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PHYTOGEOGRAPHY AND FLORISTICS OF PINYON-JUNIPER
WOODLANDS IN NORTHERN ARIZONA

Kyle Christie!

ABSTRACT.—This study assesses the floristic diversity and affinities of pinyon-juniper (PJ) woodlands in northern Ari-
zona at 2 different scales: regionally within the context of North American floristic patterns and locally within the 2500-
m elevation gradient of the San Francisco Volcanic Field (SFVF). An analysis based upon 245 North American floras
indicates that the P] woodlands of the SFVF share strong affinities with the adjacent Colorado Plateau and Apachian
floristic elements but also show high floristic similarity to the Great Plains. Data suggest that mid-elevation woodlands
of the Colorado Plateau share floristic affinities with the Great Plains that are as strong as or stronger than those shared
with the Great Basin. A geostatisical analysis provides a spatially explicit depiction of these findings. A comparison of
species occurrences between 6 adjacent biotic communities in northern Arizona reveals that the P] woodlands host the
most distinctive flora among local life zones. Despite what their simple woodland structure may suggest, PJ] woodlands
of the SFVF host a moderately species-rich flora. This study suggests that the floras of P] woodlands vary in significant

and important ways across the range of PJ woodlands in western North America.

Key words: biogeography, phytogeography, floristics, pinyon-juniper woodlands, San Francisco Volcanic Field,

Colorado Plateau.

Regional Floristic Affinities

Phytogeography, or the biogeography of
plants, examines the spatial distributions and
relationships of plant species (Good 1974).
Individual plants inhabit specific geographic
areas based upon a myriad of factors including
climate, topography, physiology, and evolu-
tionary and migrational history (Westoby and
Wright 2006). Plant geographers have long
struggled to classify regions of the world by
cohesive and characteristic floristic elements
(Takhtajan 1986). While it is often impossible
to elucidate how or why the synergy of cli-
mate, topography, history, and geography
favors a specific assemblage of plants in a spe-
cific region, biogeographers nevertheless
strive to identify these unified regions. Plant
geographers commonly delimit floristic ele-
ments based on geographically restricted and
endemic taxa (Takhtajan 1986) or based on
shared taxa (Stott 1981). McLaughlin (1986,
1989, 1994) has used overlap in the ranges of
many species to extensively define areas of
floristic similarity in the southwestern United
States.

The San Francisco Volcanic Field (SFVF) of
northern Arizona lies near the junction of the

Colorado Plateau and Apachian floristic zones
(Fig. 1) and hosts many characteristic south-
western taxa (McLaughlin 1986, 1992), such as
Eriogonum Michx., Astragalus L., Cryptantha
Lehm. ex G. Don, Penstemon Schmidel, Phacelia
Juss., and Muhlenbergia Schreb. Due to its
unique geographic location, the SFVF also
harbors many species growing near the limits
of their ranges. Many northern species with
affinities to the Great Basin, Rocky Moun-
tains, and northern Great Plains (e.g.,
Artemisia frigida Willd., Ephedra viridis Cov-
ille, Eriogonum corymbosum Benth., Hespero-
stipa comata [Trin. & Rupr.] Barkworth, and
Hymenoxys richardsonii [Hook.] Cockerell)
reach the southern extent of their distributions
on the southern Colorado Plateau. Other more
southern species with Madrean, Chihuahuan,
and Sonoran affinities (e.g., Bouteloua aristi-
doides [Kunth] Griseb., Juglans major [Torr.]
A. Heller, Juniperus deppeana Steud., Men-
odora scabra A. Gray, Muhlenbergia pauciflora
Buckley, and Muhlenbergia porteri Scribn. ex
Beal) reach the northern extent of their distri-
butions near the Mogollon Rim at the south-
ern terminus of the Colorado Plateau. A num-
ber of eastern and Great Plains species (e.g.,
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Fig. 1. Floristic subprovinces of North America and the 245 local floras used to delimit them (McLaughlin 2007).

