
A Numerical Investigation of a
Nonlinear Elliptic System

by Dennis R. Rice, Jr.

A Thesis
Submitted in Partial Fulfillment

of the Requirements for the Degree of
Master of Science
in Mathematics

Northern Arizona University
May, 2002

Approved:

John M. Neuberger, Ph.D., Chair

James W. Swift, Ph.D.

Shafiu Jibrin, Ph.D.

Abstract

A Numerical Investigation of a Nonlinear

Elliptic System

Dennis R. Rice, Jr.

We numerically find solutions to the vector Ginzburg-Landau
equation with a triple-well potential (as studied by Flores, Padilla,
and Tonegawa). We use the Galerkin Newton Gradient Algorithm
(by Neuberger and Swift) and bifurcation techniques to find solu-
tions to this problem. With a small parameter, we find a Morse
index 2 solution which approximates a pattern formation with
triple junction structure whose nodal set is of minimal length
and intersects the boundary at right angles.

ii

Acknowledgements

I would like to thank Prof. John M. Neuberger for his encouragement
and countless hours of explanation he gave while this work was in progress.
Dr. Neuberger’s confidence in me was unwavering and often motivated me
to work harder to try to live up to his expectations.

I would also like to thank Prof. Pablo Padilla of UNAM for partially
funding a trip to Mexico so that we could gain valuable insight into this
problem.

This work was partially supported by NSF grant DMS-0074326.

iii

Contents

List of Figures . vi

Chapter 1 Introduction 1

Chapter 2 Implementing GNGA 4
2.1 Eigenfunctions of the Laplacian 4
2.2 A Basis for G ⊂ L2 × L2 . 5
2.3 The Functional . 5
2.4 Galerkin Newton Gradient Algorithm 9

Chapter 3 Results 10
3.1 Morse Index 1 Results . 10
3.2 Morse Index 2 Results . 11
3.3 Other Patterns . 13

Chapter 4 Existence Proof of Bifurcation Points 17

Chapter 5 Conclusion 19

Bibliography 21

Appendix A Definitions and Theorems 22

Appendix B Computer Code 25

iv

List of Figures

1.1 The graph of W with α ≈ 3.23 and ζ ≈ γ ≈ 0.13. Part (a) is
the graph itself and (b) is its contour map. The points a, b,
and c are the minima of W , points labeled s are saddle points,
and the center is a local maximum. 3

3.1 Bifurcation diagram containing Morse index 1 solutions. The
numbers above or below each branch indicate the Morse index.
Further bifurcation is expected at the other bifurcation points.
The value of ε for every bifurcation point can be computed

exactly, ε =
√ |β|

λi
for i = 1, 2, 3, For the first bifurcation

point, ε ≈
√
|1.91|
π2 ≈ 0.44, the second is at ε ≈

√
|1.91|
2π2 ≈

0.31, and the third is at ε ≈
√
|1.91|
4π2 ≈ 0.22. Note that the

second bifurcation point corresponds to a simple eigenvalue,
thus the MI only changes by 1. The first and third eigenvalues
correspond to double eigenvalues, thus the MI changes by 2.
See Chapter 4 for more details. 12

3.2 Graph of J(u) versus φ for u = u∗ + ρ(σ1 cos(t) + σ2sin(t))
with ρ = 1. The large dots represent maxima and the small
dots represent minima. 12

v

3.3 Bifurcation diagram containing Morse index 2 solutions. The
numbers above or below each branch indicate the Morse index.
Further bifurcation is expected at the other points (where the
constant solution is degenerate.) Here β = −2 is a double
eigenvalue of D2W (0). Thus the value of ε at the bifurcation

points is ε =
√ |−2|

λi
for i = 1, 2, 3, For the first bifurcation

point, ε =
√
|−2|
π2 = 0.45, the second is at ε =

√
|−2|
2π2 = 0.32, and

the third is at ε =
√
|−2|
4π2 ≈ 0.22. Since β is a double eigen-

value of D2W (0), the jump in MI across bifurcation points
is double that of the corresponding Morse indices in Figure
3.1. See Chapter 4 for more details. Note the discontinuity
in the MI 3 branch near ε = 0.075, this is an example of the
“branch-jumping” that can occur when numerically attempt-
ing to follow a given branch. Also, notice that the MI 5 branch
changes to MI 4 and then back to MI 5, a feature worthy of
further study. This diagram is incomplete for ε < 0.32 where
other bifurcations off the main 2-Branch lead to more features.
Additional, similar branches of MI 2, 3, 4 and 5 bifurcate from

the main 2-Branch at ε∗ =

√
|−2|
π

. These additional branches
correspond to rotations and permutations of solutions found
here. 14

3.4 Approximation of a pattern formation with triple junction
structure at ε = 10−4 on the MI 2 nontrivial branch. This
is the solution expected by Flores, Padilla & Tonegawa [2001].
Each region corresponds to a minima of W : a = (−1.1,−2.0),
b = (−1.1, 2.0), and c = (2.3, 0). Figure (a) is a vector field
representation of u. If u = (u1, u2)

T , then Figure (b) is a
contour plot of u1 · u2. 15

3.5 Patterns found corresponding to the MI 3, 4 and 5 bifurcation
branches in Figure 3.3. These patterns are not found with
actual data, but are fair representations of the patterns that
would be found for larger values of M and smaller values of ε. 16

vi

Chapter 1

Introduction

In this work, we use the Galerkin Newton Gradient Algorithm [7] to nu-
merically study the following system studied by Flores, Padilla & Tonegawa
[5]:

−ε2∆u +∇W (u) = 0 in Ω

∂u

∂η
= 0 on ∂Ω,

(1.1)

where Ω ⊂ R2 is a bounded regular (see Definition A.0.1) domain, u : Ω →
R2, W : R2 → [0,∞) is a triple well potential, η is the unit outer normal
to the boundary, and ε is a small parameter. We will work with sufficiently
smooth functions u ∈ L2×L2, where L2 = L2(Ω). More precisely, we assume
that the following conditions from [5] are satisfied:

(i) W (u) ≥ 0 for all u ∈ R2.

(ii) P1 = a, P2 = b and P3 = c ∈ R2 are three different points such
that W (a) = W (b) = W (c) = 0, i.e., global minima of W . We will
also suppose that these points are nondegenerate, that is, [D2W (x)]−1

exists for x = a, b, or c. For simplicity we will take these as the only
minima of the potential.

(iii) W is uniformly coercive in u, that is, there exist R0 and C > 0 such
that if |u| ≥ R0 then W (u) ≥ C|u|2. We assume that R0 was chosen
sufficiently large so that the negative gradient flow of W points towards
the ball BR0(0) at points outside the ball.

1

2

In our investigation we take Ω = (0, 1) × (0, 1) and W = α − (u2
1 + u2

2) +
ζ(u2

1 + u2
2)

2 − γ(u3
1 − 3u1u

2
2), where α, ζ, and γ ∈ R+ are chosen so that

conditions (i) and (ii) are satisfied (see Figure 1.1). Clearly (iii) is satisfied
given the dominant fourth order term. Flores, Padilla & Tonegawa use the
existence of three Morse index (MI) 1 mountain pass solutions to prove the
existence of a nontrivial (nonconstant) MI 2 solution, when ε is small.

Note in (1.1) that u : Ω ⊂ R2 → R2 can be written as a vector

u =

(
u1

u2

)
.

Then (1.1) can be written as the following system of equations:

−ε2∆u1 +
∂W (u)

∂u1

= 0 in Ω

∂u1

∂η
= 0 on ∂Ω

−ε2∆u2 +
∂W (u)

∂u2

= 0 in Ω

∂u2

∂η
= 0 on ∂Ω.

We use the Gradient Newton Galerkin Algorithm (GNGA, see [7]) in our
investigation. Neuberger & Swift apply the algorithm to a single nonlinear
elliptic PDE with zero Dirichlet boundary conditions. Here, we apply the
algorithm to a system with zero Neumann boundary conditions. In our work
we rely on bifurcation theory in order to produce the nontrivial solutions
proven to exist by Flores, Padilla & Tonegawa. The proof by Flores, Padilla
& Tonegawa and our numerical investigation use variational methods to study
(1.1).

