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Abstract

We consider a sublinear elliptic BVP on the unit square and recall proofs for the
existence of five solutions. Previous algorithms which follow the constructive nature
of the existence proofs are able to find four of these solutions. The fifth solution
follows from an application of the Lyapunov-Schmidt reduction method. We provide
here a new algorithm for approximating this solution which realizes the reduction
minimizing function. We implement this new algorithm using an orthonormal finite
sub-basis of eigenfunctions.

1 Introduction.

Let Q be a smooth bounded region in RY, A the Laplacian operator, and
f € CYR,R) such that f(0) = 0. Let 0 < A\ < Ay < A3 < --- — oo be the
eigenvalues of —A with zero Dirichlet boundary condition in 2, and {1} the
corresponding eigenfunctions, normalized in L? = L?(Q2). We consider a class
of sublinear problems, where f satisfies f'(0) < A; and for some k > 1 there
exists v > 0 so that

f'(00) := lim @ € (M, Meg1) and f/B) <v <X VEER.

[t}— o0

In this paper we seek an approximation to a specific solution of the boundary
value problem

Au+ f(u)=0in Q2
© =0 on 002.

(1)
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Under the above hypotheses on f, in [3] an existence proof provides five so-
lutions when k > 2. Subsequent research efforts (see for example [4] and the
Morse index two “CCN” solution below) have revealed much about the na-
ture of these solutions. In particular, one is the trivial solution and is of Morse
index (MI) zero, two are of one sign and are of MI one, and a fourth solution,
which we now refer to as the CCN solution, changes sign exactly once and
is of MI 2 (if nondegenerate). The fifth solution is of Morse index & and is
the specific solution our new algorithm A approximates. The portion of the
proof in [3] providing for this solution utilizes the Lyapunov-Schmidt reduction
method. The lemma in Section 2 is the key to the proof of the existence of this
“reduction solution”. We wish to emphasize that this lemma is constructive
and contains the framework for our Algorithm A (see Section 3). Additionally,
we observe that if we allow & = 1, then the reduction solution coincides with
(either of) the one-sign solutions.

Let H be the Sobolev space Hy*(Q2) with inner product (u, v) = f,Vu- Vo dz
(see [1] or [8]). We use this space, inner product and implied norm and gradient
throughout the sequel, explictly using a subsript of “2” when otherwise refering
to L?. We define J : H —+ R by

Jw) = [{5Vul? ~ P} de,

where F(u) = [y’ f(s)ds. By regularity theory for elliptic boundary value
problems (see [8]), u is a solution to (1) if and only if u is a critical point of
the action functional J.

We point out that in our two experimental examples, the eigenvalues and
eigenfunctions are explicitly known. Specifically, in the ODE case when ) =
[0,1] then )\; = (i7)? and ¢;(z) = v/2sin(inz), and in the PDE case when
Q=1[0,1] x [0,1] then \;; = (¢ + j?)7? and ¥;;(z,y) = 2sin(inz) sin(jmy). We
often order the basis in this second case to be singly indexed. Note that (in
H) we have (1;,1;) = A\;d;;, where we have used the Kronecker delta function.
In our PDE experiments A, = A3, so that in that case it is not possible for
k = 2. This ensures that the CCN solution cannot be the reduction solution
to (1) when Q = [0,1] x [0, 1].

2 The Lyapunov-Schmidt Reduction Method.

For the sake of completeness we recall a global version of the Lyapunov-
Schmidt method. Since we are applying the following lemma to our functional
J, it is useful to note that in our application we have
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X = Span{wh o 7¢k} and ¥ = X-L = Span{wk—l—la o } (2)
Lemma 2.1 Let H be a real separable Hilbert space. Let X and 'Y be closed
subspaces of H such that H=X ®Y Let J: H— R be a functional of class
C' If there exists m > 0 such that for allz € X andy, y1 € Y we have

(VI(z+y)— VI(+y),y — 1) > mlly —wl?, (3)
then the following hold:

(1) There exists a continuous function ¢ : X —Y such that

J(z + ¢(z)) =Iyréi)r/1J(a:+y).

