NUMERICAL SOLUTIONS OF A
VECTOR GINZBURG-LANDAU EQUATION
WITH A TRIPLE WELL POTENTIAL

John M. Neuberger, Dennis R. Rice, Jr. and James W. Swift
Department of Mathematics and Statistics, Northern Arizona University, Box 5717, Flagstaff, AZ 86001

Abstract

We numerically compute solutions to the vector Ginzburg-Landau equation with a triple-well poten-
tial. We use the Galerkin Newton Gradient Algorithm of Neuberger & Swift and bifurcation techniques
to find solutions. With a small parameter, we find a Morse index 2 triple junction solution. This is the
solution for which Flores, Padilla, & Tonegawa gave an existence proof. We classify all of the solutions
guaranteed to exist by the Equivariant Branching Lemma at the first bifurcation points of the trivial
solutions. Guided by the symmetry analysis, we numerically compute the solution branches.
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1 Introduction

This paper is an extension of two other papers. We take a problem studied by Flores, Padilla & Tonegawa
[2001] and use the algorithm developed by Neuberger & Swift [2001] to investigate it. Flores, Padilla &
Tonegawa study a vector Ginzburg-Landau equation

—2Au+ VW(u) =0 in

(1)
gz =0 on 99,

where Q C R? is a bounded regular domain, u : @ — R2, W : R? — [0,00) is a triple-well potential, 7 is
the unit outer normal to the boundary, and € > 0 is a parameter. The gradient in VW (u) is with respect to
u, hence VW = (0W/uy,0W/duz). We will work with sufficiently smooth functions u € L? x L?, where
L? = L?(Q). For simplicity, we consider the unit square Q = (0,1) x (0, 1).

One of our initial objectives in this research was to demonstrate the utility of the so-called Gradient
Newton Galerkin Algorithm (GNGA) from [Neuberger & Swift, 2001] in investigating systems of nonlinear
elliptic PDE. Once we had successfully implemented the algorithm for systems, we looked for an interesting
application to test it on, and found system (1). To quote [Flores, Padilla, & Tonegawa, 2002] directly
(see the paper for references), “This problem appears in several physical contexts, including the study
of motion of grain boundaries in alloys, capillary phenomena and certain models for phase transitions in
the so-called mean-field approximation”. We are successful in numerically computing the triple junction
configuration discussed in Flores, Padilla, & Tonegawa [2002]. We numerically captured features both proved
and conjectured to exist. Additionally, we have classified the most symmetric types of solutions bifurcating
from the trivial branches at the first bifurcation points. By this we mean that we numerically locate all
branches that our bifurcation analysis suggests should exist, and do not observe any other branches. A
computation of the error gives one confidence that the solutions we find are not spurious.

Much has been done in the area of numerical bifurcation analysis for nonlinear elliptic PDE (see for
example [Mei, 2000], [Allgower & Georg, 1990], and references therein). In particular, a scalar equation
with zero Dirichlet boundary condition is studied in [Allgower, Bohmer, & Zhen, 1994], where they also use
symmetry to investigate a corank-4 bifurcation similar to the one we study in Section 3. While our algorithm
and consequent implementation have proven to be sufficient for our needs, it is entirely likely that techniques
known to these and other authors (see for example [Bank & Mittelmann, 1989]) would improve our numerical
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performance. Our algorithm is distinct from other Galerkin type algorithms found in the literature. We do
not use a basis of finite elements, rather a basis of eigenfunctions of the linear part of the problem.

Flores, Padilla & Tonegawa [2001] use the existence of three Morse index (MI) 1 mountain pass solutions
to prove the existence of a MI 2 solution. When € is small, none of the trivial solutions have MI 2, so
the solution they find must be nontrivial. In [Neuberger & Swift, 2001], we applied the GNGA to a single
nonlinear elliptic PDE with zero Dirichlet boundary conditions. Here, we apply the algorithm to a system
with zero Neumann boundary conditions. We use the techniques of symmetric bifurcation theory (see for
example [Golubitsky, Stewart & Schaeffer, 1988] and [Sattinger, 1979]) to guide our numerical investigation.
We approximate the nontrivial MI 2 solution proved to exist by Flores, Padilla & Tonegawa [2001], and
confirm their conjecture that it has a triple junction.