Opuntia macrorhiza Engelm., Ptelea trifoliata
L., Andropogon gerardii Vitman, Elymus
canadensis L., Monarda fistulosa L., Panicum
virgatum L., Schedonnardus paniculatus [Nutt.]
Trel., Schizachyrium scoparium [Michx.] Nash,
Sorghastrum nutans [L.] Nash, and Zinnia
grandiflora Nutt.) reach their western distrib-
utional limits on the Colorado Plateau.

The western United States, and particularly
the Southwest, has a relatively high degree of
floristic differentiation compared to the eastern
United States (McLaughlin 2007; Fig. 1). Dif-
ferent climatic regimes and migrational barri-
ers imposed by the physical geography of the
region often promote floristic diversity. The
SFVF is situated at the southern edge of the
Colorado Plateau and lies at a unique physio-
graphic crossroads. The 4 major North Ameri-
can deserts border the Colorado Plateau on 3
sides, and the Rocky Mountains confine the
region on the northeast. Drastically distinct
physiographic influences from the Great Basin,
Great Plains, and Rocky Mountain provinces

converge on the Colorado Plateau (Bailey et
al. 1994, Bailey 1998) to create an area with an
eclectic, yet not entirely understood, floristic
composition.

Pinyon-juniper (P]) woodlands cover more
than 24 million ha in the southwestern United
States (Tidwell 1987) and represent one of the
most expansive vegetation types in the region
(Brown 1994). These woodlands are the most
extensive vegetation type in the Colorado
Plateau Semidesert Province (Bailey et al.
1994) and occupy more area in the Inter-
mountain Region than all other forest types
combined (Cronquist et al. 1972). Due to the
extensive coverage of P] woodlands on the
Colorado Plateau, and in the Southwest and
Intermountain regions, the lower SFVF pro-
vides an ideal arena in which to test the
hypothesis that the area shares strong affini-
ties with the adjacent Colorado Plateau and
Apachian floristic subprovinces as well as with
the Great Basin ecophysiographic province
(due to expansive coverage of PJ woodlands
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in both regions). A phytogeographical analysis
using a geographic information system (GIS)
will help to elucidate the eclectic floristic
influences of the area and provide a spatially
explicit model of floristic similarity.

Local Floristic Diversity

In addition to its diverse ecophysiographic
influences, the SFVF also encompasses a large
altitudinal range. Elevations range from higher
than 3800 m at the top of the San Francisco
Peaks to 1300 m at the lower reaches of the
volcanic field. Within a 10-km radius, biotic
communities range from alpine tundra to
desert grasslands (Brown and Lowe 1980,
Brown 1994). Existing data supply complete
vascular plant checklists for each biotic com-
munity of the SFVF (including alpine tundra,
spruce-fir forests, mixed conifer forests, pon-
derosa pine forests, P] woodlands, and desert
grasslands); thus the area provides an interest-
ing opportunity to examine local-scale floristic
patterns among major biotic communities of
the Southwest. Just as examining PJ] wood-
lands of the SFVF can improve understanding
of the regional biogeography, examining local
floristic patterns can illuminate finer-scale
floristic patterns throughout P] woodlands of
the Southwest and Intermountain Region.

The structure of PJ woodlands is among the
simplest of any major vegetation type in the
Southwest (Brown 1994), and this fact, per-
haps falsely, suggests that it is also one of the
floristically simplest vegetation types in the
region. The PJ woodlands of the SFVF lie just
below the middle of a landscape-wide eleva-
tional continuum. Along elevation gradients,
ecosystems of middle elevations often show
the highest levels of species diversity (Colwell
and Lees 2000, Lomolino 2001, Colwell et al.
2004), as species from both higher and lower
biotic communities can intermix at intermedi-
ate elevations. Several elevation-gradient analy-
ses of species richness (e.g., Lieberman et al.
1996, Grytnes and Vetaas 2002), including sev-
eral local Arizona studies (Whittaker and Nier-
ing 1965, 1975, Fernandes 1992), corroborate
these findings. In terms of the landscape-wide
matrix, the PJ woodlands of the SFVF fall just
below this “mid-domain” species-richness
peak and are expected to host a moderately
rich flora composed of a mix of species found
in both higher and lower biotic communities.
An analysis of species occurrences between 6
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adjacent biotic communities in the SFVF will
help to illuminate species-richness and floris-
tic-differentiation patterns across a 2500-m
elevation gradient in northern Arizona and
perhaps highlight patterns applicable to other
PJ woodlands on the Colorado Plateau and
throughout the western United States.