3

-2

0

2-2

0

2

0

2

4

6

-2

0

2

0

2

4

6

-2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

s

s

s

a

c

b

(a) (b)

Figure 1.1: The graph of W with α ≈ 3.23 and ζ ≈ γ ≈ 0.13. Part (a) is
the graph itself and (b) is its contour map. The points a, b, and c are the
minima of W , points labeled s are saddle points, and the center is a local
maximum.

Chapter 2

Implementing GNGA

2.1 Eigenfunctions of the Laplacian

Let ∆ be the Laplacian operator. The eigenvalues and eigenfunctions of -∆
on the square with zero Neumann boundary conditions are solutions to the
PDE





uxx + uyy + λu = 0 on Ω = (0, 1)× (0, 1)

∂u

∂η
= 0 on ∂Ω.

If we let u = f(x)g(y), this problem can be easily solved using separation of
variables. The separate equations of f and g become the second-order ODE
problems

f ′′ + µ2f = 0 g′′ + ν2g = 0
f ′(0) = f ′(1) = 0 g′(0) = g′(1) = 0.

The solutions to these problems can be found using characteristic equations
and are given by

µm = mπ νn = nπ
fm(x) = cos mπx gn(y) = cos nπy

where m,n = 0, 1, 2,
Thus the eigenfunctions of the −∆ are

um,n(x, y) = cos(mπx) cos(nπy)

4

5

and the corresponding eigenvalues are

λm,n = µ2 + ν2 = (m2 + n2)π2,

where m,n = 0, 1, 2, [6]

2.2 A Basis for G ⊂ L2 × L2

In this work, we will use λm,n = (m2 + n2)π2 for the (doubly-indexed) eigen-
values of -∆, and

ψm,n(x, y) =





1 for m = n = 0√
2 cos(mπx) cos(nπy) for m = 0, n 6= 0 or n = 0, m 6= 0

2 cos(mπx) cos(nπy) for m 6= 0 and n 6= 0,

for the eigenfunctions of -∆, normalized in L2 = L2(Ω). As above, m and n
range over all of the nonnegative integers. Since {ψm,n} are eigenfunctions of
a self-adjoint (see Definition A.0.7) linear operator, they form a basis for L2

and H = H1,2(Ω). (See Theorems A.0.8 and A.0.9 for a sketch of this proof,
including Green’s First Identity.) We take a finite number M̃ ∈ N, and
order M̃ +1 basis elements according to their corresponding (singly indexed)
eigenvalues (0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λ

M̃
). This gives us a singly indexed

basis, {ψi}. We use the following Galerkin subspace of H ×H and L2 × L2:

G = Span

{(
ψi

0

)}M̃

i=0

⋃ {(
0
ψi

)}M̃

i=0

,

which is of dimension M = 2(M̃ + 1). Thus, a basis for this set is
{(

ψ0

0

)
,

(
ψ1

0

)
, ...,

(
ψ

M̃

0

)
,

(
0
ψ0

)
,

(
0
ψ1

)
, ...,

(
0

ψ
M̃

)}
.

For convenience, we use {Ψi}M
i=1 to denote this basis. Thus, for u ∈ G, there

exist Fourier coefficients {ai}M
i=1 ∈ RM such that u =

∑M
i=1 aiΨi .

2.3 The Functional

As previously stated, GNGA uses a variational method to solve (1.1). We
define the (energy) functional Jε : H ×H → R as

Jε(u) =
∫

Ω
(
ε

2
|∇u|2 +

1

ε
W (u))dx.

6

For convenience we write J for Jε. It is well known that critical points of
J are exactly the classical solutions to (1.1) (see [1], [5], [7], and [8]). To
apply GNGA, we need to compute first and second directional derivatives of
J . The first directional derivative of J is defined as

J ′(u)(Ψ) = lim
t→0

J(u + tΨ)− J(u)

t

= lim
t→0

∫

Ω

ε
2
|∇(u + tΨ)|2 + 1

ε
W (u + tΨ)− ε

2
|∇u|2 − 1

ε
W (u)

t
dx

= lim
t→0

∫

Ω

ε
2
(|∇u|2 + 2t∇u · ∇Ψ + t2|∇Ψ|2)

t
dx

+
∫

Ω

1
ε
W (u + tΨ)− ε

2
|∇u|2 − 1

ε
W (u)

t
dx

= lim
t→0

∫

Ω

εt∇u · ∇Ψ + ε
2
t2|∇Ψ|2 + 1

ε
[W (u + tΨ)−W (u)]

t
dx

=
∫

Ω
ε∇u · ∇Ψ dx + lim

t→0

∫

Ω

[
ε

2
t|∇Ψ|2 +

1

ε

W (u + tΨ)−W (u)

t

]
dx.

Then by the Lebesgue Dominated Convergence Theorem (Theorem A.0.2),
we move the limit inside the integral to get

J ′(u)(Ψj) =
∫

Ω

[
ε∇u · ∇Ψj +

1

ε
Ψj · ∇W (u)

]
dx

=
∫

Ω

[
ε∇

(
M∑

i=1

aiΨi

)
· ∇Ψj +

1

ε
Ψj · ∇W (u)

]
dx

= εajλj +
1

ε

∫

Ω
Ψj · ∇W (u) dx.

Similarly, the second directional derivative is computed to be

J ′′(u)(Ψj, Ψk) =
∫

Ω
(ε∇Ψj · ∇Ψk +

1

ε
D2W (u)Ψj ·Ψk) dx

= ελjδjk +
1

ε

∫

Ω
D2W (u)Ψj ·Ψk dx,

7

where

δjk =

{
0 for j 6= k
1 for j = k

is the Kronecker delta function. The algorithm, GNGA, consists of perform-
ing Newton’s method iterations on the Fourier coefficients to find zeros of
∇J .

The inner products on L2 and H are defined as

< u, v >2 =
∫
Ω uv dx

< u, v >H =
∫
Ω u′v′ dx.

By the Riesz Representation Theorem (see [1]), for all u, v ∈ G, there exists
z ∈ L2 and w ∈ H, such that

J ′(u)(v) =< z, v >2=< w, v >H .

We define ∇2J(u) = z and ∇HJ(u) = w (see [8]). So,

J ′(u)(v) =< ∇2J(u), v >2=< ∇HJ(u), v >H .

Since ∇2J(u) ∈ L2, there exist coefficients αi such that

∇2J(u) =
∞∑

i=0

αiψi.

Then
J ′(u)(ψj) =<

∑∞
i=0 αiψi, ψj >2 = αj,

since the eigenfunctions are orthonormal to each other. Hence,

∇2J(u) =
∞∑

i=0

J ′(u)(ψi)ψi.

Since < x, y >H=< ∇x,∇y >2 for all x, y ∈ H, we write

< ∇HJ(u), v >H =< ∇∇HJ(u),∇v >2

=
∫
Ω∇∇HJ(u) · ∇v dx.

8

Then by Green’s First Identity (found in Theorem A.0.8),

∫
Ω∇∇HJ(u) · ∇v dx =

∫
Ω(−∆)(∇HJ(u))v dx

=< −∆∇HJ(u), v >2 .

Hence,
∇HJ(u) = (−∆)−1∇2J(u).

Similarly, we have
D2

HJ(u) = (−∆)−1D2
2J(u).

Then

[D2
HJ(u)]−1∇HJ(u) = [(−∆)−1D2

2J(u)]−1(−∆)−1∇2J(u)

= [D2
2J(u)]−1(−∆)(−∆)−1∇2J(u)

= [D2
2J(u)]−1∇2J(u).

Hence, we may use the L2 gradient and Hessian in our implementation of the
Newton algorithm, (see [7] and [8] for more details). Henceforth, we drop
the “2” subscript on the gradient and the Hessian. Also, it is worth noting
that the Sobolev gradient is easily computed to be

∇HJ(u) =
∞∑

i=0

1

λi

J ′(u)(ψi)ψi.

We use Fourier coefficients of the term [D2J(u)]−1∇J(u) as the search
direction in our algorithm. In our algorithm, the M×M matrix A represents
D2J(u), the elements of the vector g ∈ RM are the Fourier coefficients of
PG∇J(u), and the vector χ ∈ RM is the search direction given by Aχ = g.
Since the L2 Hessian is not always invertible, we use a least-squares solver
(i.e., we minimize ||Aχ−g||2 over all χ ∈ G) to compute this search direction.
Alternatively, one could use a pseudo-inverse (see Definition A.0.5) or, if the
Hessian is known to be invertible, one could solve the equation directly.
Also it is of use to us to compute the number of negative eigenvalues of A,
denoted sig(A). Note that sig(A) corresponds to the MI of u provided that
u is a nondegenerate critical point of J and M is sufficiently large.