The proofs of [Flores, Padilla & Tonegawa, 2001] involve study of the negative gradient flow associated
with the variational elliptic system (1). The negative gradient flow is a parabolic system for 4 : RT xQ — R?%:

iy = —eVJ () = A0 — VIV (@), (2)
where the energy functional is defined by

2
Jo(u) = 3/ (€|Vu|2 + W(u)) da dy. ()
€ Jo 2
The solutions to elliptic system (1) are the steady state solutions of (2). Our definition of J. agrees with
Flores et al. They include the factor of 1/¢ because solutions with finite J, in the limit ¢ — 0 play a special
role in their analysis.

The Morse index of a nondegenerate critical point of a functional J is the number of negative eigenvalues
of J”, evaluated at the critical point (see [Milnor, 1963]). In the context of the negative gradient flow, the
Morse index of a critical point is the number of unstable eigenvalues of the linearized flow.

Following [Flores, Padilla & Tonegawa, 2001], we assume that the following conditions of W are satisfied:

(i) W(u) >0 for all u € R

(ii) P, = a, P, = b and P3 = ¢ € R? are three different points such that W(a) = W(b) = W(c) = 0, i.e.,
global minima of W. We will also suppose that these points are nondegenerate. For simplicity we will
take these as the only minima of the potential.

(iii) W is uniformly coercive in u, that is, there exist Ry and C' > 0 such that if |u| > Ry then W (u) > C|ul?.
We assume that Ry was chosen sufficiently large so that the negative gradient flow of W points towards
the ball Bg,(0) at points outside the ball.

In our investigation we take Q = (0,1) x (0,1) and
W (u1,u2) = o = (uf + u3) + B(uf +u3)* — y(uf — 3uru3),

where «, 3, and v € RT. The critical points of W that lie on the ui-axis are the simplest to analyze.
They satisfy a cubic equation that factors, and has the roots u; = 0, (3v + /328 + 9v2)/(83). We used the
parameters § ~ 0.1312 and vy & 0.1316, and define umin, ts, and tmax to be the minimum, saddle and (local)
maximum points of W, respectively, which lie on the u; axis:

Umin = (2.364,0), us =~ (—1.612,0), and umax = (0,0). (4)

The other critical points follow from the symmetry of the potential, as seen in Figure 1. The value of o was
then chosen to make 0 the minimum value of W, giving the critical values:

Whnin := W (umin) = 0, Wy := W(us) &~ 2.069, and Wiax := W (tmax) =~ 3.230. (5)
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Figure 1: The triple-well potential W. Part (a) is the graph of W. Part (b) shows the minima and local
maximum of W as dots, as well as the contours W (uy,u2) = 0.1,1, Wy = 2.069, and 3.

2 Implementing GNGA

The eigenvalues and eigenfunctions of -A on the unit square with zero Neumann boundary conditions are
well known. The (doubly-indexed) eigenvalues of -A are A, , = (m? + n?)7? and the eigenfunctions .,
of -A, normalized in L?, are given by:

1 form=n=0
Ymn(T,y) = V2cos(mmz)cos(nry) form =0,n#0orn=0m#0
2 cos(mmz) cos(nmy)  for m # 0 and n # 0,

where m and n range over all of the nonnegative integers. It is well known that {,,,} forms a basis for
L? and H = HY?(Q) [Adams, 1975]. We obtain a finite sub-basis of L? or H by choosing a positive integer
k, and including all eigenfunctions whose eigenvalues are strictly less than 72k%. These eigenvalues are then
ordered and singly indexed as A\ =0 < Ay < A3 < ... <A it This yields a singly indexed basis, {1;}, of size
M. In the current work, k is an even integer ranging from k = 8 (M = 56) up to k = 18 (M = 269). As a
rule of thumb, we trust a numerical calculation if the results are not significantly changed when the cutoff

parameter k is increased by 2.
We use the following Galerkin subspace of H x H and L? x L?:

o—som{ (3 ULV

which is of dimension M = 2M. For convenience, we use {¥;}* to denote this basis. So, for u € G, there
exist unique Fourier coefficients a € R such that v = Zf\il a;V; .