METHODS

Study Area

The San Francisco Volcanic Field lies near
the southern edge of the Colorado Plateau in
north central Arizona and south central
Coconino County. The lower SFVE and syn-
onymously the study area, is defined as the
contiguous portion of the greater SFVF that is
dominated by Pinus edulis Engelm. and
Juniperus monosperma (Engelm.) Sarg. The
study area is elevationally bound by Petran
montane coniferous forests above and by grass-
lands below. It lies between 35°10'47" and
35°41'30" latitude and between —111°21’3” and
—-112°10'12" longitude, is irregularly horse-
shoe shaped and essentially envelops the
higher-elevation San Francisco Peaks on the
north, east, and west sides. The study area
extends about 75 km east-west and between 5
and 27 kilometers north—south; it encom-
passes approximately 1134 km2. Elevations
range from 1700 to 2400 m; however, 84% of
the study area occurs between 1829 and 2134
m. Approximately 70 widely spaced cinder
cones dot the otherwise flat plateau of the
lower SFVE The study area lacks stream/river
systems and bodies of water, and perennial
water is essentially absent. Igneous soils and
rocks ubiquitously dominate the local land-
scape. Basaltic rocks from the Holocene to
Middle Pliocene cover 80% of the study area,
while additional igneous deposits (9%) and
Permian sedimentary deposits (11%) compose
the additional surficial geology (Richard et al.
2000).

Regional Floristic Affinities

Floristic affinities of the lower San Fran-
cisco Volcanic Field were determined by mea-
suring the pairwise similarity of the flora
(Christie 2008) with 245 other North Ameri-
can floristic checklists. Only native vascular
plants were used in the analysis. The floras
used in the analysis occur fairly uniformly
throughout Mexico and the United States and
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sporadically throughout Canada (Fig. 1).
Species-occurrence data follow the checklists
used by McLaughlin (2007) in his extensive
work on North American plant geography. The
Otsuka similarity index (OI) was used as the
test statistic and was calculated as

where A; = the number of species in flora i, B;
= the number of species in flora j, and C;; =
the number of species shared in floras i and j.
The Otsuka similarity index is commonly used
in floristic analyses as it compares occurrence
rather than frequency or abundance, is appro-
priate for comparing differently sized entities,
and is mathematically admissible (McLaughlin
1986). Otsuka similarity coefficients range
from 0 to 1; a value of 0 represents mutual
exclusivity between 2 floras, while a value of 1
represents complete overlap between 2 floras.
These values approximate but do not exactly
equal percent similarity, as input floras are
invariably of different sizes.

An Otsuka similarity coefficient was deter-
mined for each of 245 local North American
floras (Fig. 1), representing the affinity between
the PJ woodlands of the SFVF and the respec-
tive local flora. An interpolated surface of
Otsuka similarity values was then created in
ArcGIS 9.0 via ordinary kriging to spatially
depict geographic patterns of floristic affinity.
A spherical semivariogram model and a vari-
able search radius were used in the analysis.

A secondary geographic analysis was con-
ducted to determine the floristic affinities of
(1) the most common plants, (2) the woody
plants, and (3) the grasses of the lower SFVE
As in the overall analysis, only native vascular
taxa were used. Ordinary kriging was con-
ducted in ArcGIS 9.0 using a spherical semi-
variogram model and a variable search radius
to create a probability surface of species pres-
ence based on overall species occurrence
within 245 North American floras (McLaugh-
lin 2007). An individual surface was created
for each species, and then a cumulative proba-
bility surface was derived for each life-form
via summation of the individual interpolated
surfaces. The most common plants were those
subjectively determined to be abundant or
frequent within the study area, following the
abundance scale of Palmer et al. (1995). Woody
plants included all trees and shrubs, while
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grasses included the entire native Poaceae of
the lower SFVF (Christie 2008). The common
species of the SFVF were chosen for the
analysis because they are locally dominant and
compose the majority of plant biomass; the
woody plants were chosen because they are
long lived and fairly resistant to short-term
climatic fluctuations; and the grasses were
chosen due to their ecological importance in
semiarid systems.

