IN/AU WEB APPLICATION

NORTHERN SECURlTY

AR

IZONA

UNIVERSITY

WEB APPLICATION SECURITY STANDARD

The capitalized terms used herein are defined in the Web Application Security policy.

The requirements outlined in this document represent minimum baseline standards for the secure development,

testing,

and scanning of, and for established criticality and risk ratings for, University Web Applications.

1. Inventory — Risk, Criticality, Data Classification

1.1

1.2,

. Inventory. Web developers and responsible business units must maintain a current inventory of Web

Applications. The inventory must include Web Application descriptions and data classification. The
inventory may include Web Application authentication mechanisms, availability rating, overall criticality
rating, and URLSs for all the application environments (e.g., Dev, Test, Prod).

Criticality Classification. Classification is performed initially by web developers in coordination with
the business unit responsible for the application. An initial evaluation based on Data Classification and
availability requirements will result'in an overall criticality rating for the Web Application. If consensus
between web developers and the business unit on a criticality rating cannot be reached, the Chief
Information Officer (“CIO”), or their designee, and/or the IT and Data Governance Trustees should be
consulted. The following criticality table represents the model to follow:

Criticality Data Classification* Availability Rating

Vegiigh Level 4 — Highly Sensitive Data or Tier 1 — Mission Critical

High Risk Level 3 — Sensitive Data or T'e;f — Enterprise
pplications

Low Risk Level 2 — Internal Data or Tier 3 — Internal Only

Velgs'fw Level 1 — Public Data or Tier 4 — All other

*The University’s data classifications are set forth in the Data Classification and Handling policy

Availability ratings are a business-based classification determined by the importance of an application’s
position in business continuity. “Tier 1 — mission critical” Web Applications represent core functions that
if unavailable would result in the University being unable to conduct business (e.g., enterprise learning
systems, payroll systems, student administration systems, and authentication systems that support
other systems). “Tier 1 — mission critical” Web Applications additionally represent those applications
that handle Highly Sensitive Data.

2. Secure Web Development

Use of secure development guidelines (e.g., the Open Web Application Security Project also known as
“OWASP”) is essential to a secure Software Development Life Cycle (“SDLC”). Consider the following principles
during application threat modeling and secure application development.

Information Technology / Web Application Security Page 1 0of 5



2.1.

2.2,

23.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

Defense in depth. Using layered security mechanisms increases security of the system as a whole.
Security improves by ensuring additional controls are in place when controls in earlier stages of
application security fail. Example: a web server is compromised by a previously undisclosed
vulnerability. The web server attempts to connect to another near-by web server with the same
vulnerability. However, a firewall blocks the outbound request.

Use a positive security model. When possible and practical, an “allow list” should be used.
Unknown data formats or requests are checked against the allow list; if present, the request or data is
processed as normal. Data or requests not on the allow list are denied. Positive security models apply
to network architecture as well. Hosts or applications that employ allow lists are less susceptible to
attack due to attack surface reduction.. Example: using input validation to ensure a parameter is an
integer is establishing a positive security model. Non-integer values are rejected.

Fail securely. In general, applications should be able to’handle undefined scenarios in a secure
fashion. If an exception or software failure is experienced, request processing should complete in a
fashion consistent with a deny action (i.e., a safe code path should be present and taken). Example: a
request is received to promote user x to administrator privilege. During verification of user x with an
identity provider, an exception occurs. The request should not be completed since user x was not
successfully verified.

Run with least privilege. The principle of least privilege recommends that accounts (including
application accounts) have the least privilege required to perform their business processes. This
encompasses user rights, resource permissions such as CPUimits, memory, network, and file
system permissions. Example: a Web Application connectsto a database to retrieve information. The
Web Application has no business need to write to the database. The database account used by the
web server should only have select access to the database, tables, and columns it requires to perform
its work.

Open design. Secure components are resilient to direct analysis. Components designed with
transparency in mind provide the strongest protections to threats by being known and verifiably
secure. “Security through obscurity” is the opposite of an Open Design and implies that external
threats are unaware of internal controls. Choosing‘an Open Design helps ensure that security is
strong by being clear and apparent. Example: leaving a house key beneath the doormat is an
example of security through obscurity. Anyone who lifts the mat will find the key. An open design may
be to leave a house key in a clearly visible combination lock box. Authorized parties are given the
combination to the lock box in order to recover the key.

Keep security simple. Related to open design; try to keep controls as simple as possible while still
being effective. More code and complexity in a system increases the likelihood of bugs and
vulnerabilities being present in the system. Using clear and concise controls reduces risk by being
simple to implement and to utilize. Example: uninstalling unused services and software reduces the
attack surface of a server and is a simple mechanism to achieve higher security.