As previously stated, GNGA uses a variational method to solve (1). The energy functional J. : HxH — R
is defined in equation (3). For convenience we sometimes write J for J.. It is well known that critical points
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of J are exactly the classical solutions to (1) (see [Gilbarg & Trudinger, 1983]). To apply GNGA, we need
to compute first and second directional derivatives of .J. A calculation shows that the directional derivative
of J at u in the ¥; direction is

s =T = | (ewwj{wj.vmu)) g dy

M
/ (eZai (v\pi-ijlxyj ~VW(u)> dz dy
Q €

=1

1
= eajN+ E/ U, - VW (u)dxdy.
Q
Similarly, the second directional derivative is computed to be

Ajr(w) == J"(u) (T, Uy)

1
/ <6V‘~I/j VU, + fDQW(u)\IJj . ‘I/k) dx dy
0 €
= e\jdjr + 1/ D*W (u)¥; - Wy dz dy,
€Ja

where d;, is the Kronecker delta function. The algorithm, GNGA, consists of performing Newton’s method
iterations on the Fourier coefficients to find zeros of g.
The L? Hessian and gradient are only densely defined [Neuberger, 1997]. Where defined,
J' (u)(v) = (VJ(u),v)2 and
J"(u)(v,w) = (D*J (u)v, w)s.
The quantities V.J(u) and D?J(u) are defined on all of G. Furthermore, the Sobolev gradient, V zJ(u), and
the Hessian, D%.J(u), satisfy

(DFJ ()™ Vi (u) = (D*J (u) "' VI (u)

for all u € G. Hence, we may use the L? gradient and Hessian in our implementation of the Newton algorithm,
(see [Neuberger & Swift, 2001] and [Neuberger, 1997] for more details). We use Fourier coefficients of the
term (D?J(u))"'VJ(u) as the search direction in our algorithm. In our algorithm, the M x M matrix A
represents D?.J(u), the elements of the vector ¢ € RM are the Fourier coefficients of PgV.J(u), and the
vector Y € RM is the search direction given by Ay = g. Since the L? Hessian is not always invertible, we
use a least-squares solver to compute this search direction. Alternatively, one could use a pseudo-inverse
or, if the Hessian is known to be invertible, one could solve the equation directly. Also it is of use to us to
compute the number of negative eigenvalues of A, denoted sig(A4). Note that sig(A) corresponds to the MI
of u provided that u is a nondegenerate critical point of J and M is sufficiently large.

The Algorithm

e Choose initial coefficients a = a® = {a;}2,, set u = u® = 3" a ¥y, choose a tolerance TOL, choose §
equal to the desired Newton step size, and set the loop counter n = 0.

e Loop:
1. Calculate g = g"™! = (J'(u)(¥x))M, € RM (gradient vector).
Calculate A = A" = (J"(u)(W;, ¥y))},—, (Hessian matrix).
Compute y = x"! = A~1g using a least-squares solver to solve Ax = g (search direction).
Set a = a"t! = a" — §x and update u = u"*t! = 22/1:1 ap ¥y,
Increment loop counter.
Calculate the Morse index of u (i.e., sig(A)) and J(u).
Calculate \/g-g = ||PaVJ(u)||; STOP if \/g- g < TOL.

NS Gt e
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3 Local Bifurcations of the Trivial Solutions

The triple-well potential, W, has exactly seven critical points: three global minima, three saddle points, and
a local maximum. Each of these critical points corresponds to a trivial (constant) solution of (1). Because
of the symmetry of the potential, we only need to consider the critical points of W on the u;-axis, which are
listed in equation (4). The three solutions of (1) corresponding to these critical points of W are called the
minimum solution v = umi,, the saddle solution u = us, and the maximum solution u = Umax-

In this section we linearize the system (1) about each of these trivial solutions, and study a few local
bifurcations of these solutions. Our goal is to obtain bifurcation diagrams of J.(u) versus ¢ for the trivial
solutions and the solutions which bifurcate from them at the “first” bifurcation.

The energy of each trivial solution depends on the corresponding critical value of the potential (5):

min s 2. max 2
W, =0, J(us) = Ws R 069, and Je(Umax) = W, ~ 3 30.