Kriging is a geostatistical analysis tech-
nique that predicts unsampled values based
on relationships to sampled points (Childs
2004). Kriging inherently assumes spatial
dependence in the sample data; that is to say,
the values of adjacent points (i.e., the floristic
similarity of 2 adjacent areas) will be more
similar than the values of distant points
(Oliver and Webster 1990). Kriging has great
promise in analyzing floristic data at several
scales and is especially conducive to phyto-
geographical inquiries (Palmer 1995) because
the technique addresses the inherent spatial
autocorrelation in floristic data and produces
spatially explicit results. The technique has
been used successfully to predict vegetation
distributions on scales from several meters to
several kilometers (e.g., Miller and Franklin
2002, Valley et al. 2005), as well as in conti-
nental-scale floristic analyses (McLaughlin
2007). Other statistical and geostatistical inter-
polation techniques are inadequate for spa-
tially autocorrelated data, which inherently
violate many assumptions associated with
parametric statistics (Lichstein et al. 2002).
Maps created via kriging provide readily
accessible information, allow for overlap of
pertinent data layers, and provide a simple
and informative method to present floristic
data (Ozenda and Boral 2000).

Local Floristic Diversity

Alpine tundra, spruce-fir, mixed conifer,
and ponderosa pine life-zone checklists from
the higher-elevation SFVF (Moir 2006); a
pinyon-juniper woodlands checklist (Christie
2008); and a cumulative desert grasslands
checklist were used to assess the floristic diver-
sity and distinctiveness of each of the biotic
communities of the SFVE These species check-
lists represent thorough inventories for each
of the respective life zones. Moir’s (2006) check-
lists are based on complete herbarium searches
(from an extensively collected area) of the
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Fig. 2. Interpolated surface of Otsuka similarity values (a graphical representation of the floristic affinities of the lower
San Fransisco Volcanic Field). Floristic subprovinces of North America follow McLaughlin (2007).

TaBLE 1. Average affinity of the lower San Francisco
Volcanic Field to North American floristic subprovinces.

Mean Otsuka Standard
Floristic subprovince  similarity value deviation
Apachian 0.385 0.086
Colorado Plateau 0.376 0.076
Kansan 0.243 0.073
Great Basin 0.211 0.022
Saskatchewan 0.206 0.048
Mojavian 0.168 0.074
Chihuahuan 0.142 0.106
Rocky Mountain 0.136 0.033

Deaver Herbarium (ASC) and the Museum
of Northern Arizona (MNA) and on selective
digital searches of the ASU and ARIZ herbaria
via Southwestern Environmental Information
Network’s query tools (SEINet 2005). The
pinyon-juniper checklist was created via a thor-
ough floristic inventory (Christie 2008). The
Wupatki National Monument checklist, which
represents the desert grasslands of the SFVE
is based upon a complete floristic inventory,
various updates, and species additions from
a vegetation mapping project (Rominger 1976,
NPS 1993, McLaughlin 1998, Hansen et al.
2004). A list of species that occur within each
life zone as well as the number of species

exclusive to each lifezone were determined
from these lists.

REsuLTS

Regional Floristic Affinities

The flora of the lower SFVF shows the
highest affinities to the adjacent Apachian and
Colorado Plateau floristic subprovinces as
expected, but it also shows high affinities to
the Kansan, Great Basin, and Saskatchewan
floristic subprovinces (Table 1). Data suggest
that mid-elevation woodlands of the Colorado
Plateau share floristic affinities with the Great
Plains that are as strong as or stronger than
those shared with the Great Basin. Figure 2
depicts an interpolated surface of Otsuka simi-
larity values and provides a geographic repre-
sentation of the floristic affinities of the study
area. Map contours of relatively high Otsuka
values extend well into the Great Plains
province; however, they are restricted to the
southern edge of the Great Basin province
(Fig. 2). Based on Otsuka similarity values, of
the 25 floras which are most similar to the
lower SFVE only 1 occurs in the Great Basin
floristic subprovince (Stansbury Mountains,
NV, OI = 0.248), while 6 of 25 occur in the



