

Information Technology / Web Application Security Page 1 of 5

WEB APPLICATION
SECURITY

WEB APPLICATION SECURITY STANDARD

The capitalized terms used herein are defined in the Web Application Security policy.

The requirements outlined in this document represent minimum baseline standards for the secure development,
testing, and scanning of, and for established criticality and risk ratings for, University Web Applications.

1. Inventory – Risk, Criticality, Data Classification

1.1. Inventory. Web developers and responsible business units must maintain a current inventory of Web

Applications. The inventory should include Web Application descriptions, authentication mechanisms,
data types and data classification, availability rating, overall criticality rating, and address and/or URL.

1.2. Criticality Classification. Classification is performed initially by web developers in coordination with

the business unit responsible for the application. An initial evaluation based on Data Classification and
availability requirements will result in an overall criticality rating for the Web Application. If consensus
between web developers and the business unit on a criticality rating cannot be reached, the Chief
Information Officer (“CIO”) (or their designee) and/or the IT and Data Governance Trustees should be
consulted. The following criticality table represents the model to follow:

Criticality Data Classification* Availability Rating

Very High
Risk

Level 4 – Highly Sensitive Data or Tier 1 – Mission Critical

High Risk Level 3 – Sensitive Data or
Tier 2 – Enterprise

Applications

Low Risk Level 2 – Internal Data or Tier 3 – Internal Only

Very Low
Risk

Level 1 – Public Data or Tier 4 – All other

*The University’s data classifications are set forth in the Data Classification and Handling policy

Availability ratings are a business-based classification determined by the importance of an application’s
position in business continuity. “Tier 1 – mission critical” Web Applications represent core functions that
if unavailable would result in the University being unable to conduct business (e.g., enterprise learning
systems, payroll systems, student administration systems, and authentication systems that support
other systems). “Tier 1 – mission critical” Web Applications additionally represent those applications
that handle Highly Sensitive Data.

2. Secure Web Development

Use of secure development guidelines (e.g., the Open Web Application Security Project also known as
“OWASP”) is essential to a secure Software Development Life Cycle (“SDLC”). Consider the following principles
during application threat modeling and secure application development.

https://nau.edu/university-policy-library/web-application-security/
https://nau.edu/university-policy-library/data-classification-and-handling/
https://www.owasp.org/index.php/Main_Page

Information Technology / Web Application Security Page 2 of 5

2.1. Defense in depth. Using layered security mechanisms increases security of the system as a whole.

Security improves by ensuring additional controls are in place when controls in earlier stages of
application security fail. Example: a web server is compromised by a previously undisclosed
vulnerability. The web server attempts to connect to another near-by web server with the same
vulnerability. However, a firewall blocks the outbound request.

2.2. Use a positive security model. When possible and practical, an “allow list” should be used.

Unknown data formats or requests are checked against the allow list; if present, the request or data is
processed as normal. Data or requests not on the allow list are denied. Positive security models apply
to network architecture as well. Hosts or applications that employ allow lists are less susceptible to
attack due to attack surface reduction. Creating positive security models for some applications may be
intractable and infeasible. Example: using input validation to ensure a parameter is an integer is
establishing a positive security model. Non-integer values are rejected.

2.3. Fail securely. In general, applications should be able to handle undefined scenarios in a secure

fashion. If an exception or software failure is experienced, request processing should complete in a
fashion consistent with a deny action (i.e., a safe code path should be present and taken). Example: a
request is received to promote user x to administrator privilege. During verification of user x with an
identity provider, an exception occurs. The request should not be completed since user x was not
successfully verified.

2.4. Run with least privilege. The principle of least privilege recommends that accounts (including

application accounts) have the least privilege required to perform their business processes. This
encompasses user rights, resource permissions such as CPU limits, memory, network, and file
system permissions. Example: a Web Application connects to a database to retrieve information. The
Web Application has no business need to write to the database. The database account used by the
web server should only have select access to the database, tables, and columns it requires to perform
its work.

2.5. Open design. Secure components are resilient to direct analysis. Components designed with

transparency in mind provide the strongest protections to threats by being known and verifiably
secure. “Security through obscurity” is the opposite of an Open Design and implies that external
threats are unaware of internal controls. Choosing an Open Design helps ensure that security is
strong by being clear and apparent. Example: leaving a house key beneath the doormat is an
example of security through obscurity. Anyone who lifts the mat will find the key. An open design may
be to leave a house key in a clearly visible combination lock box. Authorized parties are given the
combination to the lock box in order to recover the key.