Moreover, ¢(x) is the unique member of Y such that

(VJ(z+ ¢(x)),y) =0  forall yev. (4)

(it) The function J : X — R defined by J(z) = J(z + ¢(z)) is of class C*,
and

(VJ(z),21) = (VJI(z + ¢(z)), 71) forall z,z € X. (5)

(111) An element x € X is a critical point of J if and only if z + é(z) is a
critical point of J.
(iv) If —J is weakly lower semicontinuous and

J(z) — —o0 as lz|l =00 (z€X) (6)
Then there exists ug € H such that VJ(up) =0 and

J(uo) = e%){(ryréi}r} J(z +vy).

T

In [3] it is shown that our functional J satisfies all the hypotheses to this
lemma with X and Y defined as in (2). Henceforth we refer to the solution g
as the “reduction solution”. We now provide a sketch of the proof of Lemma
2.1.

For each z € X define J, : Y — R by J.(y) = J(z + y). Using condition (3)
it is easy to show that J, is weakly lower semicontinuous and coercive. Thus
J has a unique minimum ¢(z) € Y. Therefore,

J(z + ¢(z)) :IyréiiI}J(:chy). (7)
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Because J € C*(H,R), it follows that J, € C}(Y,R), and ¢(z) is the only
element of Y such that

0= (VL(¢(z)),y) = (VJ(z + ¢(z)),y) VyeY. (8)

We now show that ¢ : X — Y is a continuous function. Suppose ¢ is not
continuous. Let § > 0 and (z,) C X such that

lim z, =2z  and lp(zn) — d(2)]| = 4.

n—0o0

Let P be the projection of H onto Y, and P* be the adjoint of P. We observe
that for any z € X

P*VJ(z+ ¢(x)) =0. (9)
Using (9) and the continuity of V.J and P* we see that for n sufficiently large

|[P*V J (2, + ¢(x))]] < mé. (10)
From (3), (9), and the Cauchy-Schwarz inequality it follows that

[1P* VI (2 + (2))ll = m|[d(zn) — ()]} = mé. (11)

Inequality (11) contradicts (10). Thus, ¢ is continuous. This proves part (i).

Let z,z; € X and ¢ > 0. Since VJ and ¢ are continuous, using (7) we can see
that

lim J(z+tz) — J(z)

t-0 t

= (VI + ¢(2)), 1). (12)

This shows that J has a continuous Gateaux derivative and hence is of class
C! From above we have

(VJ(z),2) = (VJ(z + ¢(2)),z1) Vz,2; € X.
This proves part (ii).

Part (iii) follows from (4) and (5).
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Since
~J(z)=-J(@+¢(x)) > —J(z) and J(z) » —co as |z| = oo,
it follows that
—J(z) — +co  as Izl = o0 (z€X).
Therefore —J is weakly lower semicontinuous and coercive, and hence —J has

a minimum. Consequently, there exists zo € X such that

J(zo) = mag J @) (13)

Since J(z) = J(z + #(z)) = mingey J(z +y), we see that

J(zo + ¢(w0)) = max min J(z +y). (14)

Also, since J is of class C, from (13) we have

(VJ(zo),z) =0 VzeX. (15)
letzeXandyeY.
(VJ(zo + ¢(20)), 7 +y) = (VI (20 + $(20)), 2) + (VI (20 + 8(20)), yX16)

Using (4), (5), and (15) we see that the first term and the second term of
the right hand side of (16) are equal zero. Thus if ug = o + ¢(x¢) we have
VJ(up) =0 and

J(ug) = max min J(z +y).

This proves part (iv), which concludes the proof of Lemma 2.1.