160

Kansan and Saskatchewan floristic subprovinces
of the Great Plains (Mesa de Maya region,
CO, OI = 0.383; Pawnee National Grassland,
CO, OI = 0.304; Badlands National Park, SD,
OI = 0.267; Melrose Air Force Range, NM,
OI = 0.248; Billings County, ND, OI = 0.247,
and Butte County, SD, OI = 0.244; see Mc-
Laughlin 2007 for flora references).

While the Colorado Plateau and Great
Basin share expansive tracts of PJ woodlands,
the floristic composition of these woodlands
varies appreciably across their range. Regional
floristic influences, as opposed to woodland
structure, seem to primarily drive the compo-
sition of local plant species. The 5 North
American floras that are most floristically simi-
lar to the lower SFVF (Datil Mountains, NM,
OI = 0.505; Greater Sedona, AZ, OI = 0.488;
Canyon de Chelly, AZ, OI = 0.468; Bandelier
National Monument, NM, OI = 0.44; and
Hualapai Mountain Park, AZ, OI = 0.435) also
encompass varying amounts of PJ woodlands;
however, all of these floras occur in the
Apachian and Colorado Plateau floristic sub-
provinces and lie on average only 282 km from
the SFVE The Southwest harbors a high
degree of regional endemism, and southwest-
ern species are often narrowly restricted geo-
graphically (McLaughlin 1986). Although PJ
woodlands make up a vast portion of the
Southwest’s landscape and although they
endure fairly similar climatic conditions across
their range (Brown 1994), the floras of PJ
woodlands from disparate areas certainly
appear distinctive as a result of biogeographi-
cal influences, as evidenced by the relative
lack of similarity between PJ-dominated por-
tions of the Colorado Plateau and PJ-domi-
nated portions of the Great Basin.

In addition to the Otsuka analysis, cumula-
tive probability surfaces for the occurrence of
important life-forms were created to poten-
tially clarify floristic affinity patterns of the
Colorado Plateau’s mid-elevation woodlands.
These surfaces depict the probability that a
plant (i.e., a common plant, a woody plant, or a
grass) from the lower SFVF also occurs else-
where. The probability surfaces for both the
common species and the woody species are
centered around the Colorado Plateau and
Apachian floristic subprovinces (and essen-
tially follow the extent of these subprovinces
shown in Fig. 1) and therefore are not depicted
here. However, the cumulative probability
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surfaces for grass species of the lower SFVF
show a distinct affinity towards Kansan and
Saskatchewan floristic influences from the
Great Plains region (Fig. 3) and essentially fol-
low the largest Otsuka contour value (Fig. 2).
This similarity of patterns shown in Fig. 2 and
Fig. 3 suggests that the grasses, as opposed to
common perennials, trees, or shrubs, strongly
affect the floristic similarity between the Col-
orado Plateau and the Great Plains.

Two major factors, (1) similar climatic con-
ditions and associated physiological tolerances
and (2) evolutionary history, seem to influence
2 separate groups of grass species in the lower
SFVE The first group consists of those species
typically found in the Great Plains region,
such as Bouteloua curtipendula (Michx.) Torr.,
Hesperostipa comata (Trin. & Rupr.) Bark-
worth, Panicum virgatum L., Schizachyrium
scoparium (Michx.) Nash, and Sorghastrum
nutans (L.) Nash. These grasses likely thrive
on the southern Colorado Plateau and in the
Great Plains because both regions share simi-
lar annual precipitation totals, summer precip-
itation patterns, and minimum July tempera-
tures (SCAS 2006), factors known to affect the
physiological amplitude of plant species
(Iversen 1954, Birks 1981). The second group
of grass species (including Aristida arizonica
Vasey, Bouteloua aristidoides [Kunth] Griseb.,
Lycurus setosus [Nutt.] C.G. Reeder, Muhlen-
bergia torreyi [Kunth] Hitchc. ex Bush, and
Panicum bulbosum Kunth) shows affinity
towards Madrean and Chihuahuan floristic
elements from southern New Mexico and
northern Mexico. This may be attributable to
the evolutionary history of the locally well-
represented Chloridoideae, as plants with C,
photosynthesis are well represented in arid
and semiarid environments (Judd et al. 2002).
Likewise, the locally well-represented Aristida
L. thrives in open, semiarid habitats world-
wide (Flora of North America Editorial Com-
mittee 1993+).