Je(Umin) =
e(tmin) € € € € €

The Hessian D?.J(u) is easy to analyze when u is a constant function, u = u*. When u* is on the u;-axis
the eigenvalues and eigenfunctions of eD2.J(u*) are

eigenvalue €2\, ,, + e1(u*) with eigenfunction (¢, ,,0) and

eigenvalue €2\, ,, + e2(u*) with eigenfunction (0, ., »)-

where e (u*) and ez (u*) are the eigenvalues of D?W (u*) with eigenvectors (1,0) and (0, 1), respectively. Note
that we have used the doubly indexed eigenvalues (A, ) and eigenfunctions (¢, ) of the negative Laplacian,
defined at the beginning of section 2. For our choice of potential, the eigenvalues of D?W evaluated at the
critical points are

€1 (Umin) =~ 4.934 and es(umin) =~ 2.801,

e1(us) ~ 3.363 and ey (us) =~ —1.910, and (6)

el(umax) = e2(’U/ma»x) = -2

The Morse index of a solution is the number of negative eigenvalues of the Hessian D?.J(u), assuming that
none of the eigenvalues are zero. It is clear that the MI of uy;, is 0 for all €, since e (Uumin) and es(Umin) are
positive and A, , > 0. The MI of g is the cardinality of the set {(m,n) € N? | €2\, ,, < —ea(us) ~ 1.910},
where N is the set of nonnegative integers. Similarly, the MI of u,.x is twice the cardinality of the set
{(m,n) € N2 | 2\, < 2}.

Recall that Ao o = 0, and all other eigenvalues are strictly positive. Hence, when e is sufficiently large, the
MI of the saddle solution is 1 and the MI of the maximum solution is 2. Furthermore, the set of eigenvalues
{Am,n} has no upper bound, so the Morse indices of the trivial solutions us and umax increase without bound
as € — 0. We will now investigate the first bifurcation of the saddle and maximum solutions as € is decreased.

The first bifurcation of the saddle solution occurs at € = \/—ea(us)/m ~ 0.4399. The critical eigenspace
is

{u = us + (0,b10%1,0 + bo1%0,1) | (bo1,bo1) € R?}. (7)

The first bifurcation of the maximum solution occurs at € = /2 /7 ~ 0.4502. The critical eigenspace is

{u = (a10%1.0 + a01%0.1, b10¥1.0 + bo1%o.1) | (ao1, o1, bo1,bo1) € R*}. (8)

To follow a bifurcation branch numerically with the GNGA, we set € just below the bifurcation value,
and make an initial guess in the critical eigenspace. After a solution is found, € is stepped down, using the
solution found at the previous € as the initial guess. The success of this method requires a good guess near
the bifurcation. With a two dimensional eigenspace it is not trivial to find an initial guess for which Newton’s
method converges. The problem is even worse with a four dimensional eigenspace. It is easy to get lost in
R* without a good map. The symmetry of the PDE (1) causes the critical eigenspaces to have dimension
larger than one. On the other hand, the symmetry comes to the rescue through the Equivariant Branching
Lemma (EBL, see [Vanderbauwhede, 1982] and [Golubitsky, Stewart & Schaeffer, 1986]), which provides the
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“map” to tell us where to look for solutions near the bifurcation. The rest of this section describes how
we use symmetric bifurcation theory (see [Golubitsky, Stewart & Schaeffer, 1986] and Sattinger [1979]) to
predict where the small amplitude solutions lie within the critical eigenspaces.

Liapunov-Schmidt reduction can be used to find small amplitude solutions of the PDE (1) corresponding
to solutions of a reduced system of equations f(z) = 0. At the bifurcation of the saddle solution, f :
R? — R? and = = (bo1,bo1) € R?. At the bifurcation of the maximum solution, f : R* — R* and
x = (ap1,a01,b01,b01) € RA  Alternatively, the center manifold theorem can be used to give the ODE
% = f(x) whose solutions correspond to solutions of the negative gradient flow (2).

The reduced vector fields f are equivariant because they inherit symmetry from the original system (1).
The equivariant branching lemma (see [Vanderbauwhede, 1982] and [Golubitsky, Stewart & Schaeffer, 1986])
states that certain solutions must bifurcate from the trivial solution, assuming nondegeneracy conditions
hold. The solutions which bifurcate are one-dimensional fixed point subspaces of the action of the finite
group on R".