3 The Algorithms.

In our algorithms, we will use the Sobolev gradient Vg J(u). The L? gradient

VaJ(u) is only densely defined. Not surprisingly, numerical approximations of

VyJ(u) behave poorly (see [11]). If u € C?, Vo J(u) is defined and VyJ(u) =
2 (W) ().
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In this case, J'(u){v) = (VaJ(u),v)g = (VoJ(u),v)s. Since integrating by
parts yields VaJ(u) = —A(VgJ(u)) and also we have —Av; = A\,

Vi (u) = ~A (Vo (u) = A~ IZJ' iziJ'(u)(qﬁi)%

Also, using the Fourier expansion u = 3732, a;1; and that (yu,0:) i = (—Avi,1i)e =

A
T () = {u,¥i)a / ¥if (w) do = aik, / bif (an)

For the one-sign algorithm, in each iteration u is projected onto the codi-
mension one submanifold of H (see for example [4]) S = {u € H — {0} :
J'(u)(u) = 0}, after which one takes a step in the —VJ(u) direction. For the
sign-changing “CCN” algorithm, u is projected onto S} = {u € S : us €
S,u_ € S}, after which one follows —VJ(u). The reduction algorithm is sim-
ilar in nature to Newton’s Method, with steepest ascent in the X directions
and steepest descent in the Y directions, where X = span{s, 1o, ..., ¥y }, and
Y = span{¥x+1, Yit2, -} It is the ascent in the X direction which “realizes”

b (see (7)).

For the following algorithms, M is the number of basis elements, so that our
approximating subspace is G = span{t1, {2, ..., ¥m} =~ X®Y = H. In the ODE
case the singly indexed basis has size M = M, whereas for convenience we
refer to the size of the doubly indexed basis for the PDE when Q = [0,1] x [0, 1]
as M = +/M. The numerical integration is accomplished by treating u as an
array of values over a suitable grid on € and using a simple Riemann sum.
We use T divisions, and understand that there are T' 4+ 1 grid points in the
ODE case and (T + 1)? grid points in the PDE case. In Algorithm A, the
“projected” Sobolev gradient g is computed using (17) and changing the sign
of the first & components. Algorithm B is essentially as in [9], with the only
difference being the use of Fourier approximations.

3.0.0.1 Algorithm A (Reduction Algorithm).

Choose a function f which is sublinear and stepsize 4.
Let k be the crossing eigenvalue number (e.g. f'(c0) € (Ag, Akt1))-
Choose a = a® € RM to be initial Fourier coefficients.
Set u =u’ = ZMlaﬂ/)l
Loop counter n = 0
9 =g" = {J'(W)(th:) }i=1,..s € RM, s0 that PoVaJ(u) = =, gihs.
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Fori=1tok

Gi = =3

Fori=k+1to M
gi = +,\%gi-
Set a = o™ = a™ — 65"
Set u = v =M qp;.
Increment n.
If |g] =~ ||VaJ(u)|]2 is small, exit loop.

3.0.0.2 Algorithm B (One-Sign or Mountain Pass Algorithm).

Choose a function f which is sublinear and stepsizes d; and Js.
Choose a = a® € RM to be initial Fourier coefficients.

Set u=u’ =M, a;.

Loop counter n = 0

Loop counter m = 0 (to project u onto S)
M G,ZAZ—

Calculate t = Zi:lle ,{iuf(u) so that P,VJ(u) = tu.
i=1 3N

Set a = a™*! = o™ + J;ta™ (steepest ascent in ray direction).
Increment m.
If |a™*! — a™| is small, exit loop.
Set g = g" = {J'(w)(¥s) }i=1,..s € RM, s0 that PeVaJ(u) = X, gith;.
For i =1 to M (to take a step in the —V.J(u) direction)
o= " = af — &g,
Set u = u™ = ¥M q;1; (Fourier expansion).
Increment n.
If |g] = ||V2J(w)l]2 is small, exit loop.