9

2.4 Galerkin Newton Gradient Algorithm

As previously stated, this algorithm performs Newton’s method on ∇J in
coefficient space. This gives us critical points of the functional J which are
solutions to (1.1). In our computer code (see Appendix B) we use Simp-
son’s rule to compute all integrals. Additionally, the linear algebra package
CLAPACK is used. In particular, ‘dgels’, a least squares solver, is used to
compute the search direction χ and ‘dsyev’ is used to compute the eigenvalues
and eigenvectors of the Hessian matrix A.

The Algorithm

• Choose initial coefficients a = a0 = {ak}M
k=1, set u = u0 =

∑
akΨk, set

δ equal to the desired Newton step size, and set the loop counter n = 0.

• Loop:

1. Calculate g = gn+1 = (J ′(u)(Ψk))
M
k=1 ∈ RM (gradient vector).

2. Calculate A = An+1 = (J ′′(u)(Ψj, Ψk))
M
j,k=1 (Hessian matrix).

3. Compute χ = χn+1 = A−1g using a least-squares solver to solve
Aχ = g (search direction).

4. Set a = an+1 = an − δχ and update u = un+1 =
∑M

k=1 akΨk.

5. Increment loop counter.

6. Calculate the Morse index of u (i.e., sig(A)) and J(u).

7. Calculate
√

g · g = ||PG∇J(u)||; STOP if sufficiently small.

Chapter 3

Results

The triple-well potential, W , has exactly seven critical points: three global
minima (at a, b, and c), three MI 1 saddle points, and a MI 2 local maximum.
If u is equivalent to a critical point of W (i.e., u is a constant function), then
∆u = 0, ∇W (u) = 0, and ∂u

∂η
= 0. Thus for u equivalent to any one of these

critical points, u is a trivial solution to

−ε2∆u +∇W (u) = 0 in Ω

∂u

∂η
= 0 on ∂Ω

for all ε.

3.1 Morse Index 1 Results

First, we investigate the solutions corresponding to the MI 1 critical points
of W . To do this we find solutions of (1.1) for ε ≤ 1 and plot the value of
J versus the value of ε. We define a “1-Branch” of this plot to be a branch
of constant solutions corresponding to a MI 1 saddle point of W (see Figure
3.1). As one can see, there exists an ε∗ where the MI of the constant solution
changes from 1 to 3. If s is a saddle point between two minima of W and

β is the lesser eigenvalue of D2W (s) then ε∗ =

√
|β|
π

. For further details we
refer the reader to Chapter 4. For our choice of W , |β| ≈ 1.910 and hence
ε∗ ≈ 0.430. At ε∗ the constant solution, which we call u∗, is degenerate.
That is to say D2J(u) (and also A, if M is sufficiently large) has two zero

10

11

eigenvalues and is not invertible. Let σ1 and σ2 be the eigenfunctions that
correspond to these two zero eigenvalues. To find initial guesses that will
converge to nontrivial solutions, we look at the curve generated by J(u)
when u = u∗ + ρ(σ1 cos(φ) + σ2sin(φ)), for φ ∈ [0, 2π) and some ρ > 0 (see
Figure 3.2). When collecting the data for this curve, we also compute sig(A)
for each φ.

Our data indicates that the maxima of this graph correspond to initial
guesses that may converge to MI 2 solutions. Similarly, the minima corre-
spond to initial guesses that may converge to nontrivial MI 1 solutions (see
Table 3.1). We first choose a φ so that our initial guess corresponds to one
of these minima. We use this as an initial guess for GNGA at ε = ε∗− δ for δ
small. In fact, with this initial guess, and a small Newton step size, GNGA
does converge to a nontrivial MI 1 solution. Using this solution as an initial
guess, we decrease ε and find solutions along this new branch of nontrivial
solutions to complete this portion of the diagram. Similarly, we find MI 2
solutions that also bifurcate off of the 1-Branch at ε∗. However, these are
not the MI 2 solutions found by Flores, Padilla & Tonegawa [2001].

φ J(u) sig(A)
0.0 5.102 1
0.8 5.336 2
1.7 5.148 1
2.3 5.335 2
3.1 5.103 1
4.1 5.316 2
4.7 5.134 1
5.5 5.336 2
6.2 5.108 1

Table 3.1: Values of J(u, φ) when u = u∗ + (σ1 cos(φ) + σ2sin(φ)).

3.2 Morse Index 2 Results

Next, we investigate the solutions to (1.1) corresponding to the MI 2 local
maximum of W . In our experiment, we find that there is an ε∗ ∈ R for
which sig(A)=2 for ε∗ < ε ≤ 1, but sig(A) ≥ 6 for 0 < ε < ε∗. In Chapter

12

0 0.2 0.4 0.6 0.8 1
Ε

0

2

4

6

8

10

12

14

J
HUL 3

4

1

2

1

6

Figure 3.1: Bifurcation diagram containing Morse index 1 solutions. The
numbers above or below each branch indicate the Morse index. Further bi-
furcation is expected at the other bifurcation points. The value of ε for every

bifurcation point can be computed exactly, ε =
√ |β|

λi
for i = 1, 2, 3, For the

first bifurcation point, ε ≈
√
|1.91|
π2 ≈ 0.44, the second is at ε ≈

√
|1.91|
2π2 ≈ 0.31,

and the third is at ε ≈
√
|1.91|
4π2 ≈ 0.22. Note that the second bifurcation point

corresponds to a simple eigenvalue, thus the MI only changes by 1. The first
and third eigenvalues correspond to double eigenvalues, thus the MI changes
by 2. See Chapter 4 for more details.

Figure 3.2: Graph of J(u) versus φ for u = u∗ + ρ(σ1 cos(t) + σ2sin(t)) with
ρ = 1. The large dots represent maxima and the small dots represent minima.

13

4 we calculate ε∗ for our choice of W to be ε∗ =
√

2
π

. See Figure 3.3 for the
bifurcation diagram with J(u) dependent upon the bifurcation parameter ε.
We define the “2-Branch” of our bifurcation diagram to be the branch of
constant solutions corresponding to the MI 2 local maximum of W . Again,
at ε∗, u is degenerate. In fact, D2J(u) has four zero eigenvalues with four
corresponding eigenfunctions: σ1, σ2, σ3, σ4. Thus, to search for an initial
guess which converges to a MI 2 solution, we look at linear combinations of
σ1, σ2, σ3, and σ4 by using spherical coordinates in 4 dimensions:

u = u∗ + ρ(σ1 cos φ + σ2(sin φ cos θ) + σ3(sin φ sin θ cos τ) + σ4(sin φ sin θ sin τ))

ρ > 0, φ ∈ (−π, π), θ, τ ∈ [0, 2π).

In practice, there is some trial and error experimentation with values of
ρ ∈ (0, 1] and ε < ε∗ required to find a suitable initial guess. Once an initial
guess has been found, we use it and the appropriate value for ε to find a
nontrivial MI 2 solution. As done for the 1-Branch, we decrease ε and use
the previous solution in turn as an initial guess to complete the nontrivial
MI 2 branch of solutions as depicted in Figure 3.3.

Four types of branches of solutions bifurcate off of the 2-Branch at ε∗.
These four branches correspond to solutions of MI 2, 3, 4, and 5. As ε de-
creases, these branches get very close together. Following these four branches
is straightforward for ε near ε∗, but becomes challenging as ε → 0. There ap-
pears to be secondary and perhaps tertiary bifurcation at smaller values of ε.
Verifying these finer features requires skill and patience. However, by setting
ε = 10−4, using an initial guess from the bifurcated MI 2 branch, and setting
a small Newton step-size, one can obtain the desired MI 2 solution. This
solution, proven to exist by Flores, Padilla & Tonegawa [2001], approximates
a step-function with triple junction structure (see Figure 3.4). The nodal set
of this step-function has minimal length and intersects the boundary at right
angles, as expected by Flores, Padilla & Tonegawa. Since we use a Fourier
series to approximate a step-function, M must be quite large and a certain
amount of error is expected. In Figure 3.4, M̃ = 225, so M = 452.

