 then N3;2 � E � F . If jEj = 2 then E is a loser by Corollary 6.3, sin
e E has a polyominowith size 4. Hen
e N2;1, N2;2 or N2;3 is simpler than E . We have N3;1 = N2;1, N3;3 � N2;2 andN3;2 = N2;3 whi
h implies N3;i � N2;j � E � F for some i and j as desired.Assume jEj = 3. If E 6= Y3 then N3;i � E � F for some i by the �rst part of the proof. Soit remains to 
onsider the 
ase when E = Y3. Then we must have an an
estor Q0 of Q and anan
estor R0 of R su
h that jQ0j = 4 and jR0j = 5. Figure 6.4 shows the size 5 des
endants of C2and Z2. From this we 
an see that either we have Q0 = Z2 and R0 = P5;4 or we have Q0 = C2 andR0 2 fP5;4; P5;8; P5;9; P5;10g. In the �rst 
ase N3;2 � fSn; Z2; P5;4g � F . In the se
ond 
ase one of



RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMES 9
C2 v P5;4 Z2 v P5;4 , P5;8 , P5;9 , P5;10Figure 6.4. Des
endants of C2 and Z2 with size 5 .� � �Figure 6.5. Squiggle polyominoes.

N4;1 N4;2 N4;3 N4;4 N4;5fL2g fS3; Z2g fS3; C2g fS4; L3; C2; Z2g fS4; T2; C2; Z2gPA PB PC PE PDFigure 6.6. Chara
terizing families for size 4. Killer 2-pavings are listed for losingfamilies. No winning family is required.the following holds:N3;3;N3;4 � fSn; C2; P5;4g � FN3;4 � fSn; C2; P5;8g � F (n � 4 sin
e S3 v P5;8)N3;4 � fSn; C2; P5;9g � F (n � 4 sin
e S3 v P5;9)N3;3 � fSn; C2; P5;10g � F : �We need a preliminary result before we 
an deal with size 4 families. The polyominoes shown inFigure 6.5 are 
alled squiggle polyominoes.Proposition 6.5. A family F of size 4 or more does not have any polyominoes of size 3 or less.Proof. It is 
lear that the full family Fs 
annot be extended to a larger family. Hen
e neither S1nor S2 
an be a member of F . We 
annot have both S3 and L2 in F either.If L2 2 F then all the other polyominoes in F must be skinny sin
e the non-skinny polyominoesare related to L2. Only one skinny polyomino is allowed so this limits the size of F to 2.Suppose that S3 2 F . The only polyominoes not related to S3 are C2 and the squiggle polyomi-noes. Any two squiggle polyominoes are related so F 
annot 
ontain more than one. This limitsthe size of F to 3. �Proposition 6.6. There are no winning families with size 4. N4;1 = fL2g, N4;2 = fS2; Z2g,N4;3 = fS2; C2; P5;10g, N4;4 = fS4; L3; C2; Z2g and N4;5 = fS4; T2; C2; Z2g is a 
hara
terizing
olle
tion of losers for size 4 families.



10 EDGAR FISHER AND NÁNDOR SIEBENProof. Let F be a family of size 4. If Sn is not in F then N3;1 � F . So assume F = fSn; P;Q;Rg.for some n � 3. By Proposition 6.5 we 
an assume that n; jP j; jQj; jRj � 4. There is an S �fP4;2; : : : ; P4;5g with jSj � 3 su
h that S � fP;Q;Rg. Then E := L(fSng[S) � fSng[S � F and1 � jEj � 4.If jEj = 1 then N4;2;N4;3 � E � F . If jEj = 2 then one of the following holds:N4;2;N4;3;N4;4 � fSn; L3g = E � FN4;2;N4;3;N4;5 � fSn; T2g = E � FN4;3;N4;4;N4;5 � fSn; C2g = E � FN4;2;N4;4;N4;5 � fSn; Z2g = E � F :If jEj = 3 then one of the followingN4;2;N4;3 � fSn; L3;P4;3g = E � FN4;3;N4;4 � fSn; L3; C2g = E � FN4;2;N4;4 � fSn; L3; Z2g = E � FN4;3;N4;5 � fSn; T2; C2g = E � FN4;2;N4;5 � fSn; T2; Z2g = E � FN4;4;N4;5 � fSn; C2; Z2g = E � Fholds. Finally if jEj = 4 then one of the following holds:N4;3 � fSn; L3; T2; C2g = E � FN4;2 � fSn; L3; T2; Z2g = E � FN4;4 � fSn; L3; C2; Z2g = E � FN4;5 � fSn; T2; C2; Z2g = E � F : �De�nition 6.7. A family Y of polyominoes is 
alled an n-super winner if ea
h winning family withsize at most n is simpler than Y.Example 6.8. Ys is an s-super winner for s 2 f1; 2g. W in Corollary 4.3 is a 4-super winner.The main result of our paper is the following.Theorem 6.9. A family of polyominoes 
ontaining fewer than 5 polyominoes is a winner if andonly if it is simpler than W. 7. Further questionsThere are several questions to be answered about set games.(1) The families Y2 and W are in�nite winners. Both of these are unbounded. Is there anin�nite winning family that is bounded?(2) Even though there are no winning families with size 4, we 
ould say that Y4 = fS1g is a
hara
terizing winner for size 4 families. So there is a 
hara
terizing winning family for sizesfrom 1 to 4. Is there a 
hara
terizing winner for ea
h size?(3) Is there an s-super winner for ea
h s? Is there a super winner that is s-super for ea
h s?(4) Is there a useful notion of a super loser?(5) Are there any 
hara
terizing or super winners in the unbiased or di�erently biased set gamesplayed on triangular, hexagonal and higher dimensional re
tangular boards?
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