Local Floristic Diversity

The hypothesis that P] woodlands host a
moderately species-rich flora in comparison
to other biotic communities of the SFVF is
accepted; however, the hypothesis that the
local PJ flora is composed of an indistinctive
mix of species from higher and lower biotic
communities is clearly rejected. The PJ wood-
lands of the SFVF host more restricted species
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Fig. 3. Cumulative probability that a grass species from the lower San Francisco Volcanic Field occurs elsewhere.

TaBLE 2. Landscape-wide floristic diversity and distinctiveness within the San Francisco Volcanic Field (the floristic
distinctiveness of desert grasslands could not be determined without an adjacent biotic community, which is absent in

the San Francisco Volcanic Field).

Flora Unique Elevation

Life zone Species uniqueness taxa range (m)

Desert grasslands 364 — 1311-1737
PJ woodlands 487 28% 137 1737-2073
Ponderosa pine forest 581 24% 139 2073-2530
Mixed conifer forest 419 17% 71 2530-2835
Spruce-fir forest 285 14% 40 2835-3536
Alpine tundra 94 12% 11 3536-3841

than any other single biotic community of the
SFVE Twenty-eight percent (137 taxa) of the
PJ flora is restricted to this single life zone.
Data highlight an inverse relationship
between elevation and floristic distinctiveness
(Table 2). In the SFVE as elevation increases,
the distinctiveness of the flora decreases.

DiscussION

Regional Floristic Affinities

The geographic regions with which the
lower San Francisco Volcanic Field shares the
highest floristic affinities are fairly similar eco-
physiographically. The areas encompass tropi-
cal/subtropical steppe or temperate steppe,
and they have similar climates (Bailey et al.

1994, Bailey 1998). The southwestern regional
landscape also imposes significant physiologi-
cal migration barriers. Figure 2 shows the area
in which the floristic assemblage of the lower
SFVF is the best developed. To the south
below the Mogollon rim and to the southwest
of this zone, elevation drops precipitously and
Sonoran and Mojavean elements predominate.
A similar pattern manifests itself to the south-
east as lower elevations, warmer temperatures,
and less precipitation favor Chihuahuan ele-
ments. To the east, lower elevations, additional
precipitation, and cooler temperatures favor
Great Plains grasslands. Considerable physical
barriers imposed by massive canyon networks,
as well as autumn and spring precipitation
regimes as opposed to a summer precipitation
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regime, influence the vegetation to the north.
To the northeast, the Rocky Mountains harbor
a colder, wetter, higher-elevation flora more
reminiscent of the Pleistocene. The flora of
the lower SFVF is essentially bound by these
ecophysiographic constraints.

The southwestern United States also har-
bors a very high level of local endemism, and
species are narrowly restricted geographi-
cally and presumably of recent origin. Over
one-fifth of southwestern species are region-
ally endemic, and over one-fourth of the
dicotyledons are restricted to the region
(McLaughlin 1986). In an analysis of 50 well-
distributed local floras from the southwest-
ern United States, McLaughlin (1986) found
that a given species occurred in only 4 out of
50 floras on average and that almost two-
thirds of the species occurred in 3 or fewer
floras. Fewer than 2% of the taxa are widely
distributed throughout the region (McLaugh-
lin 1986). Regardless of ecological tolerances,
many Southwestern taxa simply may not have
had time since Holocene speciation events
to migrate to the extremes of their physio-
logical limits and thus still display fairly lim-
ited distributions. P] woodlands of the south-
ern Colorado Plateau are most similar to
other Apachian and Colorado Plateau floris-
tic elements, predominantly because they
are adjacent and share fairly similar climatic
regimes.