3.3 Other Patterns

Other patterns are depicted in Figure 3.5. These patterns correspond to
the MI 3, 4 and 5 bifurcation branches in Figure 3.3. Even though the MI

14

0 0.2 0.4 0.6 0.8 1
Ε

0

5

10

15

20

J
HUL

2

2

3
6

8

12

4 5

4

5

Figure 3.3: Bifurcation diagram containing Morse index 2 solutions. The
numbers above or below each branch indicate the Morse index. Further
bifurcation is expected at the other points (where the constant solution is
degenerate.) Here β = −2 is a double eigenvalue of D2W (0). Thus the

value of ε at the bifurcation points is ε =
√ |−2|

λi
for i = 1, 2, 3, For the

first bifurcation point, ε =
√
|−2|
π2 = 0.45, the second is at ε =

√
|−2|
2π2 = 0.32,

and the third is at ε =
√
|−2|
4π2 ≈ 0.22. Since β is a double eigenvalue of

D2W (0), the jump in MI across bifurcation points is double that of the
corresponding Morse indices in Figure 3.1. See Chapter 4 for more details.
Note the discontinuity in the MI 3 branch near ε = 0.075, this is an example
of the “branch-jumping” that can occur when numerically attempting to
follow a given branch. Also, notice that the MI 5 branch changes to MI 4
and then back to MI 5, a feature worthy of further study. This diagram is
incomplete for ε < 0.32 where other bifurcations off the main 2-Branch lead
to more features. Additional, similar branches of MI 2, 3, 4 and 5 bifurcate

from the main 2-Branch at ε∗ =

√
|−2|
π

. These additional branches correspond
to rotations and permutations of solutions found here.

15

5 10 15 20 25 30

5

10

15

20

25

30

(a) (b)

Figure 3.4: Approximation of a pattern formation with triple junction struc-
ture at ε = 10−4 on the MI 2 nontrivial branch. This is the solution expected
by Flores, Padilla & Tonegawa [2001]. Each region corresponds to a minima
of W : a = (−1.1,−2.0), b = (−1.1, 2.0), and c = (2.3, 0). Figure (a) is a
vector field representation of u. If u = (u1, u2)

T , then Figure (b) is a contour
plot of u1 · u2.

16

does change along each branch, the patterns do not change substantially.
As ε → 0 the boundaries become more defined, but the basic shape of the
pattern stays the same. For example, a pattern found on the MI 4 bifurcation
branch at ε ≈ 0.24 has the same“vertical stripes” shape as the pattern found
at ε ≈ 0.01. At ε ≈ 0.24 the MI of the pattern is 4, but at ε ≈ 0.01 the MI
is 2.

More patterns may be found by carefully following the other bifurcation
points on Figure 3.3. We also believe rotations and permutations of these
patterns can be found. These rotations and permutations would be found by
carefully selecting different linear combinations of eigenfunctions σ1, σ2, σ3,
and σ4.

Figure 3.5: Patterns found corresponding to the MI 3, 4 and 5 bifurcation
branches in Figure 3.3. These patterns are not found with actual data, but
are fair representations of the patterns that would be found for larger values
of M and smaller values of ε.

Chapter 4

Existence Proof of Bifurcation
Points

In our numerical experiments in this paper and elsewhere, we have observed
bifurcation in almost all instances where the Hessian D2J(u) is not invertible
and this singularity is isolated. We do not know of existing theorems that
will prove the existence of all such bifurcations, but let us see that we may at
least apply known theory to account for bifurcation when the zero eigenvalues
are simple. Furthermore, one may arrange for the existence of many such
simple bifurcation points.

Let us consider the case where u is the constant solution u ≡ 0 corre-
sponding to the MI 2 local maximum of W . In our example the two eigen-
values of D2W (0) are both equal to -2, but with a slight modification of W
one can force these two negative eigenvalues to be distinct. Thus, assume
that β2 < β1 < 0 are these two values, with corresponding eigenfunctions
σ1, σ2 ∈ R2, with |σi| = 1. For ease of notation, let β = β2 and σ = σ2. Let
λ = λi be a simple eigenvalue of the scalar negative Laplacian problem (with
zero Neumann boundary condition), and take ψ = ψi to be the corresponding
eigenfunction, with

∫
Ω ψ2 dx = 1. Certainly such simple eigenvalues abound

for our case Ω = (0, 1) × (0, 1), and for general regions they are the rule

rather than the exception. Now let ε∗ =
√
|β|/λ.

We claim that x0 = σψ is an eigenfunction of D2J(0) corresponding to a

17

18

simple zero eigenvalue. Indeed,

〈D2J(0)x0, x0〉 = J ′′(0)(x0, x0)

=
∫
Ω(ε∗|σ|2|∇ψ|2 + 1

ε∗ (D
2W (0)σ · σ)ψ2) dx

= ε∗λ + 1
ε∗β = 0.

Note that {σjψk} forms an orthonormal basis for H×H, as well as for L2×L2.
Since 〈D2J(0)v, v〉 < 0 for v = σjψk, k < i, j = 1, 2, and 〈D2J(0)v, v〉 > 0
for v = σjψk, k > i, j = 1, 2 or k = i, j = 1, we see that along the 2-Branch
MI≤ 2(i− 1) for ε > ε∗ and MI≥ 2i− 1 for ε < ε∗. Similarly, we can provide
for many simple zero eigenvalues along the 1-Branch. In that case we need
only look for simple eigenvalues of −∆, since the Hessian of W automatically
has simple eigenvalues at saddle points.

Let us see that in this simple eigenvalue case, bifurcation can be proven
to exist. We will apply Theorem A.0.4 at some ε∗ where x0 = σψ is an
eigenfunction of D2J(0) with a corresponding simple zero eigenvalue. We
need to establish that the four hypotheses of that theorem hold. Let F (t, x) =
∇Jε∗+t(x). Clearly F , Fx, and Ftx all exist and are continuous, and F (t, 0) =
0 for all t > 0, which are the first two conditions. Since the Hessian Fx(t, x)
is self-adjoint, it follows that N = N(Fx(0, 0)) and R = (R(Fx(0, 0)))⊥ are
the same 1-dimensional subspace of H×H, spanned by x0, which is the third
condition. Since w = Ftx(0, 0)x0 ∈ R(Fx(0, 0)) if and only if 〈w, v〉 = 0 for
all v ∈ N , we need only show that 〈w, x0〉 6= 0 to conclude that the final
condition of Theorem A.0.4 is satisfied. Since Ftx(0, 0) = ∂

∂t
Fx(t, x)|(0,0) and

J ′′ε (0)(v, v) =
∫

Ω
(ε|∇v|2 +

1

ε
D2W (0)v · v) dx,

we see that

〈w, x0〉 = λ− 1

(ε∗)2

∫

Ω
((D2W (0)σ · σ)ψ2) dx = λ− β

(ε∗)2
> 0.

We conclude that all four conditions are satisfied, and Theorem A.0.4 implies
that there is bifurcation wherever (at least) D2W (0) has a simple eigenvalue

β < 0, λ = λi is simple, and we choose ε∗ =
√
|β|
λ

. A similar proof shows the
existence of bifurcation points at the simple zero eigenvalues of D2J(u) when
u is one of the constant solutions belonging to one of the three 1-Branches.

Chapter 5

Conclusion

Our method works very well as long as ε is not too small. Extremely small
values of ε yield solutions that are close to step-functions thus our basis of
cosine functions has some limitations. One could consider using an alternate
choice of basis for L2×L2 and H×H. In fact, at the time of this writing the
use of a basis of wavelets is being investigated. Such a basis would be useful
for studying our problem as well as the following Ginzburg-Landau equation
with Dirichlet boundary conditions from [2] and [3]

−∆u− 1

ε2
u(1− |u|2) = 0 in Ω,

u = g on ∂Ω,

where u is a complex valued function and g ∈ R. With proper boundary
conditions and choice of Ω, this equation models vortices, which perhaps
would be better handled by other bases such as wavelets. In any case, the
change in boundary condition necessitates the use of a modified basis. See
[3] for more information on Ginzburg-Landau vortices.