2.6. Keep security simple. Related to open design, try to keep controls as simple as possible while still

being effective. More code and complexity in a system increases the likelihood of bugs and
vulnerabilities being present in the system. Using clear and concise controls reduces risk by being
simple to implement and to utilize. Example: uninstalling unused services and software reduces the
attack surface of a server and is a simple mechanism to achieve higher security.

2.7. Detect intrusions. Log all security relevant events. Establish monitoring procedures for these logs.

Establish procedures to identify intrusions and respond appropriately. Example: an application that
requires authentication has received 10,000 failed authentication attempts in a five-minute period from
a single Internet Protocol address. This may be an attack or a misconfigured device. An alert should
be generated, and an analyst should perform analysis to determine if the attack was successful or if
support should be informed of the misconfiguration.

2.8. Do not trust infrastructure. By authenticating and authorizing requests, even from “trusted”

infrastructure, trust relationships are not abused. Example: compromising a Real-time Transport
Protocol (“RTP”) server where minimum privilege is used should not allow a threat to “pivot” to a
nearby web server that may have an implicit trust relationship with that RTP server. This web server
should not trust the RTP server.

2.9. Do not trust services. A compromised service cannot be trusted. Data presented by a compromised

service may be malicious. Example: when a database service is compromised, the data it provides to

Information Technology / Web Application Security Page 3 of 5

other services may contain malicious components that allow these data consuming services to be
compromised. These other services should not trust the database. Verifying data received from
services ensures trust relationships are not abused.

2.10. Establish secure defaults. Related to using a positive security model, providing secure defaults

ensures that security is considered. If a control allows users to “opt-out,” this decision may be
weighed by the user and chosen as their needs require. Initial configuration should always be as
secure as possible.

2.11. Do not trust third-party source code. Using third-party code, such as via open source projects and

package/dependency management tools, introduces a potential attack vector that needs to be
audited/monitored. If you are using package tools, use their built-in alerting/warning systems for
compromised code and take the necessary precautions. Additionally, consider using monitoring
services to receive warnings on packages during development and as a scheduled periodic check
over your code base. When possible, code review third-party code. Develop strategies for quickly
mitigating issues as they arise within your teams.

3. Authentication and Authorization.

Ensuring appropriate access to Web Applications is a critical security component. Authentication and
authorization help ensure the right user or client has access to the right resource at the right time.

3.1. Authentication. Authentication is a process that ensures and confirms a user’s identity by matching
provided credentials with those stored in a system of record. Web applications must properly
authenticate users through ITS supported central authentication systems. If supported authentication
systems cannot be used, an exception request must be made that details why the application cannot
use existing systems (e.g., a grant application that has predominantly non-University users).

3.2. Authorization. Authorization is a mechanism used to determine user/client privileges or access levels
related to system resources. When possible, establish authorizations for applications by affiliation,
group membership, or employment status, rather than by individual assignment. If individual
authorizations are used, these should expire and require renewal on a periodic (at least annually)
basis. Use central authorization and group membership sources where possible, as opposed to
groups that only exist within the application. This allows user access across the enterprise to be
discovered and managed outside of the specific application. Centrally managed groups can be
assigned roles within the application. If additional functionality is needed, coordinate with ITS.
Document clear rules and processes for vetting and approving authorizations. On at least an annual
basis, review and promptly remove all authorizations for individuals who have left the University,
transferred to another department, or assumed new job duties within the department.

4. Security Testing. All web sites should undergo security testing. Testing should be based on the criticality

ratings and may include automated and/or manual forms of assessment. A Web Application’s developer has
primary responsibility for the security of the application, including timely response to reasonably suspected
or reported security issues and testing results. If a Web Application as defined in the Web Application
Security policy accepts input, it should be tested with valid, invalid, and potentially malicious parameters to
identify and ensure that proper validation and sanitization strategies are in place, or to identity potential
security risks. As a guide, the Open Web Application Security Project, OWASP, Top Ten Web Application
Vulnerabilities may be used as a foundation for security testing. Vulnerabilities found during security testing
must be documented in the system of record and assigned to the appropriate web developer. Remediation
steps, and follow-up testing results, will be documented and, when necessary, attached to an associated
change management record.