Local Floristic Diversity

Pinyon-juniper woodlands of the San Fran-
cisco Volcanic Field host a moderately species-
rich flora, while ponderosa pine forests host
the most species-rich flora among local biotic
communities. These findings support the “mid-
domain” theory, as species richness decreases as
elevation either increases or decreases from
the “mid-domain” ponderosa pine life zone
(Table 2). Despite their uniform forest struc-
ture, PJ woodlands do, in fact, host a moder-
ately rich flora; however, the flora is not com-
posed only of species from higher and lower
biotic communities as the “mid-domain” the-
ory might suggest. P woodlands of the SFVF
host the most distinctive flora among local
biotic communities and highlight an inverse
correlation between elevation and floristic dis-
creteness. This study lacked the data to calcu-
late the floristic distinctiveness for lower eleva-
tion biomes; however, this pattern may persist
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into the lower desert life zones and should cer-
tainly be tested in other areas.

Data from this study raise a fascinating ques-
tion: why is the assemblage of plant species
growing at lower elevations more distinctive
than the assemblage growing at higher eleva-
tions on the same mountain slope? Rapoport’s
latitudinal rule contends that as latitude
increases so do the latitudinal ranges of species
(Taylor and Gaines 1999). In other words, equa-
torial species are typically more latitudinally
restricted, while temperate and circumpolar
species are more wide ranging. Climatic
extremes determine the physiological and eco-
logical scope of species (Iversen 1954, Birks
1981), and since altitudinal gradients effectively
mimic climatic variation across latitudinal gra-
dients (Merriam 1894), Stevens (1992) cogently
suggests that Rapoport’s latitudinal rule can
be extended to altitudinal gradients. He sug-
gests that low-elevation species are relatively
restricted elevationally, whereas high-elevation
species are more wide ranging.

Stevens (1992) proposes that Rapoport’s lat-
itudinal rule applies because the degree of cli-
matic heterogeneity increases with increasing
latitude. Equatorial or tropical species experi-
ence such a narrow scope of climatic variabil-
ity and seasonal change that they face no evo-
lutionary consequence for possessing narrow
physiological tolerances; but high-latitude
species must endure a drastically variable
climate to simply survive and reproduce
(Stevens 1992). Since the variation of climatic
conditions increases with both latitude and
altitude, higher-latitude and higher-altitude
species are anticipated to have broader physi-
ological tolerances and geographic distribu-
tions. Findings from both plant and animal
studies support the extension of Rapoport’s
latitudinal rule to altitudinal gradients (Stevens
1992). Janzen (1967) lends support to the
argument by proposing that infrequent con-
tact with environmental change promotes an
increased sensitivity to climatic variations. It
follows that for species which typically encoun-
ter a more uniform climatic regime (those at
lower latitudes or lower altitudes), smaller
changes in environmental conditions act as rela-
tively large dispersal barriers (Janzen 1967).
Since the PJ woodlands of the SFVF (and many
PJ woodlands throughout the West) often occur
at the bases of mountains and experience less
climatic heterogeneity than higher-elevation
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ecosystems, it follows (if the argument above is
correct) that they should harbor a more unusual,
geographically restricted flora.

These findings suggest far-reaching ramifi-
cations toward an understanding of the floris-
tics of PJ woodlands throughout the West.
Pinyon-juniper communities cover expansive,
middle-elevation tracts throughout the West,
and they may, in fact, be acting as conserva-
tion-worthy repositories for distinctive plant
species of the Colorado Plateau, the South-
west, and the Intermountain Region.

Conclusions

This study illustrates that PJ woodlands on
the southern Colorado Plateau have strong
affinities with adjacent floristic elements but
also show strong floristic affinities with the
Great Plains. Data suggest that mid-elevation PJ
woodlands of the Colorado Plateau perhaps
share stronger floristic similarities with the
Great Plains than they share with the Great
Basin. Findings propose that within mountain-
ous regions of the western United States, PJ
woodlands can host unusual and conservation-
worthy floras. This study also highlights an
inverse correlation between elevation and floris-
tic differentiation, a relationship that should cer-
tainly be tested in other regions and ecosystems
and with other organisms.
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