A Reduction Algorithm for
Sublinear Elliptic Partial
Differential Equations

by Sheldon H. Lee

A Thesis
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science
in Mathematics

Northern Arizona University
December, 2000

Approved:

John M. Neuberger, Ph.D., Chair

Lawrence M. Perko, Ph.D.

James W. Swift, Ph.D.

Abstract

A Reduction Algorithm for Sublinear Elliptic
Partial Differential Equations

Sheldon H. Lee

Our goal is to approximate solutions to the elliptic PDE:

Au+ f(u) =0 inQ
u=0 1in 09,

where is a region in R™. Solutions to this partial differential
equation (PDE) are critical points of the functional J : H — R :

Jw) = [{5Vl — F(u)}ds,

where F(u) = [¥ f(z)dz and H = H)*(Q).

Critical points of J are functions u such that J'(u)(v) = 0 for
all v € H. In our algorithms, we use a Fourier expansion of our
function u. Our calculations are done to the Fourier approxima-
tion of u, as opposed to wu itself.

We use three iterative algorithms to find three solutions: the
one-sign solution, the minimal-engergy sign-changing solution,
and a higher energy so-called reduction solution. Fach algo-
rithm makes use of a combination of steepest ascent and de-
scent. The nonlinearity f is taken to be sublinear. Our algo-
rithms use Sobolev gradients as opposed to L? gradients, since it
is known that numerical approximations using the L? gradients
behave poorly.

We will perform experiments which find approximate solu-
tions, minimizing the residual and comparing our solution to so-
lutions obtained by other methods. This thesis is based on [5],
which was submitted to the proceedings of the World Congress
of Nonlinear Analysts, 2000.

i

Acknowledgements

I would like to thank Dr. John Neuberger for providing me with an
interesting and relevant topic. I would also like to thank him for taking
several hours each week out of his busy schedule to assist me with this project.
From him I learned not only a great deal about mathematics, but I learned
how to go about conducting mathematical research. Dr. Neuberger has a big
heart and infinite patience. Without him this thesis would not be possible.

I would also like to thank Dr. Lawrence Perko and Dr. James Swift for
taking the time to read this thesis and providing me with useful feedback. A
big thanks goes out to my family for their constant support throughout my
educational career.

il

Contents

List of Figures
Chapter 1 Introduction

Chapter 2 Numerical Considerations
Chapter 3 The Algorithms

Chapter 4 ODE Results

Chapter 5 PDE Results

Bibliography

Appendix A Background

Appendix B ODE Reduction Code
Appendix C PDE Reduction Code
Appendix D ODE One-Sign Algorithm Code

Appendix E Shooting Method Code, £ =1

iv

11

15

19

25

27

29

37

45

52

List of Figures

4.1
4.2
4.3
4.4

5.1

5.2
5.3
5.4
3.5
5.6
5.7

||u]|eo versus f'(oc0),k=1,2,3 17
||lul|eo versus f/(0),k=1,2,3. 17
k=1 18
k=2 18

Reduction algorithm, run with the “CCN” initial guess of
12 + 191. The dashed line represents ||u — uclle, while the

solid line represents ||u —ug|le. 21
llu||eo vs. fl(o0),b=1,2 21
llulleo vs. f/(0),k=1,2. 22
Reduction Solution, k=1 22
Reduction Solution, k=3 23
CCN solution o 23
u, k=4 . . 24

Chapter 1

Introduction

Let © Cc RY be a piecewise smooth bounded region and f € C'(R,R) be
such that f(0) = 0. Let A be the Laplacian operator (see Appendix A.0.9).
When N = 2 we take Q = (0,1) x (0, 1). In this paper we study the nonlinear
elliptic boundary value PDE

{Aquf(u)*O in Q (L1)

u =0 in Of.
When N = 1 we take 2 = (0, 1), whence the problem becomes the ODE

v’ + f(u) =0 in (0,1)
{ w—"0 in{0,1}. (1.2)

We require [to be sublinear. That is, f/(oo) := limp e f'(u) < o0o. In
particular, we use the following function:

P e

ar— (b—a)In(l —z), z<0. (1.3)

Differentiating our function, we get

b—a
on_ Jatis, 20
f(a:){aJr—b_“ z < 0.

1-z?
One can see that f(0) =0, f'(oc0) = a, and f/(0) = b. The advantage of this
definition is that it is easy to change a and b, while preserving the function’s

1

required properties. This is especially useful in constructing bifurification
diagrams.

In order to find solutions to (1.1), we find critical points of the functional
J: H — R defined by

() — /Q{%|Vu|2 _ F(u)}ds, (1.4)

where F(u) = [f(z)dz and H = Hy?(Q2). We will see that critical points
of J will also be solutions to (1.1).

The eigenvalue problem in the case N = 11is given as "+ Ay = 0 on (0, 1),
¥(0) = ¥ (1) = 0. ODE theory tells us that the characteristic equation in this
case will be 72 + X\ = 0, which gives 7 = +iv/X. Then, the solution will be
W = 16V 4 coe= VT Because of the identity ¢ = sin(6) i cos(d), we have
P = crsin(vVAz) + eri cos(vVAz) — casin(v/Az) + coi cos(v/Az). Since u takes
on real values, we can simplify the above expression to ¢ = Asin(v/Az) +
Bcos(vAz). Using the boundary condition (0) = 0, we have B = 0.
Applying (1) = 0, we get 0 = Asin(v/\). Unless ¢ is the trivial solution,
sin v\ = 0 is required. Thus, v\ = k, or

A\, = k2?72 for k € N.

Our eigenfunction will be 1, = Asin(krz). With the added requirement
that 1 is normalized in L? = L?(Q, R) (see Appendix A.0.6), we will have:

= V2sin(krz).

For the eigenvalue problem in the case N = 2, we consider Ay + Ay =0 on
2 =(0,1)x(0,1), 1 = 0on §9Q. Using separation of variables, we first assume
that ¥(x,y) = g(x)h(y). Then, A(gh)+ Agh = 0, hence ¢"h+ gh” + Agh = 0.
This can be simplified to

g// h//

AR 1.
g+h A (1.5)

Then, since g and h are functions of different variables, g?” and hTH must both
be constant. Solving —g?” = « is the same problem as the ODE eigenvalue
problem, so we get g; = sin(jrz) and «; = j?x*. Similarily, hy = sin(kry)
and 3, = k*r2. Substituting the values back into (1.5), we have —(a; + ;) =
—A. Double indexing is natural here, so that

>\jk = (] + k’)27'{'2.

Using the fact that ¢ = gh and normalizing in L*(£2), we have
Vi = 2sin(jrx) sin(kry).

Using the Kronecker delta function (d;; = 0 for i # j, d;; = 1), we have that
in the L? inner product (see Appendix A.0.6) we have

(i)2 = /Q%'%' dx = 0y5. (1.6)

Thus, {%,} forms an orthonormal basis of L?. We will see that {1,} forms
an orthogonal basis for H, although it is no longer normal in that space.
The particular solution that we are most interested in is provided by the
following theorem, which relies on the so-called Lyapunov-Schmidt reduction
method. We call this solution the “reduction solution”. For a complete proof
of this theorem, refer to [2]. For the convenience of the reader, a proof of the
key lemma used in the proof of the theorem is offered later in this chapter

(see also [5]).

Theorem 1.0.1 Let X = span{ty,- -+, ¢r}, andY = X+ = span{tpy1,- -}
Let f1(0) < A1, f/(00) € (Mg, Apg1) with kB > 2, and [f'(t) < v < XNgj1-
Let H be the real separable Hilbert space Hy*(Q). Let J : H — R be the
functional defined in (1.4). Then there is a solution u such that J(u) =
max,ex Mingey J(z +y).

Note that in the above theorem, X and Y are closed subspaces of H such
that H = X @Y.