4.1. Security Testing Schedule. Security testing should occur during different phases of the Software

Development Lifecycle and then in an ongoing fashion throughout the life of a Web Application,
including:

 Before the production launch of a new High or Very High criticality Web Application
 Before a significant change to a High or Very High criticality production Web Application

https://www.owasp.org/index.php/Main_Page
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Information Technology / Web Application Security Page 4 of 5

 As directed by an information security review or upon request from the Chief Information
Officer, Information Security Services, or developers of a Web Application

 When there are active threats, security events, or security incidents

Additionally, ongoing testing should follow a schedule based on criticality and/or availability ratings.
Such a schedule would involve the following at a minimum:

Criticality Data Classification*
Availability

Rating
Scanning/Testing

Schedule

Very High
Risk

Level 4 – Highly Sensitive Data or
Tier 1 – Mission

Critical
Every six
 months

High Risk Level 3 – Sensitive Data or
Tier 2 –

Enterprise
Applications

Once
a year

Low Risk Level 2 – Internal Data and
Tier 3 – Internal

Only
Periodic

Very Low
Risk

Level 1 – Public Data and Tier 4 – All Other Periodic

*The University’s data classifications are set forth in the Data Classification and Handling policy

Selection of Web Applications for scanning, testing, and assessing should occur according to the
schedule above. In instances where a High Criticality Web Application has experienced no changes,
and there are no reasonably suspected or active threats, security events, or security incidents within
the 6 month schedule, the assessment may follow the once a year schedule instead.

Continuous monitoring and testing of publicly accessible Web Applications by a third party may be
performed in lieu of University staff – this provides an opportunity for more frequent assessments on a
set of applications “open to the world” and therefore potentially more vulnerable to attack. Results of
vulnerable applications should be provided to Information Security Services for evaluation and
analysis. Following this evaluation and analysis, additional testing and manual assessments of a Web
Application may occur where additional rigor and verification is needed. Additionally, penetration
testing and manual assessments of a Web Application may be conducted following a third-party
report, peer institution information sharing, logged attacks, or other indicators of heightened risk or
threat such as, but not limited to, those identified from Web Application firewall logging and
monitoring.

If a Web Application is hosted by a third-party provider and/or not hosted on NAU’s network,
automated or manual tests should be performed by the vendor or the vendor’s third-party assessor on
an appropriate recurring schedule with results provided to Information Security Services.

4.2. Exceptions Review. It may be necessary to postpone a scheduled scan or security test. If security

testing cannot follow the set schedule, an exception request must be made that details why
postponement or deferral is necessary. The CIO (or their designee) will promptly act on all exception
request approvals, which must be submitted through the ServiceNow system. Exceptions may
include:

 Production system freeze or semester start-up periods
 Conflicts with other critical changes scheduled during the same period
 Security testing is believed to break functionality or cause excessive system load
 Systems, applications, or devices where appropriate risk-mitigation controls are put in place,

documented and validated

https://nau.edu/university-policy-library/data-classification-and-handling/

Information Technology / Web Application Security Page 5 of 5

 Resources are unavailable to perform penetration testing and manual assessments
 In all cases of exception requests, the implementation of Web Application firewall should be

considered as a mitigating control to potential threats

4.3. Threat Modeling. Development teams should, whenever possible and feasible, institute Threat

Modeling procedures. Analysis and understanding of the mechanics of a Web Application will identify
when threat modeling and security testing should be done. An application’s architecture, integration,
and delivery will determine if automated scanning and/or manual testing should be performed. Threat
modeling sessions should occur during development and should include a list of potential security
risks considered, description of how each risk will be addressed, and the controls used to reduce the
risks. Guidelines and current controls for Threat Modeling and security are found in the Web
Application Security Testing Guidelines.

5. Training. In addition to the University’s Information Security Awareness Training requirements, web

developers should pursue or receive web development and secure coding training to ensure a baseline set
of skills and knowledge for securing Web Applications. This training should include annual review of the
OWASP guidelines and taking part in peer code reviews.

https://nau.service-now.com/kb_view.do?sysparm_article=KB0015155
https://nau.service-now.com/kb_view.do?sysparm_article=KB0015155
https://nau.edu/university-policy-library/information-security-awareness-training/