Further investigation may be done by following bifurcation branches from
the other bifurcation points. These branches may lead to other pattern for-
mations, (especially for bifurcations off of the 2-Branch). Another direction
one may wish to pursue is investigating the effect of having a nonsymmetric
region Ω or a nonsymmetric triple-well potential. We have already devel-
oped and tested algorithms for computing a basis of eigenfunctions of the
Laplacian for general regions. Thus implementing our method on a nonsym-
metric region would not be difficult. The properties of the resulting pattern
formations may be interesting and useful.

19

20

There is also opportunity to do theoretical work with this problem. Us-
ing known theorems, one might analytically prove the existence of multiple
bifurcation branches. This would be similar to what was done in Chapter
4, but would consist of looking at multiple zero eigenvalues as opposed to
simple zero eigenvalues. Also a more thorough study of the numerics could
be done to make the algorithm more efficient. For example, as of this writing,
the use of a backtracking line search to find a better Newton step-size has
been implemented.

Bibliography

[1] Adams, R. A. [1975] Sobolev Spaces, (Academic Press, New York).

[2] Almeida, L. & Betheul, F. [1998] “Topological Methods for the Ginzburg-
Landau Equations,” J. Math. Pures Appl. 77, 1-49.

[3] Bethuel, F., Brezis, H. & Heléin, F. [1994] Ginzburg-Landau Vortices
(Birkhauser, Boston).

[4] Crandall, M. G. & Rabinowitz, P. H. [1971] “Bifurcation from Simple
Eigenvalues,” Journal of Functional Analysis 8, 321-340.

[5] Flores, G., Padilla, P. & Tonegawa, Y. [2001] “Higher Energy Solutions in
the Theory of Phase Transitions: A Variational Approach,” J. Differential
Equations 169(1), 190–207.

[6] McOwen, R. C. [1995] Partial Differential Equations: Methods and Ap-
plications, (Prentice-Hall, New Jersey).

[7] Neuberger, J. M. & Swift, J. W. [2001] “Newton’s Method and Morse
Index for Semilinear Elliptic PDEs,” Internat. J. Bifur. Chaos Appl. Sci.
Engrg. 11(3), 801–820.

[8] Neuberger, J. W. [1997] Sobolev Gradients and Differential Equations,
Lecture Notes in Mathematics 1670, (Springer-Verlag, Berlin).

[9] Rudin, W. [1976] Principles of Mathematical Analysis, (McGraw-Hill,
New York).

[10] Taylor, A. E. [1967] Introduction to Functional Analysis, (John Wiley &
Sons, New York).

21

Appendix A

Definitions and Theorems

Definition A.0.1 Suppose all one-point sets in X are closed. The set X is
regular if for each pair consisting of a point x and a closed set B disjoint
from x, there exist disjoint open sets containing x and B, respectively.

Theorem A.0.2 (Lebesgue Dominated Convergence Theorem, see page 17
of [1]) Let A ⊂ Rn be measurable and let {fn} be a sequence of measurable
functions converging to a limit pointwise on A. If there is a function g ∈
L1(A) such that |fn(x)| ≤ g(x) for every n and all x ∈ A, then

lim
n→∞

∫

A
fn(x) dx =

∫

A

(
lim

n→∞ fn(x)
)

dx.

Definition A.0.3 Let f : X → Y .
The range of f is R(f) = {y ∈ Y | f(x) = y for some x ∈ X}.
The null space of f is N(f) = {x ∈ X | f(x) = 0 ∈ Y }.

Theorem A.0.4 (Crandall and Rabinowitz, Theorem 1.7 of [4]) Let X and
Y be Banach spaces, V a neighborhood of 0 in X and

F : (−1, 1)× V → Y

have the properties

(a) F(t,0)=0 for |t| < 1,

(b) The partial derivatives Ft, Fx and Ftx exist and are continuous,

(c) N(Fx(0, 0)) and Y |R(Fx(0, 0)) are one-dimensional.

22

23

(d) Ftx(0, 0)x0 /∈ R(Fx(0, 0)), where N(Fx(0, 0)) =span{x0}.
If Z is any complement of N(Fx(0, 0)) in X, then there is a neighborhood U
of (0,0) in R×X, an interval (-a,a), and continuous functions φ : (−a, a) →
R, ψ : (−a, a) → Z such that φ(0) = 0, ψ(0) = 0, and

F−1(0) ∩ U = {(φ(α), αx0 + αψ(α)) : |α| < a} ∪ {(t, 0) : (t, 0) ∈ U}.

Definition A.0.5 Let A be an n× n matrix such that Aei = βiei, where ei

and βi are corresponding eigenvectors and eigenvalues of A, respectively. Let
τ > 0 be some tolerance and

γi =

{
1
βi

if |βi| > τ

0 if |βi| ≤ τ

Let A+ denote the Pseudo-Inverse of matrix A. Then we can compute

A+g =
n∑

i

γi(g · ei)ei.

The Pseudo-Inverse can also be found by computing

A+ = (AT A)−1AT .

Definition A.0.6 (See Section 6.11 of [10]) A linear operator A with domain
and range in the inner-product space X is called symmetric if

< Ax, y >X=< x, Ay >X

for all x and y in the domain of A.

Definition A.0.7 (See Section 6.2 of [10]) Let X be a complete inner-product
space and A a continuous linear operator on X into X. The adjoint of A, A∗

is defined by the relation

< Ax, y >X=< x, A∗y >X x, y ∈ X

A is self-adjoint if A∗ = A. Clearly a self-adjoint operator is symmetric.

24

Theorem A.0.8 The Laplacian operator is self-adjoint in L2, that is,

< ∆u, v >2=< u, ∆v >2 .

Proof:
We use Green’s First Identity (page 297 of [9]) which states

∫

Ω
f∆g dV =

∫

∂Ω
f

∂g

∂η
dA−

∫

Ω
∇f · ∇g dV.

Then,
< ∆u, v >2 =

∫
Ω ∆uv dV

=
∫
∂Ω v ∂u

∂η
dA− ∫

Ω∇v · ∇u dV

= − ∫
Ω∇v · ∇u dV

= − ∫
∂Ω u∂v

∂η
dA +

∫
Ω u∆v dV

=
∫
Ω u∆v dV

=< u, ∆v >2 .

Theorem A.0.9 (See Sections 6.11 and 6.2 of [10]) Let A be a self-adjoint
continuous linear operator on a complete inner-product space X. Then A has
real eigenvalues λi and eigenfunctions corresponding to distinct eigenvalues
are orthogonal.

Appendix B

Computer Code

All code for this project is written in the C++.

/* Newton-pde system solver.

Solves (-epsilon^2)*lap u + grad W(u) = 0 w/ Neumann BC

Compile on Windows with Lapack and Blas DLL’s installed.

Uses dgesv and dsyev.

Note: Since grad and hess are being sent to dgesv,

the indexing goes from 0 to M-1. This is true for

all vectors/matrices of M length.

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

// f2c.h is used for LAPACK

#include <f2c.h>

// Global functions

double J();

double f(double u, double v);

double fpu(double u, double v);

double fpv(double u, double v);

double W(double u, double v);

25

26

double g(double u, double v);

double gpu(double u, double v);

double gpv(double u, double v);

double psi(int i, int j, double x, double y);

int compare(const void *a, const void *b);

void init_lam();

int iii(int j, int k);

int disp_coeff(int i);

int fdisp_coeff(int i);

void fprint_uv(int inc);

void do_evals();

void print_hess(int inc);

void print_grad();

void print_uv(int inc);

void set_uv();

void newline(int num);

void print_evals(int num);

void fprint_evals(int num);

void print_report(int iter, double norm);

void fprint_report(int iter, double norm);

double do_grad();

void do_hess();

void init_values();

double simpsons(int j,int k,int func);

void clear_a();

void print_efuncs(int num);

int sig();

void populate_u();

void set_a();

void fscan_uv(int inc);

void backup_uv();

// Global Constants

int report_switch=0; // Report to file

// at each step of Newtons?

const char uname[13]="ugraph39.txt";

const char vname[13]="vgraph39.txt";

const char fname1[12]="nuem.txt";

27

const int M=7; // M=6 is used for most experiments.

const int N=30;

const double Pi=3.1415926535;

const int M2=M*M; // M^2

const double delta1=.15;

const double TOL=.0005;

double epsilon=.0075; // initial value of epsilon

const double morsethresh=0.0;

// Global Variables

// These are global to keep things simple.

double lam[M2];

int lami1[M2], lami2[M2], morse, func_flag=0;

double hess[2*M2][2*M2],grad[2*M2],

a[2*M2],c, evals[2*M2],

u[(N+1)*(N+1)],v[(N+1)*(N+1)];

FILE *fp1;

void main()

{

int i, num, maxits;

double norm, delta, tol, dx;

// This file holds bifurcation data.