The symmetry of the system (1) is Dy x D3, where D,, is the symmetry of a regular n-gon. A set
of generators of the symmetry is listed in Table 1, along with the action of the generator on the critical
eigenspace.

Symmetry of the PDE Action on Eigenspace (7) Action on Eigenspace (8)
(z,y) — (1 —z,y) (b10,b01) — (—b10, bo1) (@10, @01, b10, bo1) — (—a10, @01, —bio, bo1)
(z,y) — (y,2) (b10,b01) — (bo1,b10) (@10, @01, b10,b01) — (ao1, a0, bo1,bio)
uy + Uy €i2ﬂ/3 (U + U ) Not Apphcable aio + iblO — 67':27T/3(a10 —+ ’l:blo)
! 2 ! 2 ao1 + ibo1 = €27/3(agy + ibo1)
(w1, u2) — (u1, —us) (b10,bo1) — (—bio, —bo1) | (ai0,a01,b10,b01) — (a0, ao1, —bio, —bo1)

Table 1: Generators of the D4 x D3 symmetry, along with their action on the critical eigenspaces. The first
two rows are generators of Dy, and the last two rows are generators of D3. One entry is blank because the
120° rotation in the (u1,ug) plane does not map the eigenspace (7) into itself. The group Dy X Zs, which is
the symmetry of ugs, acts on this eigenspace.

Note that the action of Dy X Z on the critical eigenspace (7) has a nontrivial kernel generated by
(z,y,u1,u2) — (1—x,1—y,u1, —ug). The factor group of the action modulo the kernel is isomorphic to Dy.
Hence, the bifurcation of the saddle solution is a stationary bifurcation with D, symmetry. This bifurcation
is well-studied. (See, for example Golubitsky, Stewart & Schaeffer [1988], Chapter XVII, §4, 6.)

On the other hand, the action of D4 x D4 on the critical eigenspace (8) is faithful. The first bifurcation
of the maximum solution is a stationary bifurcation with Dy x D3 symmetry, which has not (to the best of
our knowledge) been studied before .

The EBL states that each one-dimensional fixed-point subspace of the group action contains a small-
amplitude solution. A fixed point subspace of the action of a group G on R" is a subspace of R™ which is
pointwise invariant under the action of an isotropy subgroup ¥ < G. See [Golutbitsky, Stewart & Schaeffer,
1988] for more details. Table 2 describes the one-dimensional fixed point subspaces, and gives generators of
the associated isotropy subgroups. Only one member of each group orbit of fixed-point subspaces is shown.
For example, the subspace (r,0) in the first row of Table 2 is in the same group orbit as the subspace (0, 7).
For each of these subspaces, there is a group element (not in ¥) which maps r +— —r. Therefore, there is a
pitchfork bifurcation in each of the fixed point subspaces. That is, the amplitude r satisfies 7% ~ (¢ — €*)/a
when r is small. Our analysis does not check all of the hypotheses needed to prove the existence of the
pitchfork bifurcation. In particular, we do not compute « so we cannot check that o # 0. A rigorous
computation could be done following the methods of [Allgower, Béhmer, & Zhen, 1994], Section 3.
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Name | Fixed-Point Subspace \ Generators of X. (z,y, u1,uz) — ‘

10 (7’, 0) (1 -, Yy, ui, _u2)

( )
11 (r,7) (( Y Ty U, UQ))
( )

1001 (r,0,0,7) a1 —y, u,—us
111—-1 (ryryr,—7) ( Y, T, uy,—us)
( Y, €, Ui, u2)
0011 (0,0,7,7) (1—2,1—y, ur,—u)
(1 -, Y, Ul,—UQ)

0010 0,0,7,0
( , U, 1, ) ( ‘T,lfy, U1, UQ)
1100 (r,7,0,0) Cm oy w )
( Y, Z, Ui, u2)
( z, Y, ulv_UQ)

1000 0,0,0
(7’, s Uy ) ( x71_y7 Uy, Uz)

Table 2: The solutions which bifurcate from the saddle solution (top two rows) and from the maximum
solution (bottom six rows) at the first bifurcation. The six group orbits which bifurcate from the maximum
solution represent 96 distinct solutions. The names correspond to subspaces of the critical eigenspaces (7)
and (8). These are one-dimensional fixed-point subspaces for the group action described in Table 1. The third
column lists the generators of the isotropy subgroup of each fixed-point subspace. A solution is invariant
under the action of its isotropy subgroup.

