THE IMPORTANCE OF TESTING IN THE TIME OF COVID-19 (OR ANY PANDEMIC)

Infectious Disease Epidemiology Bootcamp
Session 2
July 14, 2020
Ricky Camplain, PhD

INFECTIOUS DISEASE EPIDEMIOLOGY BOOTCAMPS OBJECTIVES

- Explain the basics of infectious disease epidemiology, including transmission and conceptual model
- 2. Evaluate infectious disease measures (e.g., R-naught, case fatality, incidence).
- 3. Explain the importance of control infectious disease spread
- Describe the process of testing, case investigation, and contact tracing for infectious diseases
- Compare sensitivity, specificity, and positive and negative predictive value of diagnostic tests
- Understand the concepts of database construction and data entry for quality data reporting
- 7. Interpret data tables and charts related to infectious disease measures

REMEMBER TO JOIN US FOR THE OTHER BOOTCAMPS!

- Tuesday, July 21 at 11:30 AM PDT Measures of Frequency and Associations
 - Risk and rates
 - How are the calculated?
 - How to interpret them when you encounter them in reports and news stories!
- Tuesday, July 28 at 11:30 AM PDT Getting the Most Out of Your Data
 - Data interpretation
 - Data visualization

OBJECTIVES

- Types of testing
- Importance of testing for disease prevention
 - "Box It In"
- Validity and accuracy of diagnostic tests
- When is testing appropriate for disease mitigation?

NAU NORTHERN ARIZONA UNIVERSITY

SCREENING

SCREENING

- The best screenings have:
 - Few false positives
 - Few false negatives
- Those with positive screening test may be referred to diagnostic test

SCREENING FOR COVID-19

- Series of questions asked to determine a person's risk for COVID-19
 - Symptoms being experienced
 - Travel history in recent weeks (less important when community spread is high)
 - Exposure to someone who has been confirmed to have COVID-19
- After screening, a health professional will decide on whether a person should be tested

DIAGNOSTIC (VIRAL) TESTING

- A viral test can confirm if you have a current infection
- CURRENT COVID-19 TESTS
 - PCR diagnostic testing
 - Point-of-care RAPID tests
 - Results in 15-30 minutes
- TEST RESULTS CAN VARY FROM 10 MINUTES TO OVER A WEEK
 - Depends on type of test, type of lab, geographical location, availability of lab

ANTIBODY TESTING

- Help determine whether an individual was previously infected even if that person never showed symptoms
- Can play an important role in understanding the transmission dynamic of the virus in the general population
- Not recommended as the sole basis for diagnosis of acute infection
 - Not authorized by FDA for diagnostic purposes
- HOW LONG DO COVID-19 ANTIBODIES LAST?!
 - Evidence for short-term immunity
 - Antibodies may start to decrease within 2-3 months

MORE RESEARCH NEEDED!

TESTING FOR DISEASE MITIGATION

- Testing does not slow the spread of the virus
- Allows you to monitor the outbreak, epidemic, pandemic as it unfolds
- Sets off a chain of events to take action.
 - Isolate infected people so the virus stops with them!
 - Contact tracing → quarantine → behavior change

BOX IT IN!

TEST WIDELY AND EFFECTIVELY

- Increase the number of diagnostic tests available
- Increase test processing speed
- Prioritize testing for groups for which testing will make the most difference in improving outcomes
 - Comprehensive testing among vulnerable populations.
- Expand serological testing
- Education!

ISOLATE QUICKLY

- Those who do not require hospitalization to isolate at home
- Make facilities (e.g., hotels) that are safe available for people who cannot safely isolate in their homes
- Rapid and effective isolation of all infected patients in hospitals
- Wide-ranging preventive measures in congregate living settings to prevent introduction of the virus and reduce transmission between vulnerable residents and staff
 - Reducing populations to allow for adequate social distancing

IDENTIFY CONTACTS – CONTACT TRACING

- Massively expand contact tracing capacity at the local, state, and federal levels
- Support person-to-person contact tracing to make it more efficient and effective
- Address concerns about confidentiality and privacy
- Embrace technology

QUARANTINE CONTACTS

- Provide services and support to people so they can quarantine as comfortably as possible
- Provide ready access to telehealth services and care when needed

TESTING: NOT THE END ALL - BE ALL

- Testing and "Box It In" is not our only mitigation strategy
 - Especially in the current stage of the pandemic
- In tandem with:
 - Stay at home orders
 - Public health messaging
 - Going out for essential things only
 - Social distancing
 - Wearing masks
 - Washing hands

HOW TO MEASURE TEST VALIDITY AND ACCURACY

	Disease Status		
Test Result	(+)	(-)	
(+)	TP	FP	T+
(-)	FN	TN	T-
	D+	D-	

TP = True positive

FP = False positive

TN = True negative

FN = False negative

D+ = Disease positive

D- = Disease negative

T+ = Test positive for disease

T - = Test negative for disease

TERMS YOU MAY HAVE HEARD

- Sensitivity
- Specificity
- Positive Predictive Value
- Negative Predictive Value

SENSITIVITY

Sensitivity = probability of a positive test among persons with a disease

How good is a test for identifying people with disease?

SENSITIVITY

	Disease Status		
Test Result	(+)	(-)	
(+)	TP	FP	T+
(-)	FN	TN	T-
	D+	D-	

SPECIFICITY

Specificity = probability of a negative test among persons without disease

How good is a test for identifying people without disease?

SPECIFICITY

	Disease Status		
Test Result	(+)	(-)	
(+)	TP	FP	T+
(-)	FN	TN	T-
	D+	D-	

WHAT ABOUT THESE OTHER QUESTIONS

 If I obtain a positive test result, what is the probability that I actually have the disease?