FILE *bifur;

bifur=fopen("bifur.txt","w");

delta=delta1;

if ((fp1= fopen(&fname1[0],"w")) == NULL)

{

printf("Error opening write file data.txt\n");

exit(0);

}

28

double n=(double)N;

dx=1/n;

// Populate lamda array with eigenvalues and

// corresponding index values.

init_lam();

// Initialize U coeffs.

init_values();

// Compute U=(u,v) based on coeffs.

set_uv();

printf("m=%d, N=%d eps=%f delta=%f\n ",

M,N,epsilon,delta);

fprintf(fp1,"m=%d, N=%d eps=%f delta=%f\n ",

M,N,epsilon,delta);

disp_coeff(6);

fdisp_coeff(6);

newline(1);

// Here we set variables used in the call to dgels.

// This is a little unusuall because of the way

// CLAPACK is set up for MS Windows.

long m=2*M2; // m is used only for the lapack call.

long info=10; // M2 is used everywhere else.

long one1=1; //Variable for # of RHS columns.

long lwork=8*M2*M2;

double work[8*M2*M2];

// Save off initial value of epsilon

double initeps=epsilon;

// Set delta_epsilon, how much to change epsilon.

29

// deleps>0 => epsilon decreases

// deleps<0 => epsilon increases

double deleps= .005;

epsilon += deleps;

// This is the beginning of a loop

// used to draw bifurcation diagrams.

while(epsilon > .004)

{

epsilon -= deleps;

// Start main loop for convergence.

/* Find critical points of gradiant */

delta=delta1; norm=1; tol=TOL; num=0; maxits=2000;

while((num<maxits) && (norm > tol))

{

num++;

// Compute the gradient

norm=do_grad();

// Compute the Hessian

do_hess();

// Evals must be computed before hessian goes to

// dgels_.

do_evals();

//Using dgels_ a least sqrs solver.

dgels_("N",&m, &m, &one1, *hess, &m, grad, &m,

work, &lwork, &info);

// Error Check!

if (info!=0)

{

printf("\ndgels Error Info= %d\n", info);

exit(0);

30

}

// Newtons step on co-efficients

// with delta step-size.

for(i=0;i<2*M2;i++) a[i]-=delta*grad[i];

// Compute U

set_uv();

print_report(num, norm);

if (report_switch)

{

fprint_report(num,norm);

fflush(fp1);

}

backup_uv(); //Makes a back-up, just in case.

fprint_uv(1);

} // Main loop over!

fprint_report(num,norm);

fflush(fp1);

fprintf(bifur,"%f %f %d\n",epsilon,J(),morse);

fflush(bifur);

}

//end of while loop used to draw bifurcation diagrams.

fclose(bifur);

disp_coeff(6);

fdisp_coeff(6);

print_uv(5);

fclose(fp1);

31

}

/* End of Main Program */

// Set W, triple well potential

double W(double u, double v)

{

double fudge=2.95821;

return 0.2714397815791004 - (u*u) - (v*v)

+ 0.13121718850160427*((u*u + v*v)*(u*u + v*v))

- 0.13164822780734486*(u*u*u - 3*u*v*v)+fudge;

}

// First Component of grad W

double f(double u, double v)

{

return -2*u - 0.13164822780734486*(3*(u*u) - 3*(v*v))

+ 0.5248687540064171*u*((u*u) + (v*v));

}

// f prime u

double fpu(double u, double v)

{

return -2 - 0.7898893668440*u + 1.0497375080128*(u*u)

+ 0.5248687540064171*((u*u) + (v*v));

}

// f prime v

double fpv(double u, double v)

{

return 0.7898893668440692*v + 1.0497375080128342*u*v;

}

// Second component of grad W

double g(double u, double v)

{

return -2*v + 0.7898893668440692*u*v

32

+ 0.5248687540064171*v*((u*u) + (v*v));

}

double gpu(double u, double v)

{

return 0.7898893668440692*v + 1.0497375080128342*u*v;

}

double gpv(double u, double v)

{

return -2 + 0.78988936684*u + 1.0497375080128*(v*v)

+ 0.5248687540064171*((u*u) + (v*v));

}

// This function returns the value

// of eigenfunction \psi.

// In the future, this will be turned into

// an array of size M+1.

double psi(int i, int j, double x, double y)

{

double ret;

if (i==0 || j==0) ret=sqrt(2)*cos((double)i*Pi*x)

*cos((double)j*Pi*y);

else ret=2*cos((double)i*Pi*x)*cos((double)j*Pi*y);

if (i==0 && j==0) ret=1;

return ret;

}

// Used by sort in init_lam

int compare(const void *a, const void *b)

{

double z;

33

z=(*(double *)a - *(double *)b);

if (z<0) return -1;

if (z==0) return 0;

if (z>0) return 1;

return((int)z);

}

// Initialize and sort eigenvalues

void init_lam()

{

double tlam[4*M*M][3];

int j,k;

int i=0;

for(j=0;j<2*M;j++)

for(k=0;k<2*M;k++)

{

tlam[i][0]=(j*j+k*k)*Pi*Pi;

tlam[i][1]=j;

tlam[i][2]=k;

i++;

}

// Sort evals using qsort in stdlib.h

qsort(tlam, 4*M*M, sizeof(double)*3, compare);

for(i=0;i<M2;i++)

{

lam[i]=tlam[i][0];

lami1[i]=(int)tlam[i][1];

lami2[i]=(int)tlam[i][2];

}

34

// Initialize a and hess arrays.

for(i=0; i<2*M2; i++)

{

a[i]=0;

for(j=0; j<M2; j++)

hess[i][j]=0;

}

}

// Index function. Takes in indices j,k and

//returns sorted eval number.

int iii(int j, int k)

{

int i,ret;

i=0;

ret=-1;

while(i<M2 && ret==-1)

{

if (lami1[i]==j && lami2[i]==k) ret=i;

else i++;

}

return ret;

}

// Make an i x i display of coefficents. i<=2*sqrt(M2).

int disp_coeff(int i)

{

if (i>2*sqrt(M2)) return -1;

int j,k;

printf("u coeffs:\n");

for(j=0;j<i;j++)

{

for(k=0;k<i;k++)

35

if (iii(j,k) != -1)

printf("%7.3f ", a[iii(j,k)]);

else printf("000.000 ");

printf("\n");

}

newline(1);

printf("v coeffs:\n");

for(j=0;j<i;j++)

{

for(k=0;k<i;k++)

if (iii(j,k) != -1)

printf("%7.3f ", a[iii(j,k)+M2]);

else printf("000.000 ");

printf("\n");

}

printf("\n");

return 0;

}

// fdisp means file display

int fdisp_coeff(int i)

{

if (i>2*sqrt(M2)) return -1;

int j,k;

fprintf(fp1,"\n//u coeffs:\n");

for(j=0;j<i;j++)

{

for(k=0;k<i;k++)

if (iii(j,k) != -1)

fprintf(fp1,"a[iii(%d,%d)]=%.12f;",j,k, a[iii(j,k)]);

else fprintf(fp1,"a[iii(%d,%d)]=0.00000;",j,k);

fprintf(fp1,"\n");

}

36

fprintf(fp1,"\n//v coeffs:\n");

for(j=0;j<i;j++)

{

for(k=0;k<i;k++)

if (iii(j,k) != -1)

fprintf(fp1,"a[iii(%d,%d)+M2]=%.12f;", j,k,a[iii(j,k)+M2]);

else fprintf(fp1,"a[iii(%d,%d)]=0.00000;",j,k);

fprintf(fp1,"\n");

}

fprintf(fp1,"\n\n");

fflush(fp1);

return 0;

}

// Compute eigenvalues and eigenvectors.

void do_evals()

{

long j,info,k,m=2*M2;

double cphess[2*M2][2*M2];

long lwork=8*M2;

double work[8*M2];