The stationary bifurcation with D4 x D3 symmetry has many similarities to the Hopf bifurcation with Dy
symmetry studied by Swift [1988], whose normal form has Dy x S' symmetry, where S is the circle. There
are three group orbits (circles) of solutions in the Hopf bifurcation, and the cubic truncation of the normal
form is enough to make these solutions nondegenerate within the space of vector fields with the Dy x S*
symmetry. The cubic truncation of our stationary bifurcation with D4 x D3 symmetry is essentially the
same. However, the three circles of solutions in the cubic truncation are degenerate. Higher degree terms
are needed to break the circle of solutions into isolated solutions. For example, the cubic truncation of the
normal form has a circle of solutions which is separated into 12 solutions in the group orbit of 1001, and
12 solutions in the group orbit of 111-1, by terms of degree 11 in the normal form! We have computed the
degree three truncation of the normal form, but not the higher degree terms. If we can finish this calculation
the results will be presented elsewhere. This bifurcation is very interesting, but further study of it would be
a diversion from the current paper. The skeletal information provided by the EBL is enough to guide our
numerical investigation.

4 Numerical Results

We wrote a C++ program that does the GNGA to find solutions of (1). In implementing Step 3 of the
algorithm, we call the LAPACK routine DGELS to solve for the search direction. The results presented here
use 0 = 1 in Step 4 of the algorithm, so this is the “true” Newton’s method. We always took the tolerance
in Step 7 to be TOL < 10~ '3, The number of modes was M > 242, with some exceptions that are clearly
labelled in our results. The simplicity of the domain and eigenfunctions allowed us to do the numerical
integrations exactly, except for roundoff error (see [Neuberger & Swift, 2001]). Newton’s method typically
converged in 5 to 7 iterations. Each Newton step took about 3 seconds for M = 242 up to about a minute



for M = 538, which was the largest M we used.

The predictions listed in Table 2 were used to guide the initial guess for nontrivial solutions near the
bifurcations. Once a solution is found, the larger amplitude solutions on the same branch can be obtained
by stepping € down, using the solution at the previous value of € as an initial guess. We followed all of the
bifurcating branches down to e = 0.1. The resulting bifurcation diagram of J(u) versus e is shown in Figure
2.

The EBL gives only the crudest information about the bifurcations we studied. For example, it does not
claim to list all solutions which bifurcate. Nevertheless, it appears from our numerical calculations that no
solutions, other than those listed in Table 2, bifurcate from the saddle solution at € =~ 0.4399 or from the
maximum solution at € ~ 0.4502. The numerical results in Figure 2 start at ¢ = 0.43. There are indications
that the 1001 and 111-1 solutions each undergo two secondary bifurcations in the interval 0.43 < € < 0.4502,
but a report on this must await a more detailed exposition of the bifurcation with D4 x D3 symmetry.

J(u)
14 ¢
Morse Index
1
2
12 +
0010
0011
111-1
10 1 1001 —
8 L
11 —
\\\
6 N —
10 -
I L L L L I L L L L I L L L L I L L L L 1 8
0.1 0.2 0.3 0.4 05

Figure 2: This bifurcation diagram shows the saddle solution, the maximum solution, and the solutions
which bifurcate off these trivial solutions at the first bifurcation as € is decreased. The minimum solution,
which is not shown, has J = 0 and MI 0 for all e. The dots indicate a bifurcation point, where the MI
changes.

The solutions we found numerically at e = 0.1 are shown in Figure 3. As expected, many solutions appear
to have u(z,y) very close to one of the three minima of the the potential W everywhere except along thin
transition regions. These solutions have a finite value of J.(u), and W(u(z,y)) = 0 almost everywhere in
the limit € — 0.

In contrast, lim._g J.(u) does not exist for the 1000 solution and the 1100 solution. These solutions
lie in the invariant subspace where us = 0. The system (1) reduces to a scalar PDE for u(z,y) with a
nonsymmetric double well potential. The saddle point in the triple well potential becomes the higher local
minimum in the double well potential. As e decreases, the region where u &~ us grows to cover most of the
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square.