 If I obtain a negative test result, what is the probability that I do not have the disease?

POSITIVE PREDICTIVE VALUE (PPV)

PPV = probability that a person has the disease given that a positive test has been obtained

If I obtain a positive test result, PPV is the probability that I actually have the disease.

POSITIVE PREDICTIVE VALUE (PPV)

	Disease Status		
Test Result	(+)	(-)	
(+)	TP	FP	T+
(-)	FN	TN	T-
	D+	D-	

NEGATIVE PREDICTIVE VALUE (NPV)

NPV = probability that a person does not have the disease given that a negative test has been obtained

If I obtain a negative test result, NPV is the probability that I actually do NOT have the disease.

NEGATIVE PREDICTIVE VALUE (NPV)

	Disease		
Test Result	(+)	(-)	
(+)	TP	FP	T+
(-)	FN	TN	T-
	D+	D-	

SO REMEMBER...

- Sensitivity = How good a test is for identifying people with disease
- Specificity = How good a test is for identifying people without disease
- Positive Predictive Value = How likely it is for someone who tests positive to actually have the disease
- Negative Predictive Value = How likely it is for someone who tests negative to not have the disease

ACCURACY OF COVID-19 TESTS MAY DEPEND ON TIME!

COVID-19 RISK LEVEL IN THE UNITED STATES

COVID-19 RISK LEVEL – HARVARD GLOBAL HEALTH INSTITUE

COVID-19 RISK LEVEL IN THE UNITED STATES – BY COUNTY

COVID-19 RISK LEVEL BY STATE

Sta	te/County	Daily new cases per 100k people (7d moving avg.)
+	Arizona	49.1
+	Florida	43.6
+	Louisiana	34.9
+	South Carolina	30.1
+	Georgia	28.5
+	Texas	27.9
+	Alabama	25.2
+	Nevada	24.1
+	Mississippi	23.7
+	Idaho	23.5
+	Tennessee	22.0
+	California	21.9
+	Arkansas	19.8
+	Utah	19.8
+	Kansas	17.8
+	Iowa	16.6
+	North Carolina	15.1
+	Oklahoma	14.5
+	New Mexico	12.1
+	Wisconsin	10.9

Sta	te/County	Daily new cases per 100k people (7d moving avg.)
+	Delaware	10.7
+	Ohio	9.3
+	Missouri	9.0
+	Virginia	9.0
+	Washington	8.4
+	Nebraska	8.4
+	North Dakota	8.1
+	Minnesota	8.0
+	District of Columbia	7.4
+	Kentucky	7.3
+	West Virginia	7.2
+	Indiana	7.2
+	Maryland	7.0
+	South Dakota	6.8
+	Illinois	6.8
+	Colorado	6.4
+	Montana	6.3
+	Oregon	6.2
+	Pennsylvania	5.7

State/County	Daily new cases per 100k people (7d moving avg.)
+ Maryland	7.0
+ South Dakota	6.8
+ Illinois	6.8
+ Colorado	6.4
± Montana	6.3
± Oregon	6.2
+ Pennsylvania	5.7
+ Alaska	5.4
± Wyoming	5.1
± Michigan	5.0
+ Rhode Island	4.3
+ New York	3.2
+ Massachusetts	3.1
+ New Jersey	3.0
+ Connecticut	2.3
± Hawaii	1.9
+ New Hampshire	1.4
± Maine	1.1
+ Vermont	0.9

COVID-19 RISK LEVEL BY COUNTY

SARS-COV-1 – BOX IT IN SUCCESS

- SARS-CoV-2 (virus that causes COVID-19)
 - 13,000,000 cases
 - 571,000 deaths
- SARS-CoV-1
 - 8,000 cases
 - 700 deaths
 - More aggressive than SARS-CoV-2

SARS-COV-1 – BOX IT IN SUCCESS

- SARS-CoV-1
 - Easier to identify cases
 - Easier to track down contacts
- EVERYONE HAD SEVERE SYMPTOMS IN TWO TO THREE DAYS

REFLECTION

- Types of testing
- Importance of testing for disease prevention
 - "Box It In"
- Validity and accuracy of diagnostic tests
- When is testing appropriate for disease mitigation?

ACKNOWLEDGMENTS

- Drs. Meghan Warren and Brettania O'Connor
- Lisa Dahm
- Kate Compton-Gore
- Dr. Samantha Sabo
- Dr. Julie Baldwin
- The Southwest Health Equity Research Collaborative (SHERC)
 - nau.edu/sherc

REFERENCES

- 1. Long, Quan-Xin, et al. "Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections." *Nature medicine* (2020): 1-5.
 - https://www.nature.com/articles/s41591-020-0965-6
- 2. Resolve to Save Lives. "Box It In: Rapid Public Health Action can Box in COVID-19 and Reopen Society".
 - https://preventepidemics.org/wp-content/uploads/2020/04/BoxItInBriefingDoc.pdf
- 3. Harvard Global Health Institute. "How Severe is the Pandemic Where you Live?". Pandemics Explained (July 10, 2020).
 - https://globalepidemics.org/key-metrics-for-covid-suppression/?fbclid=lwAR0mvYgzE_GsbVRE-2BF_XciztZp5w_JFZjJnFcypSRbSXJFhkKr85mPlCo
- 4. Benny, Borremans, et al. "Quantifying antibody kinetics and RNA shedding during early-phase SARS-CoV-2 infection". *Preprint* (2020)
 - https://www.medrxiv.org/content/10.1101/2020.05.15.20103275v1.full.pdf