// Need to make a copy of the hessian so that the

// original is not destroyed.

for(j=0;j<2*M2;j++)

for(k=0;k<2*M2;k++)

cphess[j][k]=hess[j][k];

long one1=1;

dsyev_("V","U",&m, *cphess, &m, evals, work, &lwork, &info);

if (info!=0)

{

printf("\n\n!!!!!!!Error Computing Eigenvalues!!!!!!!\n\n");

printf("Info=%d",info);

37

exit(0);

}

morse=0;

for(j=0;j<2*M2;j++)

if (evals[j]<morsethresh) morse++;

FILE *efuncs;

// This file will contain the eigenfunctions of the Hessian

if ((efuncs= fopen("efuncs.txt","w")) == NULL)

{

printf("Error opening write file efuncs.txt. \n");

exit(0);

}

int i;

// This prints the first 6 eigenvectors of the Hessian

// In practice, you don’t need any more than 6

// eigenvectors to bifurcate off of a main branch.

for(j=0; j<6; j++)

{

for(i=0;i<2;i++)

{

for(k=0;k<M2;k++)

{

fprintf(efuncs,"a[%d]+=%.9f; ",k+(M2*i),cphess[j][k+(M2*i)]);

}

fprintf(efuncs,"\n");

}

}

fclose(efuncs);

38

}

void print_evals(int num)

{

int j;

printf("\n1st %d Evals:\n",num);

for(j=0;j<num;j++)

{

printf("%6.2f ",evals[j]);

}

printf("\n");

printf("Morse index:%d\n",morse);

return;

}

void fprint_evals(int num)

{

int j;

fprintf(fp1,"\n1st %d Evals:\n",num);

for(j=0;j<num;j++)

{

fprintf(fp1,"%6.2f ",evals[j]);

}

fprintf(fp1,"\n");

fprintf(fp1,"Morse index:%d\n",morse);

return;

}

39

// This routine used for diagnostics only.

void print_hess(int inc)

{

int j,k;

printf("\nhess:\n");

for (j=0; j<M2; j+=inc)

{

for(k=0; k<M2; k+=inc)

printf("%7.3f ",hess[j][k]);

printf("\n");

}

}

void print_uv(int inc)

{

int x,y,i;

printf("\nu:\n");

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

printf("%7.2f ",u[i]);

}

printf("\n");

}

printf("\nv:\n");

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

40

i=(N+1)*x+y;

printf("%7.2f ",v[i]);

}

printf("\n");

}

}

void fprint_uv(int inc)

{

//Must be a divisor of N

int x,y,i;

FILE *ugraph;

FILE *vgraph;

ugraph = fopen("ugraph.txt","w");

vgraph = fopen("vgraph.txt","w");

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

fprintf(ugraph,"%.12f ",u[i]);

}

fprintf(ugraph,"\n");

}

fclose(ugraph);

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

fprintf(vgraph,"%.12f ",v[i]);

41

}

fprintf(vgraph,"\n");

}

fclose(vgraph);

}

//Remember to set_a() after scanning u and v.

// Read in uv data from the files named uname and vname,

// global constants. This is one way to set initial

// values for u and v. Here the actual function is read

// in, the set_a() computes the coefficients.

void fscan_uv(int inc)

{

//Must be a divisor of N

int x,y,i;

float a;

FILE *ugraph;

FILE *vgraph;

if ((ugraph = fopen(&uname[0],"r"))==NULL)

{

printf("\nError openning ugraph fscan");

exit(10);

}

if ((vgraph = fopen(&vname[0],"r"))==NULL)

{

printf("\nError openning vgraph fscan");

exit(10);

}

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

42

i=(N+1)*x+y;

fscanf(ugraph,"%f",&a);

u[i]=(double) a;

}

}

fclose(ugraph);

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

fscanf(vgraph,"%f",&a);

v[i]=(double) a;

}

}

fclose(vgraph);

}

// a backup routine to backup to old u and v graphs.

void backup_uv()

{

int i,x,y,inc=1;

float a;

double uu[(N+1)*(N+1)],vv[(N+1)*(N+1)];

FILE *ugraph;

FILE *vgraph;

43

if ((ugraph = fopen("ugraph.txt","r"))==NULL)

{

printf("\nbackup_uv:Error openning ugraph\n");

return;

}

if ((vgraph = fopen("vgraph.txt","r"))==NULL)

{

printf("Error openning vgraph.txt");

return;

}

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

fscanf(ugraph,"%f",&a);

uu[i]=(double) a;

}

}

fclose(ugraph);

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

fscanf(vgraph,"%f",&a);

vv[i]=(double) a;

}

44

}

fclose(vgraph);

if ((ugraph = fopen("ugraph.bak","w"))==NULL)

{

printf("Error openning ugraph");

exit(10);

}

if ((vgraph = fopen("vgraph.bak","w"))==NULL)

{

printf("Error openning vgraph");

exit(10);

}

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

i=(N+1)*x+y;

fprintf(ugraph,"%.12f ",uu[i]);

}

fprintf(ugraph,"\n");

}

fclose(ugraph);

for(x=0;x<=N;x+=inc)

{

for(y=0;y<=N;y+=inc)

{

45

i=(N+1)*x+y;

fprintf(vgraph,"%.12f ",vv[i]);

}

fprintf(vgraph,"\n");

}

fclose(vgraph);

}

// Compute U from the Fourier coefficients

void set_uv()

{

int x,y,i,k;

double n=N;

for(x=0; x<N+1; x++)

for(y=0;y<N+1; y++)

{

i=(N+1)*x+y; // This acheives the effect of

u[i]=0; // having a 2 dimensional matrix

v[i]=0; // in a one dimesional array.

for(k=0;k<M2;k++)

{

u[i]+=a[k]*psi(lami1[k],lami2[k],x/n,y/n);

v[i]+=a[k+M2]*psi(lami1[k],lami2[k],x/n,y/n);

}

}

}

// Pring the gradient to screen.

// Mainly used for diagnostics.

46

void print_grad()

{

int i;

printf("\nGrad:\nu: v:\n");

for(i=0;i<M2;i++)

printf("%7.2f %7.2f\n",grad[i],grad[i+M2]);

newline(1);

}

//print num blank lines to screen

void newline(int num)

{

int i;

for(i=0;i<num;i++) printf("\n");

}

void print_report(int iter, double norm)

{

printf("\nIteration: %d Norm: %.6f\n",iter, norm);

printf("c=%.3f J(u)=%f\n",c,J());

printf("Epsilon=%f\n",epsilon);

print_evals(9);

//print_uv(4);

//disp_coeff(3);

printf("\n---------------------------------------\n");

return;

}

void fprint_report(int iter, double norm)

{

fprintf(fp1,"\nIteration: %d Norm: %.6f\n",iter, norm);

fprintf(fp1,"c=%.3f J(u)=%f\n",c,J());

fprintf(fp1,"Epsilon=%f\n",epsilon);

fprint_evals(9);

47

//fprint_uv(4);

fdisp_coeff(6);

fprintf(fp1,"\n---------------------------------------\n");

return;

}

// Compute J

double J()

{

int i;

double sum1=0,sum2=0;

for(i=0; i<M2; i++)

sum1+=(a[i]*a[i] + a[i+M2]*a[i+M2])

*lam[i];

sum1/=2;

/* for(i=0;i<(N+1)*(N+1);i++)

sum2+=W(u[i],v[i]);

*/

sum2=simpsons(0,0,7);

return epsilon*sum1+sum2/epsilon;

}

// Compute J’

double do_grad()

{

int i;

double n= (double)N, dx=1/n, sum1,sum2,norm;

norm=0;

for(i=0; i<M2; i++)

{

sum1=simpsons(i,i,5);

48

sum2=simpsons(i,i,6);

grad[i]= epsilon*a[i]*lam[i] + sum1/epsilon;

grad[i+M2]=epsilon*a[i+M2]*lam[i] + sum2/epsilon;

norm+=grad[i]*grad[i]

+grad[i+M2]*grad[i+M2];

}

norm=sqrt(norm);

return norm;

}

// Find coefficients based on the current value of U=(u,v)

void set_a()

{

int k;

for(k=0; k<M2; k++)

{

a[k]=simpsons(k,k,8);

a[k+M2]=simpsons(k,k,9);