The 10 solution is the MI 1 mountain pass solution used by Flores, Padilla & Tonegawa [2001] to prove
the existence of a MI 2 solution. The properties of the MI 2 solution are not supplied by the proof, but
the authors conjecture that the MI 2 has a triple junction where three interfaces meet at 120° angles. The
1001 solution has both MI 2 and a triple junction, so this is presumably the solution implied by the theorem
of Flores, Padilla & Tonegawa [2001]. For the square region, there is another triple junction solution, with
higher energy and MI 3: the 111-1 solution.

Figures 4 shows the apparent limit, as ¢ — 0, of the solutions which have finite J. in that limit. The
interface has minimal energy when it has no curvature. If the boundary of 2 is smooth, the interface is
perpendicular to the boundary. If we rounded off the corners of the square, then the interface could touch
anywhere in the arc. Therefore we assume that the interfaces are line segments which can touch a corner
of the square in the limit ¢ — 0. The limiting patterns of the 0011 solution and the 0010 solution are not
obvious. We looked at animations of the pattern with e changing in time, which can be found at the website
http://math.nau.edu/" jws/nrs_paper/. The animations clearly show the two triple junctions of the 0011
solution coming together to form the quadruple junction shown in Figure 4. The red strip in the middle of
the 0010 solution narrows as e decreases. We conjecture that the width is asymptotically proportional to e,
so that the pointwise limit of the solution is red on a line segment.

Figures 5 and 6 show why we stopped our bifurcation branches at € = 0.1, for which €2 is quite small.
Figure 5 shows the bifurcation curves obtained for 6 different choices of the cutoff parameter k. Recall the
we included all modes )y, ,, for which A, , = 7%(m? + n?) < k. Thus a choice of k yields M modes for uy,
and the same number for us, giving M = 2M modes in all. When € gets small, the solution approaches a step
function, and our Fourier mode approximation exhibits the Gibbs phenomenon. The deviation of u from a
minimum of W causes a large value of J, as seen in Figure 5. Furthermore, the solutions tend to “jump” off
the branch when € gets close to 0.1. It would be easy to implement an algorithm where the solution at the
new ¢ value was predicted by a linear approximation. This would help the problem of “branch jumping,”
but the Gibbs phenomenon would still be there. We did not add this feature to our C++ code.

We presume that the solution found by the GNGA converges to a solution of the PDE as the number of
modes in the Galerkin space G increases without bound. While we have no proof of a convergence result,
we are convinced that our results are not spurious due in part to a computation of the L? error of the PDE:

error = \// | — 2Au+ VW (u)|? dz dy.
Q

Some results of this error calculation are shown in Figure 6. As expected, the error decreases as the number
of modes increases. On this log-linear plot the points fall on approximate straight lines, which suggests that

error X Exp(—1/ Amax)

where the Galerkin space is G = {¢; : A\; < Amax}. We have observed this same rule of error decay in ODEs
(2 C R). It would be interesting to see if this trend extends to spatial domains ( C R?).
Figure 5 also shows how we estimate Jy := lir% Je(u). We made a linear fit of J. versus € using the data in

the interval 0.1 < e < 0.13 for all of the solutions listed in Table 3. The third column shows the total length
of the interface for the conjectured limiting solution shown in Figure 4. Most of the lengths are trivial to
compute, with the exception of the 111-1 solution whose interface has length (/2 — v/3+2v/2)/v/3 ~ 1.932.
This length can be computed using the law of sines on the 15°-45°-120° triangles which make up the blue
and green regions, where sin(15°) is obtained from a half-angle formula.

The most striking feature of Table 3 is that .Jy is approximately proportional to the length of the interface.
Indeed, a theorem of Baldo (see [Baldo, 1990] and Theorem 1.1 of [Sternberg & Zeimer, 1994)) states that
Jo is proportional to the H! measure (length) of the interface.
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Figure 3: The solutions listed in Table 2. All of these solutions are computed at € = 0.1, where the nonlinear
corrections to the critical eigenspace are significant. The key at the upper left shows a few contours of the
potential W to indicate how the color codes the value of u(x,y). These large amplitude solutions have the
same symmetry they did at the bifurcation, as listed in Table 2.
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111-1

Figure 4: Our conjectures for the limiting solutions as € — 0. We are guided by animations of the solutions
as a function of e.