Detect intrusions. Log all security relevant events. Establish monitoring procedures for these logs.
Establish procedures to identify intrusions and respond appropriately. Example: an application that
requires authentication has received 10,000 failed authentication attempts in a five-minute period from
a single Internet Protocol address. This may be an attack or a misconfigured device. An alert should
be generated, and an analyst should perform analysis to determine if the attack was successful or if
support should be informed of the misconfiguration.

Do not trust infrastructure. By authenticating and authorizing requests, even from “trusted”
infrastructure, trust relationships are not abused. Example: compromising a Real-time Transport
Protocol (“RTP”) server where minimum privilege is used should not allow a threat to “pivot” to a
nearby web server that may have an implicit trust relationship with that RTP server. This web server
should not trust the RTP server.

Do not trust services. A compromised service cannot be trusted. Data presented by a compromised
service may be malicious. Example: when a database service is compromised, the data it provides to
other services may contain malicious components that allow these data consuming services to be

Information Technology / Web Application Security Page 2 of 5



compromised. These other services should not trust the database. Verifying data received from
services ensures trust relationships are not abused.

2.10. Establish secure defaults. Related to using a positive security model, providing secure defaults
ensures that security is considered. If a control allows users to “opt-out,” this decision may be
weighed by the user and chosen as their needs require. Initial configuration should always be as
secure as possible.

2.11. Do not trust third-party source code. Using third-party code, such as via open-source projects and
package/dependency management tools, introduces a potential attack vector that needs to be
audited/monitored. If you are using package tools, use their built-in alerting/warning systems for
compromised code and take the necessary precautions. Additionally, consider using monitoring
services to receive warnings on packages during development and as a scheduled periodic check
over your code base. When possible, code review third-party code.

3. Authentication and Authorization.

Ensuring appropriate access to Web Applications is a critical security component. Authentication and
authorization help ensure the right user or client hasaccess to the right resource at the right time.

3.1. Authentication.. Web Applications must properly authenticate users through ITS supported central
authentication systems. If supported Authentication systems cannot be used, an exception request
must be made that details why the application cannot use existing systems (e.g., a grant application
that has predominantly non-University users).

3.2. Authorization. When possible, establish Authorizations for Applications by Affiliation, group
membership, or employment status, rather than by individual assignment. If individual Authorizations
are used, these should expire and require renewal on a periodic (at least annually) basis. Use central
Authorization and group. membership sources where possible, as opposed to groups that only exist
within the application. This allows user access across the enterprise to be discovered and managed
outside of the specific application. Centrally managed groups can be assigned roles within the
application. If additional functionality is needed; coordinate with ITS. Document clear rules and
processes for vetting and approving Authorizations. On at least an annual basis, review and promptly
remove all Autharizations for individuals who have left the University, transferred to another
department, or assumed new.job duties within the department.

4. Vulnerability Testing. All Web Applications should undergo vulnerability testing. Vulnerability testing uses
automated scanning tools and manual testing to identify known vulnerabilities, such as outdated software
versions, misconfigurations, weak passwords, improper access controls, and improper inputs.

5. Web Application Security: Seeurity Festing- A Web Application’s Developer has primary responsibility for
the security of the Web Application, including timely response and reporting of reasonably suspected or
reported security issues and testing results. Remediation steps, and follow-up testing results, will be
documented and, when necessary, attached to an associated change management record.

Information Technology / Web Application Security Page 3 of 5



4.2.51. Exceptions Review. It may be necessary to postpone a-seheduled-scan-orsecurity
testmitigation of known security vulnerabilities. If security testing-mitigation cannot follow the set

schedule, an exception request must be made that details why postponement or deferral is

necessary. The CIO_ {or their designee,) will promptly act on all exception request approvals, which
must be submitted through the ServiceNow system. Exceptions may include:

Information Technology / Web Application Security Page 4 of 5



Production system freeze or semester start-up periods

Conflicts with other critical changes scheduled during the same period

Security testing is believed to break functionality or cause excessive system load

Systems, applications, or devices where appropriate risk-mitigation controls are put in place,
documented and validated

= Resources are unavailable to perform penetration-testing-and-manual-assessments

= |n all cases of exception requests, the implementation of Web Application firewall should be
considered as a mitigating control to potential threats

5.6.Training. In addition to the University’s Information Security Awareness Training requirements, web
developers should pursue or receive web development and secure coding training to ensure a baseline set
of skills and knowledge for securing Web Applications. This. training should include annual review of the
OWASP guidelines and taking part in_peer code reviews.

Information Technology / Web Application Security Page 5 of 5