In all of our included experimental results, we used step sizes 6 = 6, = d3 = 0.1,
although large stepsizes can often be used. The algorithm to produce the
CCN solution (see [9]) is very similar to the one-sign Algorithm B. The main
difference is that instead of projecting u onto S, one projects u onto S;, where
Ps,u = Psuy + Psu_. We found that our results in running this algorithm
were not as good as in [9]. This could be due to trying to estimate a function
such as {sin 27z}, using a Fourier expansion. We are not including any results
from these experiments.
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4 ODE Results.

In our experiments, we use admitedly elementary techniques for components
such as numerical integration. Our goal here is to demonstrate the validity of
the algorithms in general, and the utility of eigenfunction expansion in partic-
ular. We seek to contribute to the list of “Mountain Pass-Type Algorithms”.

In this section we will use Algorithms A and B to solve the problem

v + fu)=0for z € (0,1), u(0)=1u(1)=0.

For all experiments, unless otherwise stated we use the function

fe) = az+(b—-a)ln(l+z)z>0 (18)
az — (b—a)ln(l —z) z <0,

where f'(00) = a and f’(0) = b. We need not use an odd f as in (18). We
performed all numerical integration using a left-hand Riemann sum, although
certainly more sophisticated quadrature methods should be used. Unless oth-
erwise noted, the algorithms stop when ||V gJ(u)||2 < 1075. We set b= 0 for
all experiments.

Using Algorithm B, we numerically computed the solutions where f'(co) €
(A1, A2) (the one-hump solution) and the case where f/'(c0) € (A2, A3) (the two-
hump solution). In particular, for £ = 1, a = 2.57% and for k = 2, a = 6.57°.
For Algorithm A in Table 1, we stopped execution when |g| = ||[VgJ(u)||s <
10~® and compared the solutions to the shooting method solutions. Table 2
shows the computed residuals for Algorithm A, k = 1 and k = 2, as well as
for Algorithm B. We also approximated and validated solutions generated by
Algorithm A for larger values of &, but do not include those results.

Table 1

Approximation of u. The number of decimal places show agreement of Algorithm
A’s approximation with that generated by the Shooting Method.

z 1 3 5 7 9
T = M = 1000,k = 1 | 0.55730 | 1.5241 | 1.92140 | 1.5241 | 0.55730
T=M=1000,k=2| 3074 | 5.001 | —1078 | -5.001 | -3.074

5 PDE Results.

It should be noted that for problem (1), ||Au + f(u)||2 was calculated using
Au =~ S a; 5, whereas in the ODE algorithms, divided differences were
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Table 2 R
Jo" + f(u)|]2 with T'= M.
T 10 50 100 1000
Reduction, £ =1 | 0.1985 | 0.009554 | 0.002446 | 0.00002597
Reduction, k=2 | 5.7395 | 0.3834. | 0.1079 0.001207
One-Sign 0.2013 | 0.01227 | 0.005741 | 0.004038

used. The PDE results for both Algorithms A and B were good. After a certain
point, however, increasing the number of grid points and modes (T" and M)
had no significant effect on the residual |[Au+ f(u)||2. We wish to emphasize
that the solution found using & = 3 in Table (5) cannot be found by previously
existing mountain pass-type algorithms.

Table 3
Approximation of u, Reduction Algorithm A, k = 3

0.1 0.3 0.5 0.7 0.9
0.1| 2.557 | 7.446 | 9.589 | 7.446 | 2.557
03| 423 | 1227 | 1577 | 12.27 | 4.23
05| —-10"% | —10=8 | =108 | —1078 | —107°
0.7 -4.23 | -12.27 | -15.77 | -12.27 | -4.23
0.9 | -2.557 | -7.446 | -9.589 | -7.446 | -2.557

Table 4 shows that in our code’s execution, the optimal relationship between
T and M is roughly T' = M. We therefore used T'= M in Table 5 and Table
2. We are at a loss to explain why refining the grid (increasing T) and keeping

~

the number of modes (M) fixed does not result in increased accuracy.