In our reduction algorithm (Algorithm B), we perform steepest ascent
in the X components and steepest descent in the Y components. It turns
out that this method will allow us to find max,cx min ey J(x + y). See the
remarks preceeding Algorithm B for more details on how this is accomplished.
For the one-sign algorithm, in each iteration w is projected onto the set
S =A{u e H-{0}: J(u)(u) = 0}, after which a step in the —VJ(u)
direction is taken. For the sign-changing algorithm, wu is instead projected
onto S ={u € S :uy € S,u_ € S}, after which one follows —V J(u).

Theorem (1.0.1) follows directly from the following Lemma. We provide
a sketch of the proof taken from [5], as it gives insight into the reduction
algorithm.

Lemma 1.0.2 Let H be a real separable Hilbert space. Let X and Y be
closed subspaces of H such that H=X ®Y. Let J: H — R be a functional
of class C*. If there exists m > 0 such that for allx € X and y, y; €Y we
have

(VI(z +y) = V(@ +y),y—) >mly -l (1.7)

then the following hold:
(i) There exists a continuous function ¢ : X — Y such that
J(z+ ¢(z)) = min J(z + y).
yeY

Moreover, ¢(x) is the unique member of Y such that

(VJ(z + ¢(x)),y) =0 forall yevY. (1.8)

(ii) The function J : X — R defined by J(z) = J(z + d(z)) is of class C*,
and

(VJ(x),21) = (VJ(x + ¢(x)), 1) forall z z1€X. (1.9)

(iii) An element x € X is a critical point of J if and only if + (z) is a
critical point of J.

() If —J is weakly lower semicontinuous and

J(x) — —o0 as lz|| =00 (z€X) (1.10)

Then there exists ug € H such that VJ(uo) = 0 and

J(uo) = max min J(x +y).

It is later shown that our functional J satisfies all the hypotheses to this
lemma with X and Y defined as in Theorem (1.0.1). Henceforth we refer to
the solution ug as the “reduction solution”. We now provide a sketch of the
proof of Lemma 1.0.2.

For each x € X define J, : Y — R by J.(y) = J(z +y). Using condition
(1.7) it is easy to show that J, is weakly lower semicontinuous and coercive.
Thus J, has a unique minimum ¢(z) € Y. Therefore,

J(z + ¢(x)) :22? J(z+y). (1.11)

Because J € CY(H,R), it follows that J, € C1(Y,R), and ¢(z) is the
only element of Y such that

0= (V4e(g(@)),y) = (VJ(@ + ¢(z)),y) VyeY (1.12)

We now show that ¢ : X — Y is a continuous function. Suppose ¢ is not
continuous. Let ¢ > 0 and (z,) C X such that

lim z, =% and |lp(xn) — d(x)| > 0.

n—oo

Let P be the projection of H onto Y, and P* be the adjoint of P. We
observe that for any z € X

P*VJ(z + ¢(z)) = 0. (1.13)

Using (1.13) and the continuity of V.J and P* we see that for n sufficiently
large

| P*VJ(z,, + ¢(z))] < mé. (1.14)
From (1.7), (1.13), and the Cauchy-Schwarz inequality it follows that
IP*V I (@ + @) = m¢(xn) — plz)]| = md. (1.15)

Inequality (1.15) contradicts (1.14). Thus, ¢ is continuous. This proves
part (i).

Let z,z1 € X and t > 0. Since VJ and ¢ are continuous, using (1.11) we
can see that

lim J(x+tx)— J(x)

t—0 t

= (VJ(x + ¢(x)), x1). (1.16)

This shows that J has a continuous Gateaux derivative and hence is of
class C'. From above we have

~

(VJ(x),z1) = (VJ(x + ¢(x)),z1) Vo,2, € X.

This proves part (ii).
Part (iii) follows from (1.8) and (1.9).
Since

—J(z) = —J(z+éx)) > —J(z) and J(z) —» —o0 as |z| — oo,

it follows that

~

—J(z) — +o© as |z|]| — 00 (z € X).

Therefore —J is weakly lower semicontinuous and coercive, and hence —.J
has a minimum. Consequently, there exists xg € X such that

J (o) = max J (). (1.17)

Since J(z) = J(z + ¢(z)) = mingey J(z 1 y), we see that

J(xo + ¢(xg)) = max min J(z + y). (1.18)

zeX yev
Also, since J is of class C*, from (1.17) we have
(VJ(x0),2) =0 Ve X. (1.19)
Letz € X andy €Y.
(VJ (20 + ¢(@0)), 2 +y) = (VI (20 + d(20)), 2) + (VI (@0 + ¢(20)), y)(1.20)

Using (1.8), (1.9), and (1.19) we see that the first term and the second
term of the right hand side of (1.20) are equal zero. Thus if ug = g + ¢(x0)
we have V.J(up) = 0 and

J(ug) = max min J(x +y).

This proves part (iv), which concludes the proof of Lemma 1.0.2.
One can show that Lemma 1.0.2 does imply Theorem 1.0.1. Indeed,

(VI +y) = V(@ +tuy)y—y)e =@ +y)ly—u)—J (@ +y)ly—u)

= (wty,y—y)u — foly—y)fx+y) — (@ ty,y—y)u — Joly—y1) fz+ 1)

= ly = all? — Jaly —) PLERIE gy iy]2 o €y — y0)?,

where we have used the Mean Value Theorem. Now, f/(£) < v < Agy1 and
y,y1 € Y imply that y — y; € Y. Using a Poincare-Type Inequality,

ly — > > Ak+1/9(y —y1)* da,
so that

(VI y) = VIt),y =) 2 (1= L)lly = wlP = mlly = ol

The hypothesis that f(0) = 0 clearly implies that u = 0 (trivial solution)
satisfies 1.1 and 1.2. The trivial solution is a local minimum of J, and hence
of Morse index (MI) zero. See Appendix A.0.12 for a brief discussion of
Morse index. In previous works of Castro, Cossio, Neuberger, and others, it
was proved that four additional solutions to (1.1) exist. Subsequent research
investigated the properties of these four nontrivial solutions. In particular it
was shown in [3], that if f is superlinear, there are three nontrivial solutions.
Two of these three are of one sign and of MI one, while the third is a sign-
changing exactly once MI two solution which we will call the “CCN” solution.
These three solutions for the superlinear case were numerically computed
in [7] using “Mountain Pass-Type Algorithms” derived from [3]. For an
introduction to Mountain Pass-Type Theorems and Algorithms, see [10], [1],
and [4]. In [9], Newton’s Method along with Fourier expansions are used
to find solutions of arbitrary MI. This algorithm does not follow from a
constructive proof, unlike the three algorithms we present in this Thesis. In
9], the Newton Algorithm is applied to superlinear problems, although it can
be applied to our sublinear case as well. In [2] an existence proof provides the
fifth solution when k& > 2. This fifth solution is of MI k£ and is the reduction
solution provided by Theorem 1.0.1. This solution is the primary focus of
this Thesis. We observe that if we allow k& = 1, then the reduction solution
coincides with either of the one-sign solutions.

Summarizing our methods, we will solve (1.1) using variational methods
applied to the functional J : H — R. Critical points of J are solutions to
(1.1). The reduction algorithm, which follows the proof of Theorem 1.0.1,
is used to find critical points of J. We also use the two algorithms from
7] to find the positive, negative, and CCN solutions. These two algorithms
are modified to also use Fourier approximations, as in [9] and in our new
reduction algorithm.

Chapter 2

Numerical Considerations

Recall that our functional J : H — R (see (1.4)) is defined by

1

Jw) = | %(V(u))? ~ Fluydo — gllulffy — [Flu)do.

Under our hypothesis on f, one can show that J € C? (see [1]). We can find
J'(u)(v) by computing its directional deriviative
J(u)(v) = lim,_o Zlt=Iw

= limy_g 1 fo{ VeVt py 4 gp) — VeV 4 P(u)} do

— limt_@ fQ{VU - Vv + %|VU|2 — M} dx

= Jo{Vu- Vv — f(u)v} daz,

where we have applied the Lebesgue Dominated Convergence Theorem to
take the limit inside the integral and used the fact that /" = f. Thus,

T (u)(v) = (u,v)H—/Qvf(u) dz. (2.1)

We now have a way of expressing J'(u)(v) in general. However, in our algo-
rithms, we only require calculating J'(u)(¢;). Therefore, using our Fourier
coefficients, we can rewrite (2.1) in a way which will make our numerical
calculations simpler by avoiding some of the numerical differentiation and

integration. First we observe that
(u,)y = [oVu-Vode = [4q g—;‘v dz — [oAuvdz
(2.2)
= [fo(—Au)vdzr = (—Au,v)s.
Note that we have used the fact that v = 0 on the boundary 02, so that
when integrating by parts the term involving the outward unit normal n

vanishes. Now using the fact that ¢; is an eigenfunction of —A and that
{;} is orthonormal in L? (see (1.6)),

<¢ia¢j>H - <—A¢ia¢j>2 - <>\i¢ia¢j>2 - >\i6ij (2-3)

We can now simplify J'(u)(¢);). Recall that J'(u)(¢;) = (u, ¥;) p— Jo i f (u) dz

(see (2.1)). Using the Fourier expansion u = >27°; a4,
(w, s = (X321 @b, ¥i)m = 2 ailthi, Yidu

— z?il ai)\iéij — aj)\j.
Thus,

T (@)Wy) = azh = [i/ ()
Note that we have used (2.), and the fact that every term of >27°; a;\;0;;
will be zero except when ¢ = j. The advantage of this expression is that we
are not required to calculate [, Vu - V1); dx numerically.

In order to show that critical points of J are solutions to (1.1), we must

assume a regularity result (see [3]| or [6]). This result states that if VJ(u) =0
then we can conclude that u € C2. We can then show that critical points

of J are solutions to the PDE. Recall from (2.2) that (u,v)y = — [qAuv dz,
which gives us

J()(©) = (uv)n = [of(w)dv = [o(But f(u)) d

If w is a critical point, then J'(u)(v) = 0 for all v € H. This forces Au +
f(u) = 0, therefore u will be a solution to the PDE.

We wish to now express J(u) using Fourier coefficients. First we observe
that

ull?y = (w,u)e = (252 aithiy 22524 aj i m
= X X5 ey (i, i) e = 3201 3070 aia Nidi;.

= YEiaik.

10

Note that we have used (2.3) in the preceeding steps, as well as the fact that
every term of >77°; 3°7°, a;a;A:0;; will equal zero unless 7 = j. We can now
express J(u) as

_ ISt -
= 2;%)\1 /QF(u)dx

When finding the residuals ||[Au + f(u)||e numerically, it is helpful to
use the Fourier coefficients in order to find Awu in order to avoid performing
tedious divided differences in our code. Again using the fact that Ay; =

_¢z>\17
Au = AZai% = Z%’A%‘ - Zai(—%')\i) = _ZaiAi¢i-
i1 i=1 i=1 =1

In our algorithms, we will use the Sobolev gradient VyJ(u). The L?
gradient VoJ(u) is only densely defined. Not surprisingly, numerical approx-
imations of Vy.J(u) behave poorly (see [8]). If u € C?, then V3.J(u) is defined
and Vo (u) = 3372, J'(u)(¢i) .

Using the fact that J'(u)(v) = (Vaod(u),v)e = (VgJ(u),v)g by defin-
ition, and the fact that (u,v)yg = (—Au,v)y (see (2.2)) in turn, we have
that

(Vo (u),v)e = (VaJ(u),v)n = (=A(VEJ (1)), v)s.

This expression requires that the first component of each L? inner product
equal each other, so that VoJ(u) = —A(VyJ(u)). Simplifying Vg J(u), we
get

ViJ(u) = —AH(VaJ(u) = —A~ IZJ' Vi) = ZJ'(U)(%)(—A_I(%))-
Since —A; = Ny, we have —A~(y);) = 2. Hence,
Vud(u (¢
o ZJ A (2.4)

We have found that to find the Sobolev gradient, one only has to divide each
it" component of the L? gradient by ;.

Chapter 3

The Algorithms

For the one-sign algorithm, in each iteration u is projected onto the codi-
mension one submanifold of H (see for example [3]), S = {u € H — {0} :
J'(u)(u) = 0}, after which one takes a step in the —VJ(u) direction. For
the sign-changing “CCN” algorithm, u is projected onto S; ={u € S :uy €
S,u_ € S}, after which one follows —V J(u). The reduction algorithm is sim-
ilar in nature to Newton’s Method, with steepest ascent in the X directions
and steepest descent in the Y directions, where X = span{ty, s, ..., Uk},
and Y = span{tw;1, Yki2, - -

For the following algorithms, M is the number of basis elements, so that
our approximating subspace is G = span{t{y,¥s, ...} = X DY = H.
In the ODE case the singly indexed basis has size M = M, whereas for
convenience we refer to the size of the doubly indexed basis for the PDE when
Q = (0,1)x(0,1) as M = /M. The numerical integration is accomplished by
treating u as an array of values over a suitable grid on 2. We use T divisions,
and understand that there are T+ 1 grid points in the ODE case and (7'+1)?
grid points in the PDE case. Algorithm Al and A2 are essentially as in [7],
with the only difference being the use of Fourier approximations.

In [3], a theorem guarantees the existence of three nontrivial solutions
to a class of superlinear problems (where f'(c0) = o0). In particular, there
exists a pair of one-sign (positive and respectively negative) solutions which
are local minimums of J|g and a global minimum of J|s, which changes sign
exactly once. The minimal energy sign changing solution is the one we have
called the CCN solution. These solutions persist in our sublinear case, given
some additional assumptions. In particular, the one-sign solutions exist if
f'(c0) > A1 and the CCN solution exists if f/(00) > Ao.

11

12

The single constraint of membership in S implies that (if nondegenerate)
the one-sign minimizers are of MI one, while the two constraints of member-
ship in S7 imply that the CCN solution is of MI two.

To find these minimizers numerically (see [7]), one projects iteratates onto
S (Algortithm A1) or S; (Algorithm A2) and performs steepest descent by
taking a step in the search direction —V.J(u). As previously mentioned, we
use the Sobolev gradient. Algorithms A1 and A2 differ from those found in
[7] only in that the Fourier expansion approach of [9] is used.

Algorithm A1l (the one-sign algorithm).

Choose a function f (typically sublinear or superlinear) and stepsizes d; and ds.
Choose a = a® € RM to be initial Fourier coefficients.
Set u = u® = =M, a;;.
Loop counter n = 0

Loop counter m = 0 (to project u onto 5)

Calcul _ Zi]\ilaf)\i—fguf(u) _
alculate ¢ = STy SO that P,V.J(u) = tu.

Set @ = @™ = g™ | Bltam (steepest ascent in ray direction).

Increment m.

If |a™*! — a™| is small, exit loop.
Set g = g™ = {J'(u)(vh;) Y1, € RM, s0 that PeVaJ(u) = >M. gl
For i =1 to M (to take a step in the —V.J(u) direction)

o nt+l _ n_ b2.n
@ = = 4 — Y-
Set u = u™t = M a;1; (Fourier expansion).

Increment n.
If |g] = ||[VaJ(u)]]2 is small, exit loop.

Algorithm A2 (the CCN algorithm).

Choose a function f (typically sublinear or superlinear) and stepsizes d; and d,.
Choose a = a° € RM™ to be initial Fourier coefficients.
Set u = u® = XM a;f;.
Loop counter n = 0
Calculate uy,u_, then ay,a_(a; = (u,1;)).
Loop counter m = 0 (to project u, onto S)

M aZ - w u
Calculate t = Liss iﬂ/} aj;“;f(+), so that P, VJ(uy) = tuy.
i=1 CiNe

13

_ amtl
Set ay — af

Increment m.
If |a7*t! — a7 is small, exit loop.
Loop counter m = 0 (to project u_ onto S)
Calcul _ Zi]\;a%i)‘i_fsz”*f(”*) _
alculate t = SUIVERY , so that P,_VJ(u_) = tu_.
Set a_ = g™t = g™ T (5175&’11 (steepest ascent in ray direction).
Increment m.
If [a™* — a™| is small, exit loop.
Set a =ay +a-_.
Set u = u™t = M a;4; (Fourier expansion).
Set g = g™ = {J'(u)(vh;) Y1, € RM, s0 that PeVaJ(u) = >M. gl
For i =1 to M (to take a step in the —V.J(u) direction)
it = ap — g
Set u = u™t = M a;1; (Fourier expansion).
Increment n.
If |g| =~ ||V2J(u)||2 is small, exit loop.