}

}

// Compute the Hessian

void do_hess()

{

int j,k;

double n= (double)N, dx=1/n, sum1,sum2,

sum3,sum4;

for(k=0;k<M2; k++)

{

for(j=0;j<M2;j++)

49

{

sum1=simpsons(j,k,1);

sum2=simpsons(j,k,2);

sum3=simpsons(j,k,3);

sum4=simpsons(j,k,4);

if (j==k)

{

hess[k][j]= epsilon*lam[j] + sum1/epsilon;

hess[k][j+M2]= sum2/epsilon;

hess[k+M2][j]= sum3/epsilon;

hess[k+M2][j+M2]= epsilon * lam[j] + sum4/epsilon;

}

else

{

hess[k][j]= sum1/epsilon;

hess[k][j+M2]= sum2/epsilon;

hess[k+M2][j]= sum3/epsilon;

hess[k+M2][j+M2]= sum4/epsilon;

}

}

}

return;

}

// Composite Simpson’s rule. func values:

// func=1-4 for hessian

// func=5-6 for gradiant

// func=7 for J();

// func=8-9 for setting a’s from alread set U.

double simpsons(int j,int k,int func)

{

int x,y,i;

double J,j1=0,j2=0,j3=0,L=0,k1=0,k2=0,k3=0,Q=0,

n=N;

50

for(x=0;x<=N;x++)

{

k1=0; k2=0; k3=0;

for(y=1;y<N;y++)

{

i=(N+1)*x+y;

// See above comment for func value

if (func==1)

Q=psi(lami1[j],lami2[j],x/n,y/n)

* psi(lami1[k],lami2[k],x/n,y/n)

* fpu(u[i],v[i]);

else if (func==2)

Q=psi(lami1[j],lami2[j],x/n,y/n)

* psi(lami1[k],lami2[k],x/n,y/n)

* fpv(u[i],v[i]);

else if (func==3)

Q=psi(lami1[j],lami2[j],x/n,y/n)

* psi(lami1[k],lami2[k],x/n,y/n)

* gpu(u[i],v[i]);

else if (func==4)

Q=psi(lami1[j],lami2[j],x/n,y/n)

* psi(lami1[k],lami2[k],x/n,y/n)

* gpv(u[i],v[i]);

else if (func==5)

Q=psi(lami1[j],lami2[j],x/n,y/n)

*f(u[i],v[i]);

else if (func==6)

Q=psi(lami1[j],lami2[j],x/n,y/n)

*g(u[i],v[i]);

else if (func==7)

Q=W(u[i],v[i]);

else if (func==8)

Q=psi(lami1[j],lami2[j],x/n,y/n)

*u[i];

else if (func==9)

Q=psi(lami1[j],lami2[j],x/n,y/n)

*v[i];

51

if (y%2==0) k2=k2+Q;

else k3=k3+Q;

}

L=(k1+2*k2+4*k3)/(3*n);

if (x==0 || x==N)

j1+=L;

else if (x%2==0) j2+=L;

else j3+=L;

}

J=(j1+2*j2+4*j3)/(3*n);

return J;

}

void clear_a()

{

int i;

for(i=0; i<2*M2; i++)

{

a[i]=0;

}

}

// This is a ‘stand-alone’ function used outside of the

// main code. Can be used when computing the 4D sphere

// of efuncts.

int sig()

{

do_hess();

do_evals();

52

return morse;

}

// This routine sets U to be the guessed MI2

// non-trivial solution.

void populate_u(double delta)

{

int x,y,i;

double n=N;

double a1,a2,b1,b2,c1,c2,val1,val2;

a1=-1.1821; a2= -2.04746; b1=-1.1821; b2= 2.04746;

c1=2.3642; c2= 0;

for(x=0;x<=N;x++)

for(y=0;y<=N;y++)

{

i=(N+1)*x+y;

val1=1-1/sqrt(3)*(x/n);

val2=1/sqrt(3)*(x/n) + (1-1/sqrt(3));

if ((y/n > val1) && (y/n > val2))

{

u[i]=delta*a1;

v[i]=delta*a2;

}

else

{

if (x/n < .5)

{

u[i]=delta*b1;

v[i]=delta*b2;

}

else

{

u[i]=delta*c1;

53

v[i]=delta*c2;

}

}

}

}

//Initial values are set here.

void init_values()

{

double a1,a2,b1,b2,c1,c2;

clear_a();

// These are critical points of W.

a1=-1.1821; a2= -2.04746;

b1=-1.1821; b2= 2.04746;

c1=2.3642; c2= 0;

// Coeffs are printed in this form to neum.txt

//u coeffs:

a[iii(0,0)]=-0.183342578126;a[iii(0,1)]=-0.000000000002;

a[iii(0,2)]=-0.000683534479;a[iii(0,3)]=0.000000000000;

a[iii(0,4)]=-0.000052314392;a[iii(0,5)]=0.000000000000;

a[iii(1,0)]=1.169971471586;a[iii(1,1)]=0.000000000009;

a[iii(1,2)]=-0.005064053567;a[iii(1,3)]=0.000000000004;

a[iii(1,4)]=-0.001947713348;a[iii(1,5)]=0.000000000002;

a[iii(2,0)]=0.293915169831;a[iii(2,1)]=0.000000000012;

a[iii(2,2)]=-0.005287883505;a[iii(2,3)]=0.000000000004;

a[iii(2,4)]=-0.001972313461;a[iii(2,5)]=0.000000000002;

a[iii(3,0)]=-0.017275064343;a[iii(3,1)]=0.000000000001;

a[iii(3,2)]=0.000231109072;a[iii(3,3)]=-0.000000000000;

a[iii(3,4)]=0.000166226789;a[iii(3,5)]=-0.000000000000;

a[iii(4,0)]=-0.016124417015;a[iii(4,1)]=-0.000000000001;

a[iii(4,2)]=0.000717245568;a[iii(4,3)]=-0.000000000001;

a[iii(4,4)]=0.000317233309;a[iii(4,5)]=0.00000;

a[iii(5,0)]=-0.007552779989;a[iii(5,1)]=-0.000000000001;

54

a[iii(5,2)]=0.000446084373;a[iii(5,3)]=-0.000000000000;

a[iii(5,4)]=0.00000;a[iii(5,5)]=0.00000;

//v coeffs:

a[iii(0,0)+M2]=0.317558660399;a[iii(0,1)+M2]=0.000000000004;

a[iii(0,2)+M2]=0.001183916446;a[iii(0,3)+M2]=-0.000000000000;

a[iii(0,4)+M2]=0.000090611184;a[iii(0,5)+M2]=-0.000000000000;

a[iii(1,0)+M2]=0.675483344113;a[iii(1,1)+M2]=0.000000000005;

a[iii(1,2)+M2]=-0.002923732691;a[iii(1,3)+M2]=0.000000000002;

a[iii(1,4)+M2]=-0.001124512826;a[iii(1,5)+M2]=0.000000000001;

a[iii(2,0)+M2]=-0.509076007207;a[iii(2,1)+M2]=-0.000000000022;

a[iii(2,2)+M2]=0.009158882895;a[iii(2,3)+M2]=-0.000000000007;

a[iii(2,4)+M2]=0.003416147123;a[iii(2,5)+M2]=-0.000000000003;

a[iii(3,0)+M2]=-0.009973763085;a[iii(3,1)+M2]=0.000000000000;

a[iii(3,2)+M2]=0.000133430886;a[iii(3,3)+M2]=-0.000000000000;

a[iii(3,4)+M2]=0.000095971082;a[iii(3,5)+M2]=-0.000000000000;

a[iii(4,0)+M2]=0.027928309523;a[iii(4,1)+M2]=0.000000000002;

a[iii(4,2)+M2]=-0.001242305766;a[iii(4,3)+M2]=0.000000000001;

a[iii(4,4)+M2]=-0.000549464210;a[iii(4,5)]=0.00000;

a[iii(5,0)+M2]=-0.004360599564;a[iii(5,1)+M2]=-0.000000000001;

a[iii(5,2)+M2]=0.000257546933;a[iii(5,3)+M2]=-0.000000000000;

a[iii(5,4)]=0.00000;a[iii(5,5)]=0.00000;

//fscan_uv(1); // Scan in U from file

//set_a(); // Set coefficients.

}