Table 4
[|Au + f(u)||2, Reduction Algorithm A, k=1

3387

M\T | T=10 | T=20 | T=50
M =10 | 0.0000198 | 0.347 0.408
M =20 147 0.0000194 | 0.0863
M=50| 1040 401 0.0000194

In Table 6, we demonstrate the presence of a solution which is unstable with
respect to Algorithm A. The function ug is an estimate of the reduction solu-
tion, obtained using ug = 1,2 and stopping when ||V gJ(u)||2 < 107C. Using
the initial guess ug = 119 + 191 and stopping when ||VgJ(u)|]z < 1076, we
saved off u = u¢, an estimate of the CCN solution. Again executing Algorithm
A with ug = 19-+191, we generate Table 6. Since the CCN solution is of Morse
index 2 and is not stable, in time the algorithm converges to the Morse index
3 solution ug, although it first “loiters” near uc. A similar experiment was
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Table 5

Convergence data for the PDE Reduction Algorithm A
k| T=M|[|Aut fw)ll2 | J(u)
1 10 0.0000198 11.6
1 50 0.0000194 11.6
3 10 0.0000479 168
3 50 0.0000482 172

done in [9], where the sign-changing algorithm was run with ug = 14, to
show that the algorithm will eventually converge to the CCN solution, after
loitering near ug, which is unstable with respect to that algorithm. As in the
ODE case, we executed Algorithm A for larger k but are not including those
results.

Table 6
PDE Reduction, k = 3, ug = 912 + 921
iterations | |lu —ucllz | flu—wugrll2 | J@) | IVaJ@)lz2 | |lulle

10 24.4465 30.0817 | 43.4621 0.613173 4.44663
1000 0.00616128 | 26.6118 | 149.715 10~ 16.7456
2000 0.00616128 | 26.6118 | 149.715 1077 16.7456
3000 0.0125511 26.6014 | 149.715 | 0.000237068 | 16.7456
3250 0.122886 26.4955 | 149.717 | 0.00260147 | 16.7455

3500 1.15295 25.5189 | 149.849 | 0.0207314 | 16.7391
3750 6.78992 20.1264 | 153.403 | 0.0926639 | 16.5592
4000 18.722 8.36503 | 167.434 | 0.0894036 | 16.5606
5000 26.3328 0.315131 | 171.493 | 0.00146096 | 16.5871
6000 26.5669 0.0514488 | 171.495 | 0.00019263 | 16.5878
7000 26.6033 0.0118974 | 171.495 1074 16.5879

6 Conclusions.

In conclusion, the new Algorithm A successfully finds the reduction solution
found in [3] by acheiving the minimizing function ¢ defined by J(z + ¢(z)) =
mingey J(z + ), as in Section 2. The trivial solution found in that work can
easily be found by straight steepest descent since it is a local minimum, and so
we did not include those results. The pair of one-sign Morse index one solutions
found in [3] and elsewhere have been previously approximated by the Mountain
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Pass Algorithm (see [5] and [9]), but for completeness we included it here as
Algorithm B, with the modification of again relying on a finite sub-basis of
orthonormal eigenfunctions. Our attempts to similarly modify the Modified
Mountain Pass Algorithm (see [7] and [9]) to approximate the fourth solution,
which is sign-changing exactly-once, of minimal energy, and of Morse index
two (see [4]), were somewhat dissapointing from a numerical point of view,
and so we omit those experimental results.

In all our experiments we use the Sobolev gradient Vg J(u) rather than the
poorly performing L? gradient (see [11] for a complete discussion of the impor-
tance of this choice). To the best of our knowledge, our recent work [10] is the
first to present an algorithm for approximating high Morse index solutions to
semilinear elliptic PDE via this type of sub-basis (Fourier) approximation. In
that work we use Newton’s method, and demonstrate how it naturally mimics
the minimax behaviour of other mountain pass-type algorithms.
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