= a? + 61ta’? (steepest ascent in ray direction).

In Lemma 1.0.2, it was shown that there exists a function ¢ : X — Y
such that J(z + ¢(z)) = mingey J(x + y). It seems that for each iteration,
one would have to first find ¢(z) to minimize in Y, then take a step in the
+VJ(u) direction to maximize in X. We will actually take a slightly different
approach. In our algorithm, the vector g is the first M components of the
the L? gradient V2.J(u). We develop a new vector § which has two goals.
First we require § to represent the H gradient Vg J(u), so we take g; = <
for i = 1,2,---, M (see 2.4.) Secondly, § is taken to be negative in the Y
components, and we therefore take §; = —g; for i+ = k+ 1,k + 2,---. This
new vector ¢ is what we call the “search direction”. In each iteration of our
algorithm, we will take a step in the g direction.

In general terms, one could say that we take two steps in each iteration.
We perform steepest ascent in the X components by taking a step in the
+VJ(u) direction. In the Y components we perform steepest descent by
taking a step in the —V.J(u) direction. As far as we are aware of, this
“minimax” technique is original to this thesis.

Algorithm B (the reduction algorithm).

Choose a function f which is sublinear and stepsize 9.

14

Let k be the crossing eigenvalue number (i.e., f'(c0) € (Mg, Ak11))-
Choose a = a® € RM to be initial Fourier coefficients.
Set u = u® = M, a;e;.
Loop counter n =0
9=9" = {J (W)} icr,.m € R, s0 that PaVaJ(u) = 21, giths.
Fori=1tok
gi = _)\%gi-
Fori=Fk+1toM
9i = +A%gi-
Set a = a"! = a" — §g".
Set u = u"t =M quh.
Increment n.
If |g| =~ ||VaJ(u)||2 is small, exit loop.

In all of our included experimental results, we used step sizes § = d; =
0o = 0.1, although larger step sizes could have been used. Algorithm A2 is
very similar to Algorithm A. The main difference is that instead of projecting
u onto S, one projects u onto S, where Pg,u = Psuy + Psu_. We found that
our results in running this algorithm were not as good as in [7]. This could
be due to trying to estimate a function such as {sin 27z}, using a Fourier
expansion. We are not including any results from these experiments, with
the exception of Figure 5.6.

We implemented code for algorithms A1 and B using C++. Code seg-
ments for the ODE case of Algorithm Al are provided in Appendix D. In
addition, code segments for both the ODE and PDE cases of Algorithm B
are provided in Appendices B and C, respectively.

Chapter 4

ODE Results

In this section we will use Algorithms A1 and B to solve the problem
"+ f(u) =0in (0,1)

u(0) =u(1) =0

For all experiments, unless otherwise stated we use the function

f(av)*{ ar+bln(l1+z)—aln(l+x) >0 (4.1)

ar —bln(l —z) +aln(l —z) =z <0,

where f/(c0) = a and f'(0) = b. We performed all numerical integration
using the Trapezoid Rule, although certainly more sophisticated quadrature
methods could be used. Unless otherwise noted, the algorithms stop when
|V J(u)|]s < 1078, We set b = 0 for all experiments, unless otherwise noted.
For the tables shown in this section, we used T' = M.

Using Algorithm B, we numerically computed the solutions where f'(oco0) €
(A1, A2) (one-hump solutions) and the case where f'(00) € (A2, A3) (two-hump
solutions). In particular, for k = 1, a = 2.57% and for k = 2, a = 6.57%. For
Algorithm B in Table 4, we stopped execution when |g| ~ ||[V2J (u)||2 < 1078
and compared the solutions to the Shooting Method (see Appendix E) solu-
tions. Table 4.2 shows the computed residuals for Algorithm B, k¥ = 1 and
k =2, as well as for Algorithm ATl.

Bifurification diagrams were done which examine the relationship between
f(0), f(0) and ||u||c. The diagrams provided correspond with Algorithm
B, £ = 1,2,3. In the case for £k = 1, the bifurification curve from the

15

16

Algorithm A1l almost exactly overlaps the curve obtained by Algorithm B,
so we can omit bifurification diagrams from Algorithm Al.

In the case where we hold f/(0) constant and vary f'(oco) (see Figure
4.1), recall that f'(co) € (Ag, Agy1) is required by Theorem 1.0.1. When
f'(c0) > Api1, the dashed line represents the continuation of the reduction
solution branch, although these “solutions” are no longer reduction solutions
and cannot be stable under our algorithm. In addition, the graph has a
vertical asymptote at f'(co) = Ap. Note that A\ = 9.9, ~ 39.5, and
A3 &~ 157.9.

In addition, we plotted several of the solutions in the ODE case. The
graphs of the solutions for Algorithm B, for £ = 1 and k = 2 are shown. In
Figure 4.3, where k£ = 1, solutions obtained from both Algorithm A1l and
Algorithm B are both graphed, and are found to coincide.

Table 4.1: Approximation of u. The number of decimal places show agree-
ment of the Algorithm B approximation with that generated by the Shooting
Method.

x 1 3 D 7 9
T =M =1000,k =11 0.55730 | 1.5241 | 1.92140 | 1.5241 | 0.55730
T = M =1000,k =2 | 3.074 | 5.091 | —107% | -5.091 | -3.074

Table 4.2: ||u” + f(u)|]z with T = M.

T 10 50 100 1000
Reduction, k= 1 | 0.1985 | 0.009554 | 0.002446 | 0.00002597
Reduction, k=2 | 5.7395 | 0.3834 | 0.1079 | 0.001207

One-Sign 0.2013 | 0.01227 | 0.005741 | 0.004038

Figure 4.1: ||ul|e versus f/(o0),k = 1,2,3

50

40

30

20

10

Figure 4.2: ||ul|oo versus f/(0),k=1,2,3

6
5
4

N

[EEN

20 40 60 80 100 120

17

18

Figure 4.3: u, k=1

1.75
1.5
1.25

0.75
0.5
0.25

0.2 0.4 06 0.8 1

Figure 4.4: u, k=2

0.2 0.4 \0.6 0.8

Chapter 5
PDE Results

It should be noted that for the PDE, ||Au + f(u)||2 was calculated using
Ay ~ Zf\il a; \¥;, whereas in the ODE algorithms, divided differences were
used. The PDE results for both Algorithms A1 and B were good. After a
certain point, however, increasing n and m had no significant effect on the

residual ||Au + f(u)llo.

Table 5.1: u, Reduction Algorithm B, k = 3
0.1 0.3 0.5 0.7 0.9
0.1 | 2.557 | 7.446 | 9.589 | 7.446 | 2.557
0.3 4.23 12.27 | 15.77 | 12.27 4.23
05 —-107%{ —107% | —=107% | =107% | —107°
0.7 -4.23 | -12.27 | -15.77 | -12.27 | -4.23
0.9 | -2.557 | -7.446 | -9.589 | -7.446 | -2.557

Table 5 shows that in our code’s execution, the optimal relationship be-
tween T and M is roughly T = M. We therefore used T' = M in Table 5.
We are at a loss to explain why refining the grid (increasing T') and keeping
M constant does not result in a reduced residual.

In Figure 5, we demonstrate the presence of a solution which is unstable
with respect to Algorithm B. The function up is an estimate of the reduction
solution, obtained using uy = 1 and stopping when ||VyJ(u)||, < 107°.
Using the initial guess ug = 112 + 909 and stopping when ||V J(u)|]s < 1075,
we saved off u = wue, an estimate of the CCN solution. Again executing
the algorithm with ug = 12 + 991, we generate Figure 5. Since the CCN

19

20

Table 5.2: ||Au + f(u)]|2, Reduction Algorithm B, k =1

M\T [T=10 | T=20 | T=50

7 =10 | 0.0000198 | 0.347 0.408

M=20] 147 [0.0000194 | 0.0863
—50 | 1040 401 | 0.0000194

Table 5.3: Convergence data for the PDE Reduction Algorithm B

E|T=M]|||Au+t f(u)llz | J(u)
1 10 0.0000198 11.6
1 50 0.0000194 11.6
3 10 0.0000479 168
3 50 0.0000482 172

solution is of Morse index 2 and is not stable, in time the algorithm converges
to the Morse index 3 solution ug, although it first “loiters” near uc. A
similar experiment was done in [7], where the sign-changing algorithm was
run with ug = 912, to show that the algorithm will eventually converge to
the CCN solution, after loitering near ug, which is unstable with respect to
that algorithm.

Bifurification diagrams were done which examine the relationship between
f(0), f/(0) and ||u|s, as in the ODE case. Again, if we hold f/(0) constant
and change f'(00), (see Figure 5.2), we get the trivial solution when f'(oc0) >
Ak+1, and we indicate these portions of the graph with dashed lines. In both
diagrams, bifurification curves are provided for Algorithm B, k£ = 1,3. In the
case for k = 1, bifurification curves from Algorithms A1 and B overlap, so
we omit the Algorithm A1 bifurification diagram.

In addition, we plotted several of the reduction solutions from Algorithm
B in the PDE case. In the case for £ = 1, this solution is the same as in
Algorithm A1l. Recall that the solution for £ = 3 will not be the same as
in Algorithm A2 (see Figure 5), since Algorithm B gives a Morse index 3
solution, but Algorithm A2 gives a sign-changing solution of Morse index 2.
This sign-changing solution is given in Figure 5.6.

21

Figure 5.1: Reduction algorithm, run with the “CCN” initial guess of 915 +
191. The dashed line represents ||u — ucl|2, while the solid line represents

[lu — ug]l2.

1)
)
[}
L}
.

-' .
55002000 6000 800g L€ at! on

Figure 5.2: ||ul|eo vs. f/(00),k =1,2
100

80
60
40

20

22

Figure 5.3: ||ul|o vs. f/(0),k = 1,2
17.5
15
12.5
10
7.5
5
2.5

10 20 30 40 50 60 70

Figure 5.4: Reduction Solution, &k =1

23

Figure 5.5: Reduction Solution, & = 3

Figure 5.6: CCN solution

Figure 5.7: u, k=4

24

Bibliography

1]

[4]

A. Ambrosetti and P. Rabinowitz, Dual Variational Methods in Critical
Point Theory and Applications, Journal of Functional Analysis 14 (1973),
349-381.

A. Castro and J. Cossio, Multiple solutions for a nonlinear Dirichlet prob-
lem, STAM J. Math. Anal. 25 (1994), no. 6, p1554-1561.

A. Castro, J. Cossio and J. M. Neuberger, A Sign-Changing Solution for
a Superlinear Dirichlet Problem, Rocky Mountain J. of Math., 27, No. 4
(1997), pp. 1041-1053.

Y.S. Choi and P.J. McKenna, A Mountain Pass Method for the Numerical
Solutions of Semilinear Elliptic Problems, Nonlinear Analysis, 20 (1993),
p417-437.

J. Cossio, S. Lee, and J. M. Neuberger, A Reduction Algorithm for Sub-
linear Dirichlet Problems, Accpeted by Nonlinear Analysis, WCNA 2000
proceedings, (2000).

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Fquations of
Second Order, Berlin, New York: Springer-Verlag, (1983).

John M. Neuberger, A Numerical Method for Finding Sign-Changing So-
lutions of Superlinear Dirichlet Problems, Nonlinear World 4 (1997), no.
1, 73-83.

J.W.Neuberger, Sobolev Gradients and Differential Fquations, Spring
Lecture Notes, (1997).

John M. Neuberger and James W. Swift, Newton’s method and Morse
index for semilinear elliptic PDE, Accepted by Int. J. Bif. Chaos, (2000).

25

26

[10] P. Rabinowitz, Minimaz Methods in Critical Point Theory with Appli-
cations to Differential Equations, Regional Conference Series in Mathe-
matics, 65, Providence, R.1.: AMS, (1986).

Appendix A

Background

Definition A.0.3 Let V' be a vector space over R. An inner product on V
is a function (-,-) : V. x V — R satisfying:

o (av,w)= a(v,w) foralla € R,v,w € V.

o (v+w,u) = (v,u) + (w,u) for all v,w,u € V.

o (v,w) = (w,v) for allv,w e V.

o (v,v) >0 forallveV and if v#0,(v,v) > 0.
We call V an inner product space.

Definition A.0.4 Let V be a vector space over R and let ||-|| : V — [0, 00).
Then || - || is a norm on V if

o ||[v|]| >0 forallveV and ||v|| > 0 if v # 0.
o ||lav|| = |a|||v|| for allv € V,a € R.
o ||lv+w|| < |||+ ||w]] for allv,w e V.

Definition A.0.5 A Hilbert Space is a inner product space in which every
Cauchy sequence converges.

Definition A.0.6 The L? space is a Hilbert space with inner product

(u,v>2:/guvdx.

and norm

||u||2:(/Qu2dx)§ < 0.

27

28

Definition A.0.7 The Sobolev space H = Hy*(2) is a Hilbert space and is
a dense subspace of L*(Q), with inner product

(u,v)g = /QVu-Vvda:.

and norm)
el |7 = (/Q|Vu|2da:)§ < oo

The space CL(Q), the set of all functions which are zero on the boundary of
Q2 and continuously differentiable on the closure of §2, is a subset of H. We
define the H to be the completion of C3(Q) in L? under this norm.

Definition A.0.8 In an inner product space, a collection of vectors {14} is
orthonormal if |[¢o|| = 1 for all o and (¢, Yg) =0 for all o # 3.

Definition A.0.9 On a region @ C R, A is the linear operator such that
AU = Uyy + Uyy, called the Laplacian Operator.

Definition A.0.10 If there is a unique z such that v'(x)(y) = (z,y)2 then
Vou = z. The funciton Vau is said to be the L* gradient of u. If there is a
unique z such that v'(x)(y) = (z,y)u then Vygu = z. The function Vyu is
said to be the Sobolev gradient of u.

Definition A.0.11 Given a function J : H — R, we define critical points
of J as functions u such that J'(u)(v) =0 for allv € H.

Definition A.0.12 The Morse index (MI) of a critical point is the num-
ber of negative eigenvalues of the Hessian matriz. Roughly speaking, it is
the number of linearly independent “down” directions in function space of a
functional. For exzample, * + y* — 2% and z* — y*> — 2% have Morse index 1
and Morse index 2 critical points at (0,0,0), respectively.

Definition A.0.13 Steepest descent and ascent techniques are used to find
local minimums and mazimums. Let J : X — R. Recall that the gradient
VJ(u) points in the direction of steepest ascent. To perform steepest ascent,
using k as a counter and 6 > 0 as a stepsize, we repeat the following step
until ||V J(u)|] < e:

uF Tt = P 4 oV I (uF).
In order to perform steepest descent, we simply make 6 < 0. In theory, for

many functions J one can find an optimal stepsize & which is used to achieve
convergence as quick as possible.

Appendix B
ODE Reduction Code

//Reduction Code for ODE
//0Objective: Solve y’’ + f(y) = 0 on [0,1] where y(0)=y(1)=0

// Do this by finding critical points of J(u).

// One critical point u satisfies:

// J(u) = max min J(x+y)

// Xy

// where x is in X1 and y is in X2.
e

#include <iostream.h>
#include <math.h>

#include <fstream.h>
#include <iomanip.h>

const double pi = 3.1415352654;

const double pi2 = pi*pi;

const double pi2_div2 = .b*piZ;

const int n = 100; //number of divisions

const int m = 100; //number of eigenfunctions in basis
const double delta = .1; //step size

const double tol = 0.000001;

const double kval = 1; //value to be assigned to initial
//coefficients
const int k = 2; //crossing eval number

29

const int k_next = 3;
const int max_its = 10000;

//t = 0.5 means that f’(infinity) is halfway between lambda_k
//and lambda_k+1

const double t = 0.5;
const double fpi = (double) (1-t)*pi2*k*k
+ (double)t*pi2+*k_next*k_next; //f’(inf)

const double fp0 = 0; //£’(0)

void fourier(double a[m+1], double uln+1]);

double lam(int 1i); // (pixk) "2

double psi(int i, double x);//sin(1l.414*xk*pi*x)
double f(double x); //f (%)

double F(double x); //F(x) (f’(x) = F(x))
double J(double al[m+1], double u[n+1]); //J3(a)

double Jp(double a[mt+1], double ul[n+l], int j);

/73’ () (psi(j,x))

void grad2(double a[m+1], double u[n+1], double glm+1]);
//performs the L2 gradient

double norm(double ul[m+1]);

void coefficients(double al[m+1], double uln+1]);

void error(double a[m+1], double uln+1], ofstream & fout);

void main()

{
double cnvg = 1; //Used to test for convergence
double a[m+1]; //Fourier coefficients
double ul[n+1];
double gl[m+1]; //L2 Gradient of u
ofstream fout;
fout.open("ode.txt"); //Output file

//Set up initial fourier coefficients
for (int i = 0; i <= n; i++) uli] = O;
for (1 = 0; 1 <= m; i++)
{
if (i == k) alil = kval;

30

else al[i] = 0;

fourier(a,u); //Fourier expansion

//Main loop
for (int iteration = 1; iteration <= max_its; iteration++)
{

grad2(a,u,g); //Set g = L2 Gradient of u

//Here we convert to the Sobolev gradient, as well as
//setting g to be negative in the X components
for (1 =1; 1 <= k; i++)
gli]l = -glil/lam(i);
for (i = ktl; i <= m; it++)
gli] = glil/lam(3i);
//This step will perform steepest ascent in X,
//steepest descent in Y
for (i =1; 1 <= m; i++)
ali]l-= deltaxg[il;

fourier(a,u); //Fourier expansion

cnvg = norm(g); //Check size of norm - if norm is small
//we must be near a critical point.

//TIf |lgl| is small enough, stop and calculate residual
if (cnvg < tol)
{

iteration = max_its + 1; //exit loop

error (a, u, fout);

}

fout.close();

//Fourier expansion - the function sets
//a = sum(a_i psi_i)

31

void fourier(double a[m+1], double uln+1])
{
double x;
for (int j = 0; j <=n; j++)
{
uljl = 0;
x = j/(double)n;
for (int i = 1; i <=m; i++)
ulj] += alil*psi(i,x);

// (Pixk) "2
double lam(int i)
{

return (pixpixix*i);

//8in(1.414xk*pi*x)
double psi(int i, double x)

{
return (1.4142136*sin(i*pi*x));

//Function f: recall r = £’(inf), s = £’(0)
double f(double x)

{
if (x >= 0)
return (fpi*x + fpO*log(l+x) - fpixlog(l+x));
else
return (fpi*x - fpO*log(l-x) + fpixlog(l-x));
}

//F(x) = int_0"x f(s)ds
double F(double x)
{
if (x >= 0)
return(.b*fpixx*x + (fpi-fp0)*x

+ log(1+x)* (fpO+fpO*x—fpi-fpi*x));
else

return(.b*fpixx*x + (—fpi+fp0)*x

+ log(1-x)*(~fpi+fpO+fpi*x—fp0*x));

//Want to return: (1/2)sum(a_i"2 lam_i) - int_0"1 F(u)dx
double J(double alm+1], double uln+1])
{
double sum = 0;
double sum2 =0;
for (int i = 1; i <= m; i++)
sum+=.5*a[i]*a[i]l*lam(i);

//integrate from 0 to 1: F(x)
for (i = 0; 1 < n; i++)
sum2 += F(ulil);
sum?2 = sum2/(double)n;

return sum - sum?2;

//Want to return: a_j lam_j - \int_07"1 psi_j f(u)dx

double Jp(double a[mt+1l], double ul[n+1], int j)

{
double sum =
double x = 0;
int i;

aljl*lam(j);

double sum2 = 0;
if (integration == 0)//left hand sum

{
for (i = 0; i < n; i++)
{
x = i/(double)n;
sum2 += psi(j,x)*f(ulil);
}

sum? = sum?2/(double)n;

33

34

return sum - sum?2;

//For each i, set gradient_i = sum(J’(u) (psi_i))
void grad2(double a[m+1], double u[n+1], double glm+1])
{
for (int i = 1; i <= m; i++)
glil = Jp(a, u, 1);

s

double norm(double ulm+1])

{
double sum = 0;
for (int i = 1; i <= m; i++)

sum += pow(ulil],2);

return sqrt(sum);

s

//Sets coefficients a, given a function u. (used for some
//tests)
void coefficients(double a[m+1], double ul[n+1])

{
double x;
for (int r = 1; r <= m; r++)
{
alr] = 0;
//for each alr], integrate u(x)*psi(r,x)
for (dnt i = 0; 1 < n; i++)
{
x = i/(double)n;
alr] += ulil*psi(r,x);
s
alr] = alr]/(double)n;
s
s

//0Output estimated residuals to file
void error(double a[m+1], double uln+1], ofstream & fout)

//0Output u

fout << "u " << endl;
for (dint 1 = 0; i <= n; i++)
fout << i/(double)n << " " << getprecision(10)

<< uli] << endl;

//0utput coefficients
fout << "a " << endl;
for (1 = 1; i <= m; i++)

fout << ali] << endl;

double error;
double error_2 = 0;
double error_max =
double u_2 = 0;
double u_max = 0;
//Calculate residuals by performing divided differences
// (L2 norm and max norms)

for (int i = 1; i < n; i++)

0;

{
error = (uli+1] - 2%u[i] + uli-1])*n*n;
error = fabs(error + f(ulil));
if (error > error_max) error_max = €rror;
error_2 += error*error;
//Calculate ||ul| (L2 norm and max norms)
u_2 += ulil*ulil;
if (fabs(ul[il]) > u_max) u_max = fabs(ulil);
s

error_2 = error_2/(double)n;
u_2 += ulnl*ulnl;
u_2 = u_2/(double)n;

cout << "n =" <K<K n<KK", m="<<m<K ", tol = " << tol
<< endl;
cout << "f’(0) = " << fp0 << endl;

cout << "f’(inf) = " << fpi << endl;

cout
cout
cout

cout

<<
<<
<<
<<
<<
<<

36

"[ull2 = " << sqrt(u_2) << endl;

“|ul |inf = " << u_max << endl;

"|lerrl|12 = " << sqrt(error_2) << "; "

sqrt (f_2) << endl;

"|lerr||inf = " << error_max << "; " << f_max
endl;

Appendix C
PDE Reduction Code

e
//0bjective: Solve laplacian(u) + f(u) = 0 on [0,1]x[0,1]

// Do this by finding critical points of J(u).

// One critical point u satisfies:

// J(u) = max min J(x+y)

// Xy

// where x is in X1 and y is in X2.
e

#include <iostream.h>
#include <math.h>
#include <fstream.h>
#include <iomanip.h>
#include <time.h>

const double pi = 3.1415352654;

const double pi2 = pi*pi;

const double pi2_div2 = .b*piZ;

const int n = 20; //number of divisions

const int m = 20; //number of eigenfunctions in basis
const int n2 = n*n;

const double deltal .7 //steepest ascent step size in X

const double delta2 .7 //steepest descent step size in Y
const double tol = 0.000001;

const double kval = 1; //value at k

37

38

const int k = 2; //k can be 2,5,8,10,13,17,18,20,25,26,29,
//32,34,37
//(its a sum of 2 perfect squares)

const int k_next = 5;

const int max_its = 100000;

const double fp0 = 0; //£’(0)

//t = 0.5 means that f’(infinity) is halfway between lambda_k
//and lambda_k+1

const double t= .b;

const double fpi = (double) (1-t)*pi2+k + (double)t*pi2*k_next;

void fourier(double a[m+1] [m+1], double uln+1] [n+1]);
double lam(int i, int j);
double psi(int i, int j, double x, double y);
double f(double x);
double fp(double x);
double F(double x);
double J(double alm+1] [m+1], double uln+1][n+1]);
double Jp(double a[mt+1][m+1], double ul[n+l][n+1], int j);
void grad2(double a[m+1][m+1], double ul[n+1] [n+1],
double glm+1] [m+1]);
double norm(double glmt+1] [m+1]);
void print_error (double a[m+1] [m+1], double u[n+1] [n+1],
ofstream & fout);

void main()
{
double cnvg = 1;
double a[m+1] [m+1]; //Fourier coefficients
double uln+1] [n+1];
double glm+1] [m+1]; //L2 gradient of u
double u_max;
ofstream fout;
fout.open("Reduction.txt"); //output file

for (int i = 0; i <=n; i++)
for (int j = 0; j <=n; j++)

39

ulil [j]1 = 0;

//Set up initial Fourier coefficients
if (k==2)
{

for (dnt r = 0; r <= m; T++)

for (int s = 0; 8 <= m; s++)

{
if ((r*r + s*xs) == k) alr][s] = kval;
else alr][s] = 0;
s
s
else if (k==5)
{
for (dnt r = 0; r <= m; T++)
for (int s = 0; s <= m; s++)
{
if ((r == 2) && (s == 1)) alr]lls] = kval;
else alr]ls] = 0;
s
s
fourier(a,u); //Fourier expansion

//Main loop
for (int iteration = 1; iteration < max_its; iteration++)
{

grad2(a,u,g); //set g = L2 gradient of u

//Here we convert to the Sobolev gradient, as well as
//setting g to be negative in the X components
for (int r = 1; r <= m; r++)
{

for (int s = 1; 8 <= m; s++)

{

if (r*r + s*s <= k)
glrlls] = -glrl[sl/lam(zr,s);

else

glrlls] = glrl[s]l/lam(r,s);

//This step will perform steepest ascent in X,
//steepest descent in Y
for (r = 1; r <= m; r++)
for (int s = 1; 8 <= m; s++)
alr][s] -= deltalxglr] [s];

fourier(a,u); //Fourier expansion

cnvg = norm(g); //Check size of norm - if norm is small
//we must be near a critical point.

//TIf |lgl| is small enough, stop and calculate residual
if (cnvg < tol)
{

iteration = max_its + 1;

print_error(a,u,fout);

}

fout.close();

//Fourier expansion - the function sets
//a = sum(a_i psi_i)
void fourier(double al[m+1] [m+1], double uln+1] [n+1])
{
double x,y;
for (dint 1 = 0; i <= n; i++)
{
x = i/(double)n;
for (int j = 0; j <= n; j++)
{

ulil [j]1 = 0;
y = j/(double)n;
for (int r = 1; r <= m; T++)

40

for (int s = 1; s <= m; s++)
uli] [j] += alr] [s]*psi(r,s,x,y);

}

//pi~2(i~2+3°2)
double lam(int i, int j)
{
return (pixpik(i*xi+j*j));

}

//2 Sin(i Pi x)sin(i Pi y)
double psi(int i, int j, double x, double y)
{

return (2*sin(i*pix*x)*sin(j*pix*y));

}

//Function f: fpi = f£’(inf), fp0 = £’(0)
double f(double x)

{
if (x >= 0)
return (fpi*x + fpO*log(l+x) - fpixlog(l+x));
else
return (fpi*x - fpO*log(l-x) + fpixlog(l-x));
}

//F(x) = int_0"x f(s)ds
double F(double x)
{
if (x >= 0)
return(.b*fpixx*x + (fpi-fp0)*x
+ log(1+x)* (fpO+fpO*x—fpi-fpi*x)) ;
else
return(.b*fpixx*x + (—fpi+fp0)*x
+ log(1-x)*(~fpi+fpO+fpi*x—fp0*x));

41

//Want to return: (1/2)sum(a_i"2 lam_i) - int_0"1 F(u)dx
double J(double alm+1] [m+1], double uln+1] [n+1])
{

double sum = 0;

double integral = O;

for (int r = 1; r <= m; r++)

for (int s = 1; 8 <= m; s++)
sum+=.5*a[r] [s]l*alr] [s]*lam(r,s);

//integrate from 0 to 1: F(x)
for (dint 1 = 0; i < n; i++)
for (int j = 0; j < n; j++)
integral -= F(uli]l[j1);
integral = integral/(double)n2;
return sum + integral;

//Want to return: a_j lam_j - \int_07"1 psi_j f(u)dx
double Jp(double a[mt+1][m+1], double ul[n+1][n+1], int r,

int s)

{
double x = 0;
double y = O;

double sum
for (int i
{

x = i/(double)n;

for (int j = 0; j < n; j++)

{

0;
0; i < n; i++)

y = j/(double)n;
sum += psi(r,s,x,y)*f(ulil [j1);

}

return alr] [s]l*lam(r,s) - sum/(double)n2;

//For each i, set gradient_i = sum(J’(u) (psi_i))
void grad2(double a[m+1][m+1], double ul[n+1] [n+1],

42

double glm+1] [m+1])

{
for (int r = 1; r <= m; r++)
for (int s = 1; 8 <= m; s++)
glrlls] = Jp(a, u, r, 8);
s
double norm(double gl[mt+1] [m+1])
{
double sum = 0;
for (int r = 1; r <= m; r++)
for (int s = 1; 8 <= m; s++)
sum += pow(glr] [s],2);
return sqrt(sum);
s

//Output estimated residuals to file
void print_error(double a[m+1] [m+1], double ul[n+1][n+1],
ofstream & fout)
{
double x, y, error;
double err_2 = 0; //L2 norm of residual
double err_max = 0; //inf norm of residual
double u_2 = 0; //L2 norm of u
double u_max = 0; //inf norm of u
for (dint 1 = 0; i < n; i++)
{
x = i/(double)n;
for (int j = 0; j < n; j++)

{
y = j/(double)n;
error = 0;
//Set error = -Sum(a_i lam_i psi_i)
for (int r = 1; r <= m; r++)
{

for (int s = 1; s <= m; s++)

{

error —= alr] [s]*lam(r,s)*psi(r,s,x,y);

s

error = error + f(ulil[j]);

if (err_max < fabs(error)) err_max = fabs(error);
err_2 += error*error;

u_2 += uli] [jI*ulil [j];
if (u_max < fabs(ul[il[j])) u_max = fabs(uli] [j1);

}
}
CO'llt << lln =N << n << ll’ m = 1} << m << ll’ tol ="

<< tol << endl;

cout << "J(u) = " << J(a,u) << endl;
cout << "f’(0) = " << fp0 << endl;
cout << "f’(inf) = " << fpi << endl;
cout << "[|ul|2 = " << sqgrt(u_2/(double)n2) << endl;
cout << "||ullinf = " << u_max << endl;
cout << "|lerr||2 = " << sqgrt(err_2/(double)n2) << endl;

cout << "||err||inf " << err_max << endl;

Appendix D
ODE One-Sign Algorithm Code

//One-sign Algorithm Code for ODE

//0bjective: Solve y’’ + f£(y) = 0 on [0,1] where y(0)=y(1)=0
// in each iteration u is projected onto

// S =HuinH - {0}: ’()(uw) =012

// after which one takes a step in the $-\nabla J(uw)$

// direction.

#include <iostream.h>
#include <fstream.h>
#include <math.h>

const int m = 100; //number of eigenfunctions in basis
100; //number of divisions
5000;

const int n

const int max_its
const double toll = 0.000001; //tol for projection step
const double tol2 = 0.000001; //tol for steepest descent
const int k = 1; //crossing eval number

const int k_next = 2;

const double kval = 1;

const double deltal = 0.1; //step size for projection step
const double delta2 = 0.1; //step size for steepest descent
const double pi = 3.14159;

const double pi2 = pi*pi;

45

46

const double s2 = 1.414;

//t = 0.5 means that f’(infinity) is halfway between
//lambda_k and lambda_k+1

const double t = .5;

const double fpi = (double) (1-t)*pi2*k*k

(double) t*pi2+k_next*k_next; //f’(inf)
0; //£2(0)

+

const double fpO0

void ps(double a[m+l], double ul[n+l], ofstream & fout);
double pgrad_J(double al[mt+1], double ul[n+1]);
double Jp(double a[mt+1], double ul[n+l], int r);
void grad2(double a[m+1], double u[n+1], double glm+1]);
void fourier(double a[m+1], double uln+1]);
double norm(double a[m+1]);
double lam(int i);
double psi(int i, double x);
double f(double x);
double F(double x);
void print_u(double ul[n+l], ofstream & fout);
void print_error(double al[mt+1], double ul[n+1],
ofstream & fout);

void main()

{
double ul[n+1];
double a[m+1]; //Fourier coefficients
double g[m+1]; //L2 Gradient of u
double cnvg; //Used to test for convergence

ofstream fout;
fout.open("ode-os.txt"); //output file

//Initialize u
for (int i = 0; i <=n; i++)

uli] = 0;

//Set initial Fourier coefficients

47

for (int r = 0; r <= m; r++)

{
if (r == k) alr] = kval;
else alr] = 0;
s
fourier(a,u); //Fourier expansion

//Main loop
for (int iteration = 1; iteration < max_its; iteration++)

{

ps(a,u,fout); //project u onto S
fourier(a,u); //Fourier expansion
grad2(a,u,g); //Set g = L2 Gradient of u

//Steepest descent step
for (r = 1; r <= m; T++)

{
glr] = glr]l/(1am(r)); //convert to Sobolev gradient
alr] = alr] - deltalxglr];

+

fourier(a,u); //Fourier expansion

cnvg = norm(g); //Check size of norm - if norm is
//small we must be near a critical point.

//TIf |lgl| is small enough, stop and calculate residual
if ((iteration > 1)&&(cnvg < toll))
{
iteration = max_its + 1; //exit loop
print_error(a, u, fout);

//Fourier expansion - the function sets
//a = sum(a_i psi_i)
void fourier(double al[m+1], double ul[n+1])

{
double x;
for (dint 1 = 0; i <= n; i++)
{
uli] = 0;
x = i/(double)n;
for (int r = 1; r <= m; r++)
uli] += alr]*psi(r,x);
s
s

//Projects u onto S = {u in H - {0}: J°(w(uw) =0 }
void ps(double a[m+l], double ul[n+l], ofstream & fout)
{

double t, cnvg;

double old_alm+1];

for (int it = 1; it < max_its; it++)

{
cnvg = 0; //keeps track of ||la"{m+1} - a"m]|
t = pgrad_J(a,u); //Projection of gradient onto u
//To perform steepest ascent in ray direction
for (int r = 1; r <= m; r++)
{
old_a[r] = alr];
alr] = alr]*(1 + delta2xt);
cnvg += pow(old_alr] - alr]l, 2);
}
cnvg = sqrt(cnvg) ;
//1f |la”{m+1} - a"m|| is small, exit loop
if ((it > D&&(cnvg < tol2)) it = max_its + 1;
fourier(a,u); //Fourier expansion
}

//Calculate (Sum(a_i"2 lam_i) - integral u f(u))

48

tu

49

// /Sum(a_1"2 lam_i)
double pgrad_J(double a[m+1], double ul[n+1])
{

double sum = 0;

double integral = O;

for (int r = 1; r <= m; r++)
sum += a[r]*alr]l*lam(r);

//integrate from 0 to 1: xf(x)
for (dint 1 = 0; i < n; i++)
integral += ul[il*f(ulil);
integral = integral/(double)n;
return (sum - integral)/sum;

//Want to return: a_j lam_j - \int_07"1 psi_j f(u)dx
double Jp(double a[mt+1], double ul[n+l], int r)

{
double integral = O;
double x;
for (dint 1 = 0; i < n; i++)
{
x = i/(double)n;
integral += psi(r,x)*f(ulil);
+
integral = integral/(double)n;
return al[r]*lam(r) - integral;
+

//For each i, set gradient_i = sum(J’(u) (psi_i))
void grad2(double a[m+1], double u[n+1], double glm+1])
{
for (int r = 1; r <= m; r++)
glr]l = Jp(a, u, 1);

// (Pixk) "2

double lam(int i)
{

return (pixpixix*i);

}

//8in(1.414xk*pi*x)
double psi(int i, double x)
{

return (s2*sin(i*pi*x));

}

//Function f: recall fpi = f’(inf), fp0 = £’(0)
double f(double x)

{
if (x >= 0)
return (fpi*x + fpO*log(l+x) - fpixlog(l+x));
else
return (fpi*x - fpO*log(l-x) + fpixlog(l-x));
}

//F(x) = int_0"x f(s)ds
double F(double x)

{
if (x >= 0)
return(.b*fpixx*x + (fpi-fp0)*x
+ log(1+x)* (fpO+fpO*x—fpi-fpi*x)) ;
else
return(.b*fpixx*x + (—fpi+fp0)*x
+ log(1-x)*(~fpi+fpO+fpi*x—fp0*x));
}

double norm(double al[m+1])
{
double sum = 0;
for (int r = 1; r <= m; r++)
sum += pow(alr],2);
return sqrt(sum);

50

51

//0Output estimated residuals to file
void print_error(double uu[m+1], double ul[nt+1],
ofstream & fout)

{
double error, x;
double error_2 = 0;
double error_max =
double u_2 = 0;
double u_max = 0;
for (i = 1; i < n; i++)

0;

{
//Find error using divided differences,
//both in L2 and inf norms
error = (uli+1] - 2%u[i] + uli-1])*n*n;
error = fabs(error + f(ulil));
if (error > error_max) error_max = €rror;
error_2 += error*error;
//Calculate ||ull, both in L2 and inf norms
u_2 += ulil*ulil;
if (fabs(ul[il]) > u_max) u_max = fabs(ulil);
s

error_2 = error_2/(double)n;
f 2 = £f_2/(double)n;

u_2 += ulnl*ulnl;

u_2 = u_2/(double)n;

cout << "m = " << m << ", n="<<n<K ", toll ="
<< toll << endl;
cout << "f’(0) = " << fp0 << endl;
cout << "f’(inf) = " << fpi << endl;
cout << "[|ull2 = " << sgrt(u_2) << endl;
cout << "||ullinf = " << u_max << endl;
cout << "[lerr||2 = " << sqrt(error_2) << "; "
<< sqrt(f_2) << endl;
cout << "||err||inf = " << error_max << "; " << f_max

<< endl;}

Appendix E
Shooting Method Code, k£ =1

The following code was implemented using Mathematica. In order to find
the k& = 2 solution, one only needs to change values for f'(0o0) as well as test
that y(1) > 0 instead of y(1) < 0.

fpi = 2.5%Pi"2;
fp0 = 0;
flx_] := If[x >= 0, Return[fpi*x + fpO*Logl[l + x]
- fpixLogll + x]1],
fpixx - fpO*xLogl[l - x] + fpixLogl[l - x]];

n = 1001; (knumber of gridpointsx*)
h = 1/1000; (*size of division*)
yl = Table[0, {i, 1, n}]; (xy(x)*)
u = Table[0, {i, 1, n}]; (xy’(x)*)
For[d = 5, d < 34, 4 += .1,
ul[1]] = d; (xset d = y’(0)*)
y1[[1]1] = 0; (*set y(0) = 0%)
For[i =1, 1 < n, i++,
yi1[[i + 111 = y1[[i]l] + h*ul[[il];
ulli + 111 = ul[i]] - nxfly1[[i + 1]11];
1;
(xtest if y(1) < 0%)
If [yi1l[nl] < O,
Print [InputForm[d], " ", y1[[nl]l];
d = 100; (xexit loop*) 1; 1

52