J(u)
11 ¢

10.75 ¢
105 ¢ -
10.25 ¢

10 ¢

9.75 |

95! k= 18 16 14 12 10 8

9251 M= 538 428 332 242 172 112

0.05 0.1 0.15 0.2 0.25

Figure 5: Six different curves of J versus € for the 1001 solution are shown, each with a different number of
modes in the GNGA. The dotted line is an extrapolation of the linear fit of the most accurate curve (with
k = 18 giving M = 538 modes) in the interval 0.1 < € < 0.13. The results suggest that lim._q J(u) = 10.5
for the 1001 solution.
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logyg(error)

k

8 10 12 14 16 18

Figure 6: The L? error of the PDE, as a function of the cutoff parameter k, for the 1001 solution at four
different values of €. The lines are to guide the eye. As expected the larger amplitude solutions, with smaller
€, have more error. The error at € = 0.1, with k = 18, is 9.50 x 1073.

Solution | estimate of Jy | Length L | Jo/L
10 5.65 1 5.65

11 7.99 V2 5.65
1001 10.52 14+/3/2 | 5.64
111-1 10.88 1.932... | 5.63
0011 11.31 2 5.65
0010 11.35 2 5.68

Table 3: The limiting energy .Jy is computed by the method demonstrated in Figure 5. The total length of
the interface L is computed geometrically for the solutions shown in Figure 4.

5 Conclusion

Since concluding this research project, we have begun investigating several extensions. For example, one may
wish to pursue the effect of having a nonsymmetric region 2 or a nonsymmetric triple-well potential. We
have already developed and tested algorithms for computing a basis of eigenfunctions of the Laplacian for
general regions. Implementing our method on non-square or nonsymmetric regions is not difficult, and the
properties of the resulting pattern formations may be interesting and useful. We have already obtained good
approximations to the triple-junction solution when the region € is a disk in R?. Further investigation could
be done by following bifurcation branches from the other bifurcation points, where other pattern formations
could be observed.
By modifying our basis and functional slightly, we were able to code and test the related Ginzburg-Landau
problem
—2Au—u(l—|uf?) = 0in Q,

u = gonJdf, 9)

where u is a complex valued function and g : 92 — C. Using appropriate choices for the boundary function

g, we are able to model vortices (see [Almeida & Betheul, 1998] and [Bethuel, Brezis & Heléin, 1994]).
A next possible step is to adapt our algorithm to study the so-called “full Ginburg-Landau” system. In
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[Neuberger, 1997] the functional for this substantially more difficult problem is given:
1 . 2, 1 5 K 22
E(u,A) = §|(V—2A)u\ +§|V><A—H0| +Z((1—|u| )* | de, (10)
Q

The region {2 is a subset of R?, for p = 2 or p = 3. Here the unknowns are the order parameter u € H2(Q, C)
and the vector potential A € HY2(Q, RP). If the applied magnetic field Hy is identically zero, then we can
assume that A(z) = 0 and the Euler-Lagrange equation of (10) reduces to (9), where k = 1/e. One challenge
that presents itself in investigating this problem is in dealing with the natural boundary conditions

(VxA)xn=Hyxnand (V—id)u) -n=0,

where 7 is as before the outward unit normal.

There is a great body of literature considering various facets of the analysis of Ginzburg-Landau problems,
of which we have referenced only a few select works. References to numerical investigations of these problems
are somewhat sparse. Very little can be found concerning analysis or numerics in the “full Ginzburg-Landau”
case.

Our method works very well, even for fairly small e. We are able to make qualitative and quantitative
conjecture about the ¢ — 0 limit with the GNGA. Extremely small values of € yield solutions that are close
to step-functions, where a basis of cosine or sine functions has some limitations. Features such as vortices
cause similar problems. One could consider using an alternate choice of basis for L? x L? and H x H. In
fact, at the time of this writing the use of a basis of wavelets is being investigated. We wish to emphasize,
however, that the eigenfunction basis is in many ways the natural choice and has yielded satisfactory results
for reasonably small values of e